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Abstract: The lymphatic system is a complex network of lymphatic vessels and lymph nodes designed
to balance fluid homeostasis and facilitate host immune defence. Neutrophils are rapidly recruited
to sites of inflammation to provide the first line of protection against microbial infections. The
traditional view of neutrophils as short-lived cells, whose role is restricted to providing sterilizing
immunity at sites of infection, is rapidly evolving to include additional functions at the interface
between the innate and adaptive immune systems. Neutrophils travel via the lymphatics from the
site of inflammation to transport antigens to lymph nodes. They can also enter lymph nodes from the
blood by crossing high endothelial venules. Neutrophil functions in draining lymph nodes include
pathogen control and modulation of adaptive immunity. Another facet of neutrophil interactions
with the lymphatic system is their ability to promote lymphangiogenesis in draining lymph nodes
and inflamed tissues. In this review, we discuss the significance of neutrophil migration to secondary
lymphoid organs and within the lymphatic vasculature and highlight emerging evidence of the
neutrophils’ role in lymphangiogenesis.
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1. Introduction

Lymphatic vessels serve as a drainage system for collecting and returning interstitial
tissue fluid and protein (lymph) to the bloodstream [1]. In addition, lymphatics provide an
important pathway for leukocytes during an immune response [2]. On the flip side, im-
mune cells can regulate lymphatic vessel development, growth and function. Recruitment
and activation of immune cells in the context of inflammation promotes lymphangiogenesis
and also increases lymph flow [3]. These effects amplify cell trafficking to lymph nodes
and are important for mounting an effective immune response.

Under homeostatic conditions, neutrophils patrol the lymph nodes that drain the
skin, lungs and gastrointestinal tract [4]. They enter the lymph nodes via high endothelial
venules (HEVs) in an L-selectin-dependent manner and reside within the lymph node
interstitium [5]. Neutrophil lymph node egress via efferent lymphatics is mediated by
sphingosine-1-phosphate receptor (S1PR) [5].

At the onset of inflammation (e.g., infection, tissue damage, and cancer), neutrophils
rapidly migrate to sites of injury, where they can destroy microorganisms through phago-
cytosis, release anti-microbial molecules and promote immune cell recruitment [6]. Once
neutrophils enter inflamed tissues, they have several possible fates: most neutrophils are
thought to die at the site of inflammation; however, a proportion can reverse transmigrate
back into blood vessels [7,8]. Furthermore, some neutrophils can egress sites of inflamma-
tion by entering lymphatic vessels and migrating to draining lymph nodes. This lymphatic
migration of neutrophils has been observed in response to bacterial and parasitic infections
and after vaccination [9–12].
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In addition to the lymphatic route, neutrophils can also enter draining lymph nodes
from circulation via HEVs (Figure 1). Neutrophil entry into the lymph node through HEVs
has been observed following intradermal injection of S. aureus [13] and Complete Freund’s
Adjuvant (CFA) [11] as well as in a model of tumour cell lysis in murine skin [14]. A recent
study showed that the majority of neutrophils were recruited to the lymph node directly
from HEVs [15], while a smaller population of neutrophils migrated directly from the site
of inflammation to lymph nodes via afferent lymphatics [15].
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Figure 1. Neutrophil migration to lymph nodes. Neutrophils rapidly migrate from the site of inflammation into lymphatic
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Lymph node neutrophils are phenotypically distinct from circulating neutrophils and
have the capacity to modulate adaptive immunity [4]. Although the existence of bona
fide neutrophil subsets remains to be conclusively demonstrated, the two different routes
of neutrophil entry (via afferent lymphatics or HEVs) suggest that the two populations
of lymph node neutrophils may have distinct functions. Neutrophils entering the lymph
node via afferent lymphatics are arriving from sites of inflammation, are highly activated,
express costimulatory molecules and carry tissue antigens [9,10]. This may enable them
to act as antigen presenting cells and to shuttle pathogens to draining lymph nodes. On
the other hand, neutrophils arriving from circulation are likely coming from the bone
marrow (although it is possible that a proportion of tissue neutrophils undergoes reverse
transmigration to enter circulation [7,8] and then migrates to draining lymph nodes) in
response to pathogens in the lymph nodes. It is likely that neutrophils entering from
circulation play a prominent role in preventing the systemic dissemination of bacteria [15].

