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Abstract: Non-genetic phenotypic diversity plays a significant role in the chemotactic behavior of
bacteria, influencing how populations sense and respond to chemical stimuli. First, we review the
molecular mechanisms that generate phenotypic diversity in bacterial chemotaxis. Next, we discuss
the functional consequences of phenotypic diversity for the chemosensing and chemotactic perfor-
mance of single cells and populations. Finally, we discuss mechanisms that modulate the amount of
phenotypic diversity in chemosensory parameters in response to changes in the environment.

Keywords: bacterial chemotaxis; chemoreceptors; receptor clusters; phenotypic diversity; stochastic
gene expression; fluctuations; signal processing; single cell

1. Introduction

Bacteria display very diverse morphologies and behaviors. This diversity allows
genetically distinct individuals to serve different roles in a community. Within species
also, genetic diversity can be an effective strategy to better utilize the environment [1], or
evade antibiotic treatment, as is the case with some cancers and bacterial infections [2].
Interestingly, however, substantial phenotypic diversity occurs within populations of
bacteria that share the same genome [3–6]. What is the molecular origin and functional
consequences of such non-genetic phenotypic diversity?

Bacterial chemotaxis provides an effective quantitative framework to study non-
genetic phenotypic diversity. In their seminal 1976 paper, Spudich and Koshland used
the innovative “temporal gradient apparatus” [7], which combined a rapid mixing device
with stroboscopic imaging, to characterize the swimming behavior of individual Salmonella
bacteria in response to pulses of attractant [8]. Surprisingly, behavioral differences between
individuals were greater than could be explained by potential mutations accumulating
during growth. This and other early work in Escherichia coli [9,10] raised questions about
cell-to-cell variability in chemotactic behavior and how collective migration occurs in the
midst of phenotypic diversity. Since then, non-genetic diversity has been studied exten-
sively in many biological systems, revealing fundamental mechanisms that generate it,
including stochastic gene expression and uneven partitioning of biomolecules at cell divi-
sion [11–14]. For more general information on the molecular mechanisms and functional
consequences of cell-to-cell variability, we refer the reader to these reviews [3,4,13,15,16].

Here, we focus on non-genetic diversity in chemical sensing and the well-characterized
chemotaxis system of E. coli for which there is a relatively good understanding of the
molecular mechanism by which the chemotactic signaling pathway uses external sig-
nals to bias cell’s run-and-tumble motility toward favorable locations [17,18]. In this
two-component system, five types of chemoreceptors (Tar, Tsr, Trg, Tap, and Aer) form
homodimers arranged in trimers of dimers, themselves arranged in hexagonal latices com-
prising thousands of receptors connected by the scaffold protein CheW and the histidine
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kinase CheA [19–21]. The receptor-kinase complexes are highly cooperative at the level of
the CheA activity [22], enabling signal amplification. Upon binding an attractant, receptor-
kinase complexes switch to an inactive conformation, reducing the rate of phosphorylation
of the response regulator CheY. Due to the phosphatase activity of CheZ, phosphorylated
CheY-p concentration rapidly (<1 s) decreases [18], leading to a reduction in the probability
to tumble. The prestimulus level of tumbling frequency is later reestablished via the action
of CheR and CheB, which methylates and demethylates the cytoplasmic tail of the receptors
when they are in the inactive and active conformations, respectively.

The general features of chemotaxis [17,18,20,23] and its quantitative treatment [18,24,25]
have been reviewed elsewhere recently. Here, our intent is to review the current under-
standing of non-genetic phenotypic diversity in E. coli chemotaxis and how knowledge of
phenotypic diversity affects our general understanding of chemosensing and chemotac-
tic behavior.

2. Molecular Mechanisms Underlying Phenotypic Diversity in E. coli Chemotaxis

Quantifying phenotypic diversity first requires quantifying phenotypes, which can be
accomplished by measuring functional and behavioral parameters in individual cells. For
E. coli chemotaxis, such parameters include the following: the tumble bias—the fraction of
time the cell spends tumbling; the switching frequency—the number of switches per unit
of time between the run and tumble states; the pathway gain, or magnitude of the response
relative to a stimulus change both at the level of the kinase and of the motor; the adaptation
time, or time to return to the original behavioral pattern after a stimulus; and the rotational
diffusion, all of which affect chemotactic performance [10,18,25–30]. Alternatively, the
phenotype of an individual cell can also be quantified without making assumptions about
the set of possible behavior states a bacterium can be in (e.g., run-and-tumble). In one
approach, each individual cell trajectory was represented as a scatter plot of time points
in the space of translational and rotational velocity [31]. Viewed as a two-dimensional
probability distribution, the scatter plot defines the motility states the bacterium exhibit
over time and the fraction of time it spends in each [32,33].