Another role of neutrophils in interacting with the lymphatic system is to contribute
to lymphangiogenesis, a process which can modulate inflammation by controlling cell
trafficking and antigen transport [3,16]. Neutrophils mediate this function by releasing
lymphangiogenic molecules, such as VEGF-D, at the site of inflammation [17,18]. Here, we
review neutrophil trafficking within the lymphatic system and the effect on the immune
response, highlighting new evidence of neutrophils’ role in lymphangiogenesis.
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2. The Lymphatic Vasculature

The lymph is a biological fluid, whose function is to return the interstitial fluid from
tissues to the blood circulation [19]. Since lymph is produced as the result of a capillary
filtration process, its composition is very similar to plasma ultrafiltrate, with high numbers
of leukocytes and plasma proteins [20]. In addition, lymph contains a large amount of
dietary fats, related lipoproteins and cholesterol absorbed from the intestine [21].

Lymph flows through the lymphatic vessels, which form a unidirectional network
of vessels that collect the lymph and then return it through a system of collecting vessels,
lymph nodes and lymphatic trunks into the venous circulation [22,23]. The initial lymphatic
vessels are composed of a single layer of overlapping oakleaf shaped lymphatic endothelial
cells, which express the lymphatic endothelial marker podoplanin and the lymphatic vessel
endothelial hyaluronan receptor 1 (LYVE-1) [24]. The primary lymphatic valve system is
composed of endothelial cells that interdigitate and form loose discontinuous buttonlike
junctions (buttons) [25]. The afferent lymphatics start as blind-ended capillaries that branch
and merge with larger lymphatic collecting vessels (which downregulate the expression
of LYVE-1). Collecting lymphatic vessels are uniquely adapted to ensure leakage-free
transport of lymph [26]. They contain valves which ensure the unidirectional flow of
lymph and prevent backflow [27]. Collecting LECs have an elongated morphology, are
connected by continuous and tight zipperlike cell–cell junctions [25] and enclosed by a
continuous basement membrane covered by smooth muscle cells [28]. LECs are exposed to
peripheral extracellular antigens after tissue damage, infection or inflammation [29] and
can take up these antigens and present them to T cells [30,31]. Afferent collecting vessels
merge with the collagen-rich capsule of the draining lymph node and empty their contents
into the subcapsular sinus, before exiting as efferent vessels that reconnect to the venous
blood [2] (Figure 2).
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Figure 2. Organization of the lymphatic network. Afferent lymphatics start as blind-ended capillaries in peripheral
tissues [32]. These then branch and merge with collecting vessels, which feed into a draining lymph node [33]. The
endothelium of collecting vessels has continuous zippers that prevent vascular leaks and allow transport of the lymph.
Lymph fluid and leukocytes leave the lymph node through the efferent collecting vessels.

The lymphatic network has three main functions: (1) balance fluid homeostasis; (2) ab-
sorb dietary fat in the intestine and transport it back into the blood stream; and (3) facilitate
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host immune defence [34]. Furthermore, lymphatic vessels are an essential compartment
for immune cells, providing a route for antigen transport and the trafficking of dendritic
cells (DCs), T cells and neutrophils to draining lymph nodes during immune activation [35].
Moreover, lymphatic vessels are important for macrophage clearance during the resolution
phase of tissue inflammation and infections [2] and for the maintenance of peripheral
immune tolerance [3]. Notably, the lymphatic network can also be used by microbial
pathogens for dissemination and host colonization [36]. Thus, the lymphatic network
modulates the immune response directly, by controlling antigen transport by immune cells
to draining lymph nodes, or indirectly, by shaping the lymph node microenvironment.

3. Neutrophil Migration to Lymphoid Organs

Neutrophil interactions with the lymphatic system include entry into and migration
within lymphatic vessels, recruitment to lymph nodes (via both lymphatic and hematoge-
nous routes) and modulation of lymphangiogeneis in tissues and lymph nodes. This
section discusses how neutrophils are recruited to lymph nodes.

3.1. Neutrophil Migration via Lymphatic Vessels

Early cannulation studies of afferent lymphatic vessels conducted in sheep and hu-
mans under homeostatic conditions detected low number of neutrophils in the afferent
lymph [37–41]. Neutrophil numbers increased dramatically but transiently in ovine afferent
lymph following vaccination with liposomes containing an innate cell stimulator poly(I:C)
and diphtheria toxoid (DT) [42]. These studies provided some of the earliest evidence for
neutrophil migration in lymphatic vessels.

Recently, in vivo labelling [9,10] and advances in intravital imaging technologies [12,43]
allowed the tracking of neutrophils migrating from the periphery to draining lymph nodes
and the visualization of their interactions with the lymphatic vessels in mice [9,12]. In
a mouse model of cremaster muscle inflammation, antigen sensitisation led to a rapid
transient entry of tissue neutrophils into lymphatic vessels and subsequent crawling along
the luminal side of the lymphatic endothelium [12]. Our group observed that neutrophils
crawling in lymphatic vessels carried fluorescently labelled bacteria [9]. Moreover, using in
situ photolabeling, we showed that neutrophils were rapidly recruited to inflamed skin in
response to both microbial and sterile challenges, but emigrated to draining lymph nodes
via lymphatic vessels only in the presence of an infectious but not a sterile stimulus [9].
This suggests that neutrophil egress from inflamed tissues may depend on neutrophil
phenotype and tissue environment. Additional conditions that promote neutrophil entry
into lymphatics vessels are yet to be defined.

Neutrophils enter the lymphatic endothelium through a mechanism named transmi-
gration [44,45] (Figure 3). Rather than migrating through established cellular junctions in
the lymphatic endothelium, neutrophils induce the enzymatic degradation and the retrac-
tion of LECs [45]. In this way they create large openings that allow their rapid passage
through the endothelium and provide a route for further neutrophil migration. This mech-
anism of neutrophil migration may explain the rapid kinetics of neutrophil recruitment in
the lymph nodes, which was found to peak after 4–6 h following the administration of an
inflammatory stimulus [9,46].

Neutrophil entry from inflamed tissues into afferent lymphatics involves β2 inte-
grins [44]. Indeed, adhesion molecules, such as ICAM-1 and VCAM-1 (expressed on LECs),
can support human and mouse neutrophil lymphatic interactions via binding to leukocyte
β2 integrin [44]. Integrin-mediated neutrophil adhesion to inflamed LECs through ICAM-1
binding induces the release of matrix metalloproteinases MMP8 and MMP9 and secretion of
12-hydroxyeicosatetraenoate (12(S) HETE) [2]. Neutrophil migration in lymphatic vessels
also requires CD11b (or integrin alpha M, which binds to integrin β2 to form complement
receptor 3 [47]), since the inhibition or complete removal of CD11b inhibited neutrophil
migration from the skin to draining lymph nodes [9].
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Figure 3. Neutrophil migration to lymphoid organs. (A) Two-photon microscopy image of a section of inflamed skin
in a Ly6G-Tomato reporter mouse [48] stained with LYVE-1 (white) to visualise LECs and endothelial cells with CD31
(blue). Neutrophils (red) can be seen in and around lymphatic vessels. (B) Schematic representation of neutrophil
transmigration across lymphatic endothelium. First, neutrophils chemotax toward LECs following inflammation-induced
release of chemokines such as CXCL8 in humans and CXCL1 in mice [49]. Next, neutrophils adhere to inflamed LECs via
integrin binding to ICAM-1. This triggers the secretion of MMP8, MMP9 and exocytosis of chemorepellent 12(S)-HETE,
which together promote transient junctional retraction and neutrophil transmigration. The resulting gap in the lymphatic
endothelium serves as a hotspot for rapid neutrophil transmigration. Adapted from D.G. Jackson, Frontier Immunology,
2019 [2]. (C) Diagram showing neutrophil entry into the lymph node via HEVs. Neutrophil express L-selectin which binds
to glycoproteins expressed on the HEVs walls, such as peripheral node addressins (PNAds) to allow tethering and rolling,
which promote rapid adhesion and emigration [15]. Neutrophil adhesion is mediated via binding of ICAM-1 to integrins
LFA-1 and Mac-1. In particular, LFA-1 mediates neutrophil adhesion and Mac-1 facilitates subsequent crawling [50].
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Neutrophil lymphatic migration is guided by chemotactic stimuli. Chemokine receptor
CCR7 regulates entry of DCs, monocytes and T cells into lymph nodes [51–53]. CCR7
ligands, CCL19 and CCL21, are produced by lymph node stromal cells and DCs (CCL19)
and by lymphatic endothelial cells (CCL21) [54]. Neutrophil migration to draining lymph
nodes also appears to rely on CCR7 in some settings [46]. For instance, in models of
TNF-α- and/or Complete Freund’s adjuvant (CFA)-induced inflammation in the skin [46]
or cremaster muscle [12] neutrophil migration to lymph nodes was CCR7-dependent.
Neutrophils upregulated CCR7 upon entry into inflamed tissues, suggesting that neutrophil
priming is required for enhanced chemokine receptor expression [12]. On the other hand,
neutrophil egress from the skin and entry into the lymph nodes was independent of
CCR7 after S. aureus administration to the skin [9]. These opposing outcomes suggest that
the requirement for CCR7 is stimulus-dependent and may be influenced by neutrophil
phenotype, activation status, tissue microenvironment and other factors. This also indicates
that additional chemokine pathways can mediate neutrophil lymphatic migration [9].
Consistent with this hypothesis, inhibition of chemokine receptors CXCR2 and CXCR4
demonstrated that CXCR4, but not CXCR2, was required for neutrophil migration from
the inflamed skin to draining lymph nodes [9].