An important consideration is that phenotypic parameters may vary on multiple time-
scales. For example, a cell might exhibit the same tumble bias over its entire life span, or its
tumble bias might change from the moment it is born until it divides. At any given instant,
multiple stochastic processes operate on different time scales and contribute to phenotypic
variability (Figure 1). Below, we review recent advances in current understanding of these
various mechanisms and how they affect E. coli chemotaxis.Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 3 of 15 

 

 

 
Figure 1. Phenotypic diversity arises from processes operating at different timescales. (a) Unequal partitioning of proteins 
and organelles upon cell division, (b) stochastic gene expression, and (c) stochasticity in the chemical reactions of signaling 
pathways all contribute to phenotypic diversity. (d) The number and size of chemoreceptor clusters varies from cell to cell 
due to random partitioning. This variation may lead to diverse sensitivities to stimuli. (e) The expression of class II motility 
genes such as fliA occurs in pulses lasting multiple generations. These pulses are stochastic, likely generating cells with 
very different sensory and swimming capabilities. (f) Fluctuations in the kinase activity of the chemotaxis network. In red 
are cells containing the adaptation enzymes CheR and CheB, while in blue are cheRB deletants. The cycle of methylation 
and demethylation, as well as receptor cooperativity both contribute to fluctuations. Panels d, e, and f are adapted from 
Koler et al., 2018 [34]; Kim et al., 2020 [35]; and Keegstra et al., 2017 [36]. 

2.1. Variation Arising at Cell Division 
One mechanism likely to contribute to long-lasting differences between cells is parti-

tioning noise—the unequal distribution of biomolecules between daughter cells during 
cell division (Figure 1a). General features of partitioning noise and its quantitative treat-
ment have been subject to review elsewhere [13,37]. For chemosensing and motility, the 
partitioning of organelles, such as molecular motors and large receptor clusters, is likely 
to contribute to phenotypic variability. However, so far, only few studies have examined 
this aspect of phenotypic variability. 

Recent studies have determined the location and size distributions of chemoreceptor 
clusters in growing cells [38,39]. At early growth stages, cells contain multiple small re-
ceptor clusters, which are positioned along the length of the cell (Figure 1d) [34]. However, 
as the culture approaches stationary phase, individual cells typically contain only one or 
two polar clusters. The resulting cell-to-cell differences in cluster size and number are 
likely to translate into differences in sensitivity to chemical signals. While a direct link 
between cluster positioning and portioning noise has not been demonstrated directly, an 
uneven distribution of chemoreceptor complexes could contribute to long-lasting diver-
sity, since some individuals will inherit multiple clusters, while others will inherit none. 

2.2. Stochastic Pulses of Motility Gene Expression 

Figure 1. Phenotypic diversity arises from processes operating at different timescales. (a) Unequal
partitioning of proteins and organelles upon cell division, (b) stochastic gene expression, and (c)
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stochasticity in the chemical reactions of signaling pathways all contribute to phenotypic diversity.
(d) The number and size of chemoreceptor clusters varies from cell to cell due to random partitioning.
This variation may lead to diverse sensitivities to stimuli. (e) The expression of class II motility
genes such as fliA occurs in pulses lasting multiple generations. These pulses are stochastic, likely
generating cells with very different sensory and swimming capabilities. (f) Fluctuations in the kinase
activity of the chemotaxis network. In red are cells containing the adaptation enzymes CheR and
CheB, while in blue are cheRB deletants. The cycle of methylation and demethylation, as well as
receptor cooperativity both contribute to fluctuations. Panels d, e, and f are adapted from Koler et al.,
2018 [34]; Kim et al., 2020 [35]; and Keegstra et al., 2017 [36].

2.1. Variation Arising at Cell Division

One mechanism likely to contribute to long-lasting differences between cells is parti-
tioning noise—the unequal distribution of biomolecules between daughter cells during
cell division (Figure 1a). General features of partitioning noise and its quantitative treat-
ment have been subject to review elsewhere [13,37]. For chemosensing and motility, the
partitioning of organelles, such as molecular motors and large receptor clusters, is likely to
contribute to phenotypic variability. However, so far, only few studies have examined this
aspect of phenotypic variability.

Recent studies have determined the location and size distributions of chemoreceptor
clusters in growing cells [38,39]. At early growth stages, cells contain multiple small
receptor clusters, which are positioned along the length of the cell (Figure 1d) [34]. However,
as the culture approaches stationary phase, individual cells typically contain only one or
two polar clusters. The resulting cell-to-cell differences in cluster size and number are
likely to translate into differences in sensitivity to chemical signals. While a direct link
between cluster positioning and portioning noise has not been demonstrated directly, an
uneven distribution of chemoreceptor complexes could contribute to long-lasting diversity,
since some individuals will inherit multiple clusters, while others will inherit none.

2.2. Stochastic Pulses of Motility Gene Expression

By far, the most-studied source of phenotypic variability is stochastic gene expression
(Figure 1b), where it is understood that transcription and translation events occur in bursts
with variable frequency and size, leading to broad distributions of protein expression in
isogenic cell populations [6,11,12,14]. Different regulatory schemes can lead to fluctua-
tions in gene expression with various magnitudes and timescales [40,41]. In E. coli, the
arrangement of chemotaxis genes on multicistronic operons has been shown to buffer the
effect of some of these fluctuations in the signaling output by ensuring gene products
that participate in the same step of signal transduction are kept at an acceptable ratio [42].
Furthermore, a temperature-sensitive secondary RNA structure upstream of cheR was
suggested to compensate for temperature-induced differences in the rate of adaptation of
cells to signals [43,44]. While these compensatory mechanisms ensure that individual phe-
notypes remain functional, gene expression noise gives rise to large cell-to-cell variability
within this range of functional phenotypic space [45]. For example, the expression ratio
of different receptor species varies greatly [46], leading to variation in the sensitivity for
different chemoeffectors [36,47].

Recently, a study by the Cluzel lab revealed how regulated stochasticity in gene expres-
sion plays an important role in the transcription network governing E. coli chemotaxis [35].
In E. coli, there are 14 operons collectively encoding the flagellar components and the
chemotaxis machinery. These operons contain over 50 genes that are regulated in a three-
tier hierarchy. At the top is the class I operon, flhDC, which encodes the master regulator
of flagella and chemotaxis. Then, FlhDC activates the class II genes encoding the basal
body and flagellar hook, as well as the alternative sigma factor FliA, which subsequently
activates the class III genes encoding the flagellar filament and chemotaxis network [48].
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Using a microfluidic device called the “mother machine” where a single cell’s lineage
can be monitored over multiple division events, the Cluzel lab quantified the expression of
class I, II, and III genes over multiple generations using fluorescent reporters [35]. While
the class I genes were expressed constitutively, class II and III gene expression occurred in
pulses lasting multiple generations interspersed with long periods of inactivity (Figure 1e).
Interestingly, these pulses did not depend on the regulation of flhDC transcription but were
instead shown to require interactions between FlhDC and its post-translational regulator
YdiV, which amplified transcriptional noise, allowing small temporal fluctuations in flhDC
transcription to generate large pulses of class II expression. In short, transcriptional noise,
coupled with a post-translational circuit, converts constitutive expression of class I genes
into pulsatile expression of class II and III genes.

The pulsatile expression pattern of class II genes was further explored in theoretical
work that proposed a possible molecular mechanism [49]. Simple stochastic models of
class I and class II gene expression successfully capture the expected distributions of class
II expression. By fitting these models to single-cell data [35] of class II expression with
and without YdiV, Sassi et al. found that YdiV’s functions were twofold: first, it makes
class II gene expression ultrasensitive to changes in FlhDC concentration. Second, it allows
the system to integrate FlhDC expression over time to filter away small fluctuations. As
such, they proposed a molecular mechanism where YdiV sequesters FlhDC, such that
small changes in FlhDC expression lead to ultrasensitive increases in class II promoter
activity [49]. This simple sequestration mechanism allows the expression of motility genes
to follow a filter-and-integrate method of pulse generation that is qualitatively distinct
from other known biological pulse generators that rely on bistability in transcriptional
feedback loops [50,51].

What is the end result of such an expression pattern? Ultimately, stochastic gene
expression generates a wide diversity of sensory and motile phenotypes that may con-
tribute to phenotypic changes over the course of cell growth as observed in behavioral
studies [33]. An interesting hypothesis is that cells in generations following a valley of
little expression could have different chemotactic phenotypes than those following a pulse
of expression. Such an expression pattern could also play a role in how individual cells
within one population sort themselves in space during collective migration, as described in
later sections.