3.2. Neutrophil Recruitment to Lymph Nodes via HEVs

In addition to entering lymph nodes via afferent lymphatics, neutrophils can also be
recruited there from blood via HEVs. Neutrophil migration into lymph nodes across HEVs
was reported for the first time in 1959 [55]. Imaging of inguinal lymph nodes by intravital
microscopy following S. aureus infection confirmed that local immunization or infection
rapidly recruits neutrophils from HEVs to lymph nodes [13]. Many of the neutrophils
recruited to the immunized lymph node were mobilized from the bone marrow [13].
Neutrophils can enter lymph nodes via HEVs during infection, antigen sensitization and
following immune complex activation [56].

While the molecules required for lymphocyte migration through HEVs are well
defined [57], the mechanisms of neutrophil entry via HEVs still need to be elucidated. A
recent study of S. aureus infection, reported that, similarly to lymphocytes [58], L-selectin
on neutrophils can bind glycoproteins, such as peripheral node addressins (PNAds), to
allow tethering and rolling, which promote rapid adhesion and emigration (Figure 3) [15].
L-selectin recognizes a family of mucinlike glycoproteins (such as CD34, glycosylation-
dependent cell adhesion molecule 1, GLYCAM1, podocalyxin, endomucin and nepmucin),
which are heavily sulphated, fucosylated and sialylated when expressed by the HEV
endothelial cells of peripheral lymph nodes [59]. Blocking L-selectin reduced neutrophil
recruitment to lymph nodes following injection with S. aureus [9], CFA [11] or tumour
cell lysis [14]. Neutrophils can also use P-selectin glycoprotein ligand-1 (PSGL-1) as
well as integrins macrophage-1 Ag (Mac-1) and lymphocyte function-associated Ag-1
(LFA-1) to cross HEVs [11]. LFA-1 mediates neutrophil adhesion and Mac-1 facilitates
subsequent crawling in inflamed blood vessels [50]. The CXCR4/CXCL12 axis is also
important for neutrophil entry into the lymph nodes via this route [11]. Neutrophils
can upregulate CXCR4 after antigen challenge and this allows them to enter the lymph
node [11]. Notably, neutrophil recruitment to lymph nodes through HEVs can occur
independently of CCR7 [9,11,15]. However, it was found to be highly dependent on
complement, especially C5a [15]. Taken together, these findings suggest that neutrophil
migration to lymph nodes via afferent lymphatics and through HEVs is regulated by
partially overlapping but distinct mechanisms. However, molecular pathways regulating
neutrophil entry into lymph nodes via HEVs require further investigation.