2.3. Spontaneous Temporal Fluctuations in Pathway Activity

In addition to partitioning and gene expression noise, the behavior of individual
cells is also affected by temporal fluctuations that arise due to the inherent stochasticity
of the chemical reactions of the chemotaxis signal transduction pathway (Figure 1c). The
first study to characterize these fluctuations measured the rotational direction of latex
beads attached to flagella in cells that were adapted to a motility buffer devoid of any
signal [52]. Analyzing the power spectra of these time-series revealed surprisingly large
fluctuations in tumble bias with characteristic times scales on the order of 10s of seconds.
Blocking adaptation by receptor methylation eliminated these fluctuations, while titrating
the amount of methyltransferase CheR changed their time scale and amplitude [52].

These data can be recapitulated with a coarse-grained model of the signaling pathway
in which the rates of methylations and demethylations follow Michaelis–Menten kinetics
with a sub-linear dependency on the activity of the receptors [45,52–55]. This model
assumes that in vivo, CheR and CheB work near saturation [53,54], which is consistent with
population average FRET measurements of adaption kinetics [56] and with stoichiometric
measurements—CheRB are expressed orders of magnitude less than the receptors [57]. A
consequence of the saturated enzyme kinetics hypothesis is that the steady-state activity
of the system becomes ultra-sensitive [58] to the ratio of CheR and CheB abundances,
which can contribute to the amplification of spontaneous fluctuations in the activity of the
receptors [45,52,54,55].



Int. J. Mol. Sci. 2021, 22, 6960 5 of 14

Recently, the wide availability of high-sensitivity cameras allowed the classic CheZ/CheY
FRET method [59]—originally developed to measure kinase activity in a population of
cells—to be adapted for quantifying kinase activity in single cells [36,60–62] (Figure 1f).
Measurements of the kinase activity in individual unstimulated cells revealed large fluc-
tuations in the kinase activity that could be attributed to two different sources. The first
source was traced back to the activity of CheR and CheB. Similar to previous results [52],
these fluctuations have characteristic time scales of tens of seconds and were strongly
suppressed in cheRB-. Moreover, perturbations to the CheB phosphorylation feedback
loop caused changes in steady-state kinase activity that were consistent with an ultrasensi-
tive dependency of the activity of receptor-kinase complexes on the ratio of CheR/CheB
abundances, and the role of the CheB phosphorylation feedback loop in reducing such
ultra-sensitivity [36,54].

Interestingly, the magnitude of the fluctuations measured at the kinase were larger
than previous estimates from fluctuations measured at the motor output [36], suggesting
that a second source of fluctuations might be present. Indeed, measurements in cheRB-

cells stimulated with a constant sub-saturating stimulus revealed methylation-independent
fluctuations with time scales of 100s of seconds [36,60]. These fluctuations were eliminated
when the scaffolding protein that mediates allosteric interactions in the receptor-kinase
complexes, CheW, was replaced with the mutant CheW-X2 [60], which is a mutant that
abolishes allosteric interactions but maintains signaling capabilities [22,63]. These large
fluctuations also depended on the composition of receptor clusters and became almost
switch-like between a few discrete states in cells that only expressed Tsr [36]. Together,
these data suggest that the second source of fluctuations is caused by thermal fluctuations
in highly cooperative receptor clusters [36,60].

While a full biophysical model is still missing, the emerging picture is that receptor
clustering and adaptation kinetics both contribute to temporal fluctuations in the chemo-
taxis pathway. While thermal fluctuations and allosteric interactions in receptor clusters
can introduce large fluctuations over very long timescales (up to 100s of seconds), the
stochasticity of methylation events contributes smaller fluctuations on time scales of 10s
of seconds. Interestingly, receptor clustering is required for fluctuations to be observed
even in the presence of methylation and demethylation, which is probably because of the
role of “assistance neighborhoods”—in which CheR (or CheB) tether to one receptor and
methylate (or demethylate neighboring receptors—in signal amplification and adaptation
kinetics; see [60,63–66]. The ultra-sensitivity of the kinase activity with respect to the ratio
of CheR/CheB is also a source of phenotypic variability, which becomes more apparent
when the buffering effect of the CheB phosphorylation feedback is removed [36].

3. Functional Consequences of Phenotypic Diversity on Chemosensing and
Chemotactic Performance

Phenotypic diversity can be beneficial for populations of bacteria, especially in the
face of environmental uncertainty [3–5,67]. In this section, we review how phenotypic
diversity impacts chemotactic performance, how fluctuations in the chemotactic signaling
pathway affect a cell’s information-processing ability, and how cell populations perform
collective behaviors despite containing a multitude of sensory and behavioral phenotypes.