4. Neutrophil Functions within the Lymphatic System
4.1. Pathogen Control versus Dissemination

Neutrophils possess multiple mechanisms for killing pathogens including: (1) phago-
cytosis; (2) production of highly toxic reactive oxygen species (ROS) in the pathogen-
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containing vacuole; (3) degranulation; and (4) generation of neutrophil extracellular traps
(NETs) [60]. It is likely that these neutrophil functions play a significant role in pathogen
control in the lymph nodes. This is important since the lymph nodes are one of the first
sites for pathogen spread following infection. The role of neutrophils in limiting pathogen
spread has been demonstrated in a model of S. aureus infection in mice, where neutrophils
were directly recruited to the lymph nodes via the HEVs and provided critical protection,
ensuring that no bacteria reached the circulation [15]. A combination of intravital imag-
ing and in vitro microfluidic device models revealed how large numbers of neutrophils
navigate through capillary networks and interstitial spaces in organs and tissues, such as
lymph nodes [61]. The perturbation of chemoattractant gradients and increased hydraulic
resistance induced by the first neutrophil in one capillary branch alters the migration of
the following neutrophil towards the other branch, and this helps distribute neutrophil
traffic uniformly at bifurcations of capillaries [61]. These mechanisms may promote effi-
cient neutrophil trafficking during infections and inflammation and help avoid bacterial
dissemination [61].

Neutrophil localization in lymph nodes may reflect their role in pathogen contain-
ment and immune regulation. For instance, adoptive transfer of neutrophils into afferent
lymphatic vessels showed that lymph derived neutrophils localized in the subcapsular
or medullary sinus of the lymph node [62]. This positions neutrophils close to the sites
of pathogen entry. Here, neutrophils may interact with subcapsular sinus macrophages
to prevent pathogen spread [63]. Moreover, a study of LECs in human lymph nodes by
single-cell RNA sequencing showed that LECs lining the floor of the subcapsular and
medullary sinuses constitutively expressed neutrophil chemoattractants, such as C-type
lectin CD209 [64]. CD209+ LECs may cooperate with medullary sinus macrophages to
recruit neutrophils into this region during infections [64]. Notably, a small population of
neutrophils may be positioned in the parenchyma of lymph nodes under basal conditions
awaiting disseminating bacteria. These findings highlight a crucial role for neutrophils in
preventing bacterial spread from draining lymph nodes [15].

On the other hand, if a pathogen is able to survive within neutrophils, then the
neutrophils can become “trojan horses” concealing pathogens from other immune cells
and transporting them from the periphery to secondary lymphoid organs [65,66]. In an
intradermal infection model of Mycobacterium bovis strain Bacille Calmette–Guérin (BCG),
neutrophils migrated through lymphatic vessels and accumulated in large numbers in
the subcapsular sinuses of lymph nodes while still harbouring Mycobacteria [10]. Like-
wise, GFP-tagged Salmonella abortusovis was also shuttled by neutrophils from the oral
mucosa of infected sheep to lymph nodes [67]. There, neutrophils could shelter pathogens
from other immune cells and impair or delay the induction of the adaptive immune re-
sponse. Moreover, following infection with obligate intracellular protozoan Leishmania [68],
neutrophils were the main subset containing viable parasites while neutrophil depletion
decreased parasite burden. Likewise, S. aureus survival inside neutrophils contributed to
infection [69]. In Toxoplasma gondii infection, neutrophils may maximize the probability of
parasite transmission by promoting an effective immune response that facilitates both host
survival and establishment of persistent infection [70]. Together these studies highlight a
dual role for neutrophils in secondary lymphoid organs. On the one hand, neutrophils are
important for pathogen containment in draining lymph nodes. On the other hand, some
pathogens are able to exploit this response against infection and have evolved mechanisms
to benefit from the early neutrophil influx and evade detection by other immune cells.