3.1. Functional Consequences of Phenotypic Diversity

Populations of E. coli display widely diverse swimming behaviors. Some of the
first studies of run-and-tumble motion in E. coli demonstrated that adaptation time [8],
tumble bias, and swimming speed [10] vary from cell to cell. New methodologies in single-
cell tracking have expanded on these measurements, allowing precise, high-throughput
quantification of single-cell behavioral parameters including the run-speed, turning angle,
and tumble bias [26,27,29–31]. Meanwhile, optical tweezers have provided high time-
resolution measurements of adaptation in single cells [68,69].

How do the processes described in previous sections contribute to this diversity?
Variable expression of flagellar components, chemoreceptors, and sensory pathway compo-
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nents may all be relevant for certain aspects of E. coli’s behavioral diversity. For example,
variation in the CheR/CheB ratio leads to a variation in tumble bias. Interestingly, the
variance of this distribution depends primarily on CheB expression and not CheR, sug-
gesting that mutations in regulatory elements might allow populations to adapt both the
mean and variance of tumble biases by changing CheB and CheR expression [31,45]. Varia-
tions in tumble bias has profound consequences on chemotactic performance. By tracking
individual cells in a static gradient of attractant, Waite et al. measured the relationship
between tumble bias and drift velocity of individual cells [70]. They found that in liquid,
wild-type cells with low tumble bias (TB = 0.01) climb gradients much faster than cells with
intermediate tumble bias (TB = 0.2), as predicted by theory [71]. Next, by titrating the level
of expression of CheR (or CheY) in the population, they could establish a causal relationship
between CheR (or CheZ), tumble bias, and gradient climbing speed. Additionally, variation
in pathway gain has been inferred from both single-cell tracking [28] and a microfluidic
T-maze that sorts the population by chemotactic drift speed [72]. Diversity in pathway
gain may result from diversity in the expression of different receptor species [46].

One way in which the diversity of sensory and swimming phenotypes benefits bac-
teria is to increase the overall chemotactic performance of the population beyond that of
the mean phenotype within the population. This was apparent in Waite et al.’s experiment
mentioned above. At approximately wild-type CheR expression, the motion of the pop-
ulation’s mean position closely followed the position of cells with average tumble bias.
However, at lower average CheR expression, the population’s mean position ascended
the gradient more quickly than cells with average tumble bias. This discrepancy between
population performance and the performance of the mean phenotype can be explained
by Jensen’s inequality [73]: for a convex function of a random variable f (x), the average
of value of the function with respect to the random variable x, E[ f (x)], is equal or greater
than the value of the function evaluated at the average x, f (E[x]). Since the relationship
between phenotype and gradient-climbind speed is nonlinear at low CheR expression and
linear at high CheR expression, populations in the low expression regime climb gradients
more quickly on average when there is variation in tumble bias [70].

In addition to directly modulating population performance, phenotypic diversity can
allow populations to survive in diverse, fluctuating environments [3,5]. Bet-hedging is
a general ecological strategy where populations generate individuals with phenotypes
poorly adapted for the current environment but well adapted for a different environment.
This strategy ensures the population’s survival after an environmental change [74,75].
Theoretical work in E. coli chemotaxis demonstrated that variability in tumble bias and
adaptation time allows the population to navigate toward nutrients appearing at different
distances away from the population [45]. Since a single phenotype cannot optimally locate
both near and far attractant sources [76], generating diverse phenotypes is necessary for
the population’s survival in the wild, where nutrients may appear any distance from
the population.

An attractive hypothesis is that variation in behavioral parameters also allows E. coli to
perform well in both liquid and porous solid environments, where the optimal phenotypes
are likely different. New methods developed in the Datta lab are revealing how E. coli
navigate disordered porous environments. Three-dimensional porous environments were
constructed using small, clear, hydrogel particles, allowing for imaging of single bacteria
in environments of different average pore diameter [77,78]. In such environments, cells
do not employ a run-and-tumble strategy, as in unconfined liquid environments. Instead,
they hop between openings in the media after changes in flagellar bundling allow them to
escape confined spaces [77]. Efficient navigation in such an environment could require a
different tumble bias than in liquid media; as such, it is possible that phenotypic diversity
allows the population to bet-hedge against the physical properties, as well as the chemical
makeup, of the environment.
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3.2. Consequences of Temporal Variation in the Chemosensory Pathway

As discussed above, behavioral variation within populations can be beneficial; are
signaling fluctuations within individual cells similarly beneficial? Such fluctuations corrupt
the transmitted signal [79]. Since the system consumes energy (in the form of ATP for
CheY phosphorylation and S-adenosyl methionine for methylation), it should in principle
be possible to decrease the magnitude of fluctuations, as shown in a recent theoretical
analysis [80]. Why then has the system evolved to maintain these fluctuations?

One reason may be the multi-task nature of the chemotaxis signaling pathway: it
must process external signals to bias chemotactic behavior in the presence of attractant
gradients, but it must also drive swimming behavior in the absence of gradients to find
better conditions for growth. Since the first observation of signaling fluctuations [52], it has
been suggested that such fluctuations lead to fat-tailed distributions of run lengths over a
few decades [54,81]. A random walk with such a distribution of run-lengths approximates
what is called a ‘Levy flight/walk’. In a Levy walk, long runs occasionally bring the cell to
new, unexplored territory, leading to more efficient exploration of the environment [82].
Numerical simulations have also shown that Levy-walk behavior helps cells respond to and
climb shallow chemoattractant gradients more efficiently by increasing the coordination
between individual flagellar motors and enabling cells to detect very small signals by
integrating stimuli over long durations [83,84].

Despite intensive theoretical study of the causal relationship between signaling fluc-
tuations and Levy walks of free swimming cells [81,82], experimental evidence that E. coli
performs a Levy walk has remained circumstantial. Recently, however, three-dimensional
tracking of individual bacteria over a long time have revealed how in the absence of chemoat-
tractant, signaling fluctuations drive long tails in the distribution of run durations [26].
Comparing wild-type behavior with that of a mutant strain lacking signaling noise indicates
that a consequence of the long tails in run duration is a superdiffusive swimming behavior
consistent, at least over a decade and a half, with Levy walk [85] (Figure 2a). Levy flight has
also been observed in swarming bacteria [86]. Thus, fluctuations in the chemotaxis pathway
can modulate behavior for efficient spatial exploration over multiple length scales.
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Figure 2. Phenotypic diversity and signaling fluctuations affect ecological performance. (a) The
distribution of run lengths in wild-type cells (red) has a fatter tail than in cells with the same mean
tumble bias but no fluctuations in CheY phosphorylation (blue). This distribution of run lengths
allows cells to efficiently explore the environment by Levy walk instead of a pure random walk. (b)
The conflict between individuality and collective behavior is resolved by spatial sorting of phenotypes
in traveling waves of bacteria. Cells with lower tumble bias (red) climb attractant gradients more
quickly than cells with higher tumble bias (blue), and therefore are located near the front of the wave.
Panels a and b are adapted with permission from Huo et al., 2021 [85]; Fu et al., 2018 [87].

The multi-task nature of the chemotaxis signaling network raises the question of
whether the system still effectively operates as an information-processing system in biasing
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run-and-tumble behavior. Combining theory and quantitative measurements, Mattingly
and Kamino et al. measured information-theoretic properties of the E. coli chemotaxis
pathway for cells climbing shallow gradients [62]. Due to the presence of the signal-
ing fluctuations, the amount of information E. coli acquired from the environment during
chemotaxis was quite low—on the order of 0.01 bits/s in a shallow gradient where chemoat-
tractant concentration varies on centimeter scale. This is far less than the 1 bits/s the cell
needs to determine within a 1 s run whether it is swimming up or down of the gradient.
However, the same experiments revealed that E. coli used that little information efficiently,
achieving drift speed up the gradient around 70% of the theoretical maximum achievable
performance. Thus, in spite of the large signaling noise, the chemotaxis signaling path-
way seems to have been selected for the efficient usage of information it gathers from
the environment.

3.3. Spatial Sorting of Chemotaxis Phenotypes

Despite containing diverse sensory and swimming phenotypes, populations of E. coli
can perform collective migration, moving as a cohesive wave that chases a front of attractant
generated by the cells consuming the environment [9,88]. How can populations achieve
collective behavior in the midst of phenotypic diversity?

Recent work that combined theory and experiments conducted in microfluidics re-
vealed that population migrating in an Adler wave form resolves the conflict between
individuality and collective behavior by spontaneously organizing the position of the
different phenotypes within the traveling wave [87]. It turns out that not all positions
in the wave are equally difficult to navigate. Near the front, the gradient is shallower,
and therefore, chemotaxis is more difficult. However, further back, navigation is easier,
since the gradient is steeper due to a higher density of cells consuming the environment
at that position. These position-dependent differences in signal strength cause the more
performant cells to locate at the front where the signal is weaker and the lower performers
to locate near the back where the gradient is steeper. This spatial organization can be
visualized using mixtures of cells that express CheZ at different levels: CheZ controls
tumble bias, which in turn affects the speed at which a cell can climb a gradient [70]. The
cells with the higher tumble bias (lower level of expression of CheZ) are located behind
those with lower tumble bias (red and blue dots in Figure 2b). Moreover, the distance
between the peaks of the two populations traveling together increased with the distance in
phenotypic space. Thus, phenotypic diversity leads to spatial sorting withing migrating
groups of bacteria.