4.2. Antigen Presentation

Neutrophils can ferry antigens from the site of infection to the draining lymph node.
At the early timepoints they are the first immune subset migrating to draining lymph
nodes [9,10,71,72]. This suggests that neutrophils are important contributors to the regu-
lation of early adaptive immune responses against foreign antigens or infectious agents,
following their rapid migration in the lymphatic system [10,71].
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They can exert this function directly or indirectly: directly, by secreting immunomod-
ulatory molecules that recruit and activate leukocytes and by interacting with lymphocytes
and presenting antigens; indirectly, by facilitating the transport of pathogens and antigens
to lymph nodes in order to activate resident DCs and macrophages, which can then present
antigens to lymphocytes [72,73]. Antigens are transferred to lymph node resident DCs and
macrophages through phagocytosis of neutrophil derived vesicles (apobodies, exosomes
or microvesicles) [56]. Neutrophil depletion in a mouse model of M. tuberculosis infection
increased the frequency of M. tuberculosis-infected DCs in the lungs, but decreased the
trafficking of DCs to the lymph node. This led to delayed activation and proliferation of M.
tuberculosis-specific CD4 T cells, suggesting that neutrophils can enhance DC maturation
and antigen presentation [74]. Notably, neutrophil-DC hybrids with neutrophil and DC
properties have been detected during inflammation [75]. They have been observed in
pre-clinical murine models of fungal infection (blastomycosis, aspergillosis and candidia-
sis) [75]. These cells not only expressed both neutrophil and DC markers, but also presented
foreign protein antigens to naïve CD4 T cells [76]. These hybrid cells have been detected in
the peritoneal cavity, skin, lung, and lymph nodes under inflammatory conditions [77].

4.3. Neutrophil Modulation of T and B Lymphocytes

Neutrophils and T cells colocalise in lymph nodes and tissues in steady state and in
inflammation [9,78]. Several reports have shown that neutrophils can present antigens to T
cells, activate them and enhance T cell proliferation [79]. On the other hand, neutrophils
can also suppress T cell proliferation and induce apoptosis [80]. Thus, it is important to
understand the mechanisms behind neutrophil–T cell interactions. T cells require two
signals for activation: antigen recognition via the T cell receptor (TCR), and a costimulatory
signal provided by interactions between CD28 on T cells and B7 family members (CD80,
CD86) expressed on antigen presenting cells (APCs) [81]. Human neutrophils can function
as APCs and activate CD4+ T cells in vitro and ex vivo [79]. Similarly, neutrophils can
also activate CD8+ T cells via MHC class I antigen presentation [82]. Indeed, neutrophils
can express molecules associated with antigen presentation, including MHC class II and
costimulatory molecules [9], after exposure to granulocyte-macrophage colony-stimulating
factor (GM-CSF) or interferon-γ [83].

In different settings neutrophils can inhibit T cell function [84]. Neutrophils execute
this function by releasing ROS, NO or Arginase 1 (Arg-1) in close proximity to target lym-
phocytes [85]. This can lead to downregulation of TCRζ on T cells, thereby arresting cells in
the G0-G1 phase [86]. Neutrophils can also suppress T cell proliferation through the release
of hydrogen peroxide in the immunological synapse [86]. After stimulation with IFN-γ,
neutrophils can express the immune checkpoint inhibitory molecule programmed death
ligand (PDL)-1 [87]. Upregulation of this ligand is associated with interferon-dependent
PD1-mediated T-cell apoptosis [88]. The outcome of neutrophil-T cell interactions may
depend on the tissue microenvironment and neutrophil phenotype (including whether
neutrophils are tissue-experienced and antigen-loaded or recruited directly from the bone
marrow).

Neutrophils can also directly modulate the B cell response by secreting cytokines, such
as B-cell-activating Factor of the tumour necrosis factor family (BAFF) and a proliferation-
inducing ligand (APRIL) [89]. BAFF (also known as TNFSF13B) is important for B cell
survival and maturation [90]. APRIL (or TNFSF13), secreted by recruited neutrophils in
mucosa associated-lymphoid tissue (MALT), can promote the survival of plasma cells [91].
Neutrophils are not usually detected in the germinal centres of lymph nodes; however, a
subpopulation of neutrophils was found in the perifollicular areas and marginal zone of the
spleen [92]. Splenic sinusoidal endothelial cells are located near perifollicular neutrophils
and secrete IL-10, which promotes neutrophil B cell helper function [93]. These B-helper
neutrophils induced T-independent production of IgG and IgA by secreting BAFF, APRIL,
CD40L and interleukin-21. Moreover, neutrophils are an important source of NETs in lupus,
which can directly activate memory B cells through TLR9 stimulation, leading to anti-NET
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antibody production [94]. Taken together, these studies provide compelling evidence of the
importance of neutrophil lymphatic migration to the regulation of the adaptive immune
response.