At the very back of the wave, the gradient becomes shallow again, and the concentra-
tion of signal eventually goes below detection level. Thus, phenotypes located near the
back are at a higher risk of falling behind the migrating front, leading to a slow leakage
of cells of the weakest phenotype at the back of the wave. Recent studies of chemotactic
populations find that expanding populations are characterized by a group of pioneer cells
that explore new environments and leave behind settler offspring that grow [1,89]. That is
to say, bacteria may generate both chemotactic and sessile individuals as part of a division
of labor strategy [15,90–92] to best utilize their environments.

4. Diversity Tuning: Modulating the Degree of Phenotypic Diversity in Response to
the Environment

Although phenotypic diversity can help a cell population survive in some environ-
ments, theoretical work suggests that the optimal degree of phenotypic diversity depends
on environmental conditions [93]. Bet-hedging is beneficial in conditions with sufficient
uncertainty [75], but in conditions with clear environmental cues, a “tracking strategy”—
where phenotypes closely match the environment—is preferred [94]. This raises the ques-
tion of whether and how cell populations adjust the level of phenotypic diversity in
different environmental conditions. Recent studies have identified a few concrete examples
where such diversity tuning occurs.
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Phenotypic diversity tuning through gene expression changes was found at least in
two different contexts. A detailed study of microbial dinitrogen (N2) fixation in Klebsiella
oxytoca has revealed that the level of phenotypic heterogeneity in metabolism is modulated
by the limitation of substrates [95]: if N2 is the only available substrate, cells commit
to fixing N2, showing little cell-to-cell variation in metabolism; however, when a small
amount of the more favorable substrate NH4

+ is present, the N2 fixation rate diversifies,
resulting in large cell-to-cell variation in the N2 fixation rate. This diversification enables
some cells to fully exploit the presence of NH4

+ while maintaining a fraction of cells that
can survive NH4

+ depletion.
Another striking example of diversity tuning through gene expression changes was

found in the trimethylamine oxide (TMAO) respiratory system in E. coli [96,97]. TMAO is
an alternative terminal electron acceptor to oxygen and is utilized by the TMAO reduction
machinery. In this system, when TMAO is present in an anaerobic condition, cells express
TMAO reductase with low variation, fully committing to utilizing TMAO as a terminal
electron acceptor; however, when TMAO is present in an aerobic condition, cells express
TMAO reductase at the same mean but with higher variability. The variance of the pheno-
type is adaptively controlled by oxygen-dependent repression of TMAO signaling genes,
providing a fitness advantage when oxygen availability rapidly drops [96].

In the above examples, the diversity of gene expression profiles changes in response
to the environment. However, changes in the gene expression profile are relatively slow,
taking tens of minutes. How could a population respond to environmental changes that
occur on a much shorter time scale? A recent study of the E. coli chemotaxis pathway
discovered an implementation of diversity tuning through a solely post-translational mech-
anism, which is capable of modulating diversity in tens of seconds [61]. The phenotype
investigated was the response sensitivity of the chemotaxis pathway (defined as the inverse
of the ligand concentration eliciting half-maximal response). In the absence of ambient
chemoattractant, the level of variation in response sensitivity (measured using single cell
FRET) was high; however, in the presence of ambient chemoattractant, the level of diversity
sharply decreased for both major chemoreceptors Tar and Tsr (Figure 3a,b). The exper-
iments were conducted in an auxotrophic condition, and therefore, no gene expression
change is involved in the mechanism of diversity tuning. By extending a two-state receptor
model that had been calibrated only by population-averaged data [24,98,99] to include
cell-to-cell variation, Kamino et al. showed that the diversity tuning can be explained only
by the environment-dependent methylation of chemoreceptors and a standing cell-to-cell
variation in their allosteric coupling. Mechanistically, the abrupt transition in the amount
of diversity could be traced back to the nonlinearity in the response function of the receptor
cluster, which—as shown earlier by Keymer et al—switches between two different response
regimes when the free energy difference between active and inactive unbound receptors
changes sign due to methylation [98].

What could be the functional consequences of sensory diversity tuning? One pos-
sibility is that it enables a population to transition between a bet hedging strategy and
a tracking strategy in a background-stimulus dependent manner [61] (Figure 3c). For
chemotactic bacteria, the zero-stimulus background is maximally uncertain in that there
is no information about the nature and magnitude of future signals, and therefore, the
diversification of sensitivity for different ligands could be beneficial in improving the
population’s readiness to detect many different signals. On the other hand, once a relevant
signal is perceived, large cell-to-cell variability could be harmful, leading to desensitization
or sensory saturation depending on whether the sensitivity is too high or too low. Instead,
focusing on tracking the signal by reducing variability is beneficial.
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When no signals are present, cells have no information about future environmental signals, so they diversify their sensi-
tivities for different ligands, improving the readiness for potential upcoming conditions (bet-hedging strategy). However, 
once a signal is detected, the population is benefited by having most cells being sensitive to the change in the signal level 
(tracking strategy). Panels a and b are adapted with permission from Kamino et al., 2020 [61]. 
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Figure 3. Bacteria tune the degree of sensory diversity in response to chemoattractant. (a,b) The cumulative distribution and
probability density functions of the inverse sensitivity (K1/2 defined as the stimulus level that elicits half-maximal response
amplitude) for methyl-aspartate (MeAsp). When there is no chemoattractant in the environment, the sensitivity distribution
is broad. However, when cells are exposed to non-zero chemoattractant concentrations, the sensitivity distribution sharply
narrows. (c) The ability to modulate the degree of diversity in the sensitivity distribution according to the background
stimulus could allow the population to switch between two navigational strategies in different environments. When no
signals are present, cells have no information about future environmental signals, so they diversify their sensitivities for
different ligands, improving the readiness for potential upcoming conditions (bet-hedging strategy). However, once a
signal is detected, the population is benefited by having most cells being sensitive to the change in the signal level (tracking
strategy). Panels a and b are adapted with permission from Kamino et al., 2020 [61].

Although the sensory diversity decreases after adaptation, there is still significant cell-
to-cell variation in response sensitivity. Why are these cells maintained in the population
if their low sensitivity, and thus low pathway gain, decreases their performance when
climbing chemical gradients? Recent theory work has implied that having cells with low
sensitivity is advantageous because it improves the performance of the population in
navigating and colonizing environments with many nutrient patches [100]. Cells with
higher gain climb gradients quickly but are easily trapped around local maxima. On the
other hand, cells with lower gain are slow to climb gradients but more likely to detach
from a local maximum and explore new territory. Since the response gain will fluctuate
over multiple time scales ranging from that of signaling fluctuation (≈10–100 s) to cell
division (≈1 h), E. coli chemotaxis with gain variation resembles a stochastic sampling
method called simulated tempering known to be efficient in sampling from probability
distributions with many local maxima and minima.

5. Conclusions and Outlook

In recent years, it has become clear that phenotypic diversity and temporal fluctuations
have a functional role in the chemotactic behavior of E. coli. Currently, however, we only
understand this role from either a theoretical perspective or under controlled laboratory
conditions. It remains unclear how phenotypic diversity and temporal fluctuations impact
individual and population-level strategies in natural settings.

One question we must answer to understand the role of diversity in natural bacteria
is how the environment affects the degree of phenotypic heterogeneity. While the diversity
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of sensitivities to chemoattractant can be modulated by the presence of background sig-
nals [61], whether other parameters of the signal transduction pathway are similarly tuned
by the environment requires further study. Furthermore, how might different nutrient en-
vironments affect the diversity of chemotaxis gene expression profiles? While the effect of
different nutrient environments on average chemotactic behavior is becoming clearer [101],
the diversity of chemotactic phenotypes as a function of the environment is still unknown.

Another area that currently lacks understanding is the role of temporal fluctuations
in bacteria with different swimming modes. Recent work has focused on the mecha-
nism [36,60] and function [85] of temporal fluctuations in the chemotaxis signaling pathway
of E. coli, but their existence and function in other bacteria, especially those that do not nav-
igate by runs and tumbles, has yet to be verified. Do all navigational strategies benefit from
fluctuations in their signaling pathways, or is the usefulness of such fluctuations unique
to run-and-tumble navigation? Does the architecture of a bacteria’s chemotactic signaling
pathway [102] or chemoreceptor arrays [21] affect these fluctuations? Answering these and
other questions will be important to generalize our understanding of the chemosensory
system of E. coli.
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