4.4. Neutrophil Contributions to Lymphangiogenesis

Emerging evidence suggests that neutrophils may also interact with the lymphatic
system by regulating lymphangiogenesis (or growth of new lymphatic vessels) in inflamed
tissues and lymph nodes during inflammation and cancer progression [3,95]. Recent studies
have identified signals which promote the formation of the lymphatic vasculature [96,97].
Vascular endothelial growth factors, such as VEGF-A, VEGF-C and VEGF-D can induce
LEC sprouting and proliferation. VEGFs bind with different specificity to three endothelial
transmembrane receptors: VEGFR-1, VEGFR-2, and VEGFR-3. The best characterized axis
in lymphatic expansion and development involves VEGFR-3 and its ligands, VEGF-C and
VEGF-D [98].

The functional consequences of inflammation-induced lymphangiogenesis require
further investigation. In some settings, expansion of the lymphatic network may support
inflammation by promoting the transport of immune cells and antigens to the lymph
node and enhancing the immune response. In other settings, lymphatic vessel expansion
contributes to resolution of inflammation by draining inflammatory mediators and cells
from the site of inflammation [99]. For instance, inhibiting the lymphatic vasculature led
to increased inflammation in mouse models of skin inflammation [100,101], inflammatory
bowel disease [102,103] and rheumatoid arthritis [104]. However, inhibiting this process
improves graft survival in corneal transplantation [105,106].

Unlike the well-established role for neutrophils in promoting blood vessel formation
(angiogenesis) by producing VEGFs [107], neutrophil contribution to lymphangiogenesis is
only just beginning to be uncovered [22]. Neutrophils secrete VEGF-D at sites of inflamma-
tion, which promotes proliferation of LECs, stimulates lymphangiogenesis [108] and plays
an important role during the development of the lymphatic system [109]. Neutrophils
may also increase VEGF-A bioavailability [18]. In fact, after secretion VEGF becomes
bound to the ECM and the interaction between VEGF-A and matrix proteins is mediated
through the carboxy terminal region, also known as the heparin-binding or ECM-binding
domain [110]. This domain is able to bind heparin sulphate proteoglycans and other matrix
proteins [110,111] and is thought to be responsible for the sequestration of VEGF-A within
the matrix. Neutrophils act via MMP-9 and heparanase (which cleaves heparan sulphate
preoteoglycans (HSP) side chains and releases the HSP-trapped VEGF-A) (Figure 4) to
increase the amount of biologically active VEGF-A, which in turn activates inflammatory
lymphangiogenesis [18].

Neutrophils may also promote tissue lymphangiogenesis by cooperating with
macrophages [18,112], as both macrophages and neutrophils contributed to inflamma-
tory lymphangiogenesis in zebrafish by expressing VEGF-A, VEGF-C and VEGF-D [113].
Neutrophils also expressed VEGF-D in the mucosa and lumen of inflamed airways [17].
Furthermore, a study of lymphangiogenesis in abdominal aortic aneurysm (AAA) reported
neutrophil infiltration around lymphatic microvessels [114].

Similarly to tissue lymphangiogenesis, VEGF-A-VEGFR2 and VEGF-C/D-VEGFR3
are the principal mediators of lymph node (or intranodal) lymphangiogenesis [115]. Dur-
ing inflammation, B cells [116], macrophages recruited from peripheral tissues [117] and
fibroblast-type reticular stromal cells [118] are the major sources of VEGF-A in the lymph
node. Emerging evidence suggests that neutrophils also contribute to lymph node lym-
phangiogenesis [18]. In mice lacking B cells, neutrophils compensate to support lymph
lymphangiogenesis during prolonged inflammation [18]. However, more studies are
needed to determine whether specific neutrophil subsets are involved in this process.
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Figure 4. Neutrophil contribution to inflammatory lymphangiogenesis. Schematic illustrating neutrophil contributions to
lymphangiogenesis at the site of inflammation. Neutrophils can secrete VEGF-C (in yellow) and VEGF-D (in orange) at the
site of inflammation which bind to their receptor VEGFR-3 (in green) expressed on LECs. Neutrophils can also increase
VEGF-A (in purple) availability by secreting MMP-9 and heparanase which cleaves heparan sulphate preoteoglycans (HSP)
side chains and release the HSP-trapped VEGF-A. This binds to VEGFR-2 receptor (in blue), which promotes the expansion
of the lymphatic vessel network [119].

Together, these studies support the emerging concept of neutrophils as important
contributors to lymphangiogenesis in inflamed tissues and draining lymph nodes via the
secretion of lymphangiogenic factors and LEC stimulation during the early and later stages
of inflammation.

5. Conclusions and Perspectives

The last four decades have witnessed remarkable progress in our understanding
of how immune cells traverse vast distances between tissues and secondary lymphoid
organs to engage the innate and adaptive immune systems and mount an effective im-
mune response. More recently, neutrophil lymphatic migration has been shown to be an
important contributor to this process. This led to a paradigm shift in our view of neu-
trophils: from short-lived effectors designed to provide sterilizing immunity at sites of
infection, to multifunctional immune cells that activate adaptive immunity in draining
lymph nodes [120,121]. The rapid entry of neutrophils into lymphatic vessels and their
subsequent transmigration to lymph nodes places these leukocytes in prime position to
provide early signals to adaptive immune cells [9–12].
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Neutrophils entering lymph nodes via the two different routes (HEVs versus afferent
lymphatics) appear to have distinct phenotypes and functions. The majority of neutrophils
arriving in draining lymph nodes are recruited from the circulation in response to inflam-
mation in the lymph node and play an important role in preventing further pathogen
dissemination [15,122]. Neutrophils entering through the afferent lymphatics make up a
smaller proportion of lymph node neutrophils but have an activated APC-like phenotype
and often transport antigens from infected tissues [9,10], suggesting that they may have a
more prominent role in interacting with lymph node immune cells and modulating adap-
tive immunity. The signals that direct neutrophils away from sites of inflammation in the
periphery into lymphatic vessels and draining lymph nodes are yet to be fully understood.
The two subpopulations of lymph node neutrophils, i.e., entering the lymph node from the
circulation or inflamed tissues, may provide a possible explanation for the diverse effects
of neutrophil depletion on the adaptive immune response [123,124].

Inhibiting leukocyte trafficking is an effective strategy for treating a myriad of inflam-
matory diseases [125,126]. Since tissue-egressing neutrophils and circulating neutrophils
employ distinct molecular mechanisms and different routes of lymph node entry, it may be
possible to specifically inhibit recruitment of one specific subpopulation. This suggests that
treatment can be tailored to block one neutrophil subset but not the other and modulate a
specific aspect of neutrophil interactions with the lymphatic system.

A less understood facet of neutrophil interactions with the lymphatic system is their
ability to promote inflammatory lymphangiogenesis. Lymphangiogeneis has been associ-
ated with transplant rejection [127,128] and inhibiting this process improves graft survival
in corneal transplantation [105]. However, the induction of therapeutic lymphangiogenesis
mitigates allograft rejection in a orthotopic model of lung transplantation [129]. In addition,
preclinical studies in models of inflammatory skin disease [117,130] demonstrated that
promoting lymphangiogenesis may contribute to the resolution of inflammation. This
suggests that neutrophil-driven stimulation of lymphangiogenesis may have two distinct
and context-dependent roles in inflammation, i.e., promoting pathological inflammation or
contributing to its resolution. The discovery of neutrophil-derived vascular endothelial fac-
tors involved in lymphangiogenesis presents an opportunity to develop targeted therapies
for inflammatory disorders once these opposing roles are fully understood. Thus, clari-
fying neutrophil interactions with the lymphatic system is a crucial aspect in developing
neutrophil-targeted interventions in inflammatory diseases.
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