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The mammalian target of rapamycin (mTOR) is a central
regulator of cell growth and proliferation. mTOR signaling
is frequently dysregulated in oncogenic cells, and thus an
attractive target for anticancer therapy. Using CellDesigner,
a modeling support software for graphical notation, we
present herein a comprehensive map of the mTOR signaling
network, which includes 964 species connected by 777
reactions. The map complies with both the systems biology
markup language (SBML) and graphical notation (SBGN)
for computational analysis and graphical representation,
respectively. As captured in the mTOR map, we review and
discuss our current understanding of the mTOR signaling
network and highlight the impact of mTOR feedback and
crosstalk regulations on drug-based cancer therapy. This
map is available on the Payao platform, a Web 2.0 based
community-wide interactive process for creating more accu-
rate and information-rich databases. Thus, this comprehen-
sive map of the mTOR network will serve as a tool to facilitate
systems-level study of up-to-date mTOR network components
and signaling events toward the discovery of novel regulatory
processes and therapeutic strategies for cancer.
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Introduction

The tale of the drug rapamycin and its functional target TOR
(target of rapamycin) has attracted monumental scientific and
clinical interest over the past few decades. Rapamycin was first
identified as a potent antifungal metabolite produced by
Streptomyces hygroscopicus (Vezina et al, 1975), a bacterial
strain originally isolated from a soil sample collected on Easter
Island in the South Pacific. Surprisingly, rapamycin was
subsequently found to possess immunosuppressive and
antitumorigenic properties (Chiang and Abraham, 2007;
Guertin and Sabatini, 2007). The mode of action of rapamycin
involves its interaction with the immunophilin FKbinding
protein–12 (FKBP12; Harding et al, 1989). Studies in budding
yeast determined that an FKBP12–rapamycin complex
directly inhibits a B290 kDa Ser/Thr kinase termed ‘target of
rapamycin’ (TOR) (Heitman et al, 1991). Subsequently,
the mammalian ortholog of TOR was identified and termed
FKBP–rapamycin-associated protein (FRAP) and rapamycin
and FKBP12 target (RAFT) (Brown et al, 1994; Sabatini et al,
1994), and is commonly referred to as mammalian TOR
(mTOR). In the last two decades, scientists have used
rapamycin to decipher mTOR’s complex biological functions,
which include the regulation of cell growth, proliferation and
survival in response to nutrients, growth factors and hormones
(Corradetti and Guan, 2006; Wullschleger et al, 2006; Foster
and Fingar, 2010). mTOR has also attracted broad interest
because of its involvement in many human diseases, including
type II diabetes and several types of cancer (Efeyan and
Sabatini, 2010). These observations have guided the develop-
ment of additional mTOR inhibiting drugs (rapalogs and
second-generation inhibitors), many of which are currently
being evaluated for their therapeutic efficacy (Easton and
Houghton, 2006).

Over the past few years, intense efforts have revealed many
new mTOR regulatory proteins across a complex network of
positive and negative regulatory mechanisms (Dunlop and
Tee, 2009; Efeyan and Sabatini, 2010). This increased complex-
ity impacts our ability to interpret and predict the regulation of
the mTOR network, which is essential to better understand
mTOR-related diseases. To unravel this complexity, computa-
tional approaches combined with mathematical modeling
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techniques have emerged as a solution (Karlebach and Shamir,
2008). To this end, a crucial task involves the reconstruction
of networks in a biologically meaningful manner by manual
curation from literature or automated curation from pathway
databases (Adriaens et al, 2008; Bauer-Mehren et al,
2009). Some of these databases represent pathways in
computer-readable standard formats, such as biological
pathway exchange (BioPAX; www.biopax.org) and systems
biology markup language (SBML; Hucka et al, 2003),
allowing exchange between different software platforms and
further processing by network analysis, visualization and
modeling tools. However, a recent evaluation conducted to
determine the accuracy and completeness of current pathway
databases concluded that manual intervention is still needed
to obtain a comprehensive and accurate view of a particular
signaling network (Bauer-Mehren et al, 2009). Furthermore,
manual reconstruction of such networks has been shown to be
crucial in analyzing and interpreting structural features and
global properties of signaling pathways (Oda et al, 2005;
Kitano and Oda, 2006; Oda and Kitano, 2006; Calzone et al,
2008).

On the basis of the current scientific and clinical interest in
understanding the precise regulation and function of mTOR,
we set out to communicate the mTOR network in both human-
and computer-readable formats. Using CellDesigner (http://
celldesigner.org), a modeling support software (Funahashi
et al, 2007), we present a manually assembled map of the
mTOR signaling network. This map complies with SBML and
the systems biology graphical notation (SBGN) process
diagram (Kitano et al, 2005; Le Novere et al, 2009) for machine
readable and graphical representation, respectively. Despite its
static nature, a comprehensive map of molecular interactions
would serve as a valuable working model to gain a systems-
level understanding of the mTOR network. The map would
also serve as a useful reference, and greatly help research on
mTOR signaling. In this regard, we have reviewed our current
understanding of the mTOR signaling network and discuss its
particular relevance to cancer therapy. In addition, we
elaborate on future directions to ensure a community-based
effort in updating the mTOR network accurately through
concurrent interventions.

Graphical notations for network
representation

Standardizing the visual representation is crucial for more
efficient and accurate transmission of biological knowledge
between different communities. Recently, a group of bioche-
mists, modelers and computer scientists proposed the SBGN, a
visual convention for graphical representation of biological
networks (Le Novere et al, 2009; www.sbgn.org). The SBGN
aims at standardizing a systematic and unambiguous graphi-
cal notation and enables software tool support for computa-
tional analysis. SBGN defines three complementary types of
visual languages: (1) process diagram, (2) entity relationship
diagram and (3) activity flow diagram. In order to stimulate
implementation of SBGN support and the use of the notation,
the symbols used to represent molecules and interactions
related to the mTOR signaling network are based on the

process diagram (Figures 2 and 3) and the activity flow
diagram (Figure 4).

Process diagram

In Figure 1A, the process diagram is exemplified with the
TSC1–TSC2 complex, a critical negative regulator of the
rapamycin-sensitive mTOR complex-1 (mTORC1). In this
diagram, the multiple phosphorylation states of TSC1–TSC2
are represented in a system of active or inactive transitive
nodes. Using the unphosphorylated form as the initial node,
we show that the TSC1–TSC2 complex is phosphorylated,
altering its ability to act as a GAP toward Rheb in vivo. More
precisely, the catalysis arrows show that the transition of TSC2
from an active to an inactive state is mediated by the protein
kinases AKT, ERK1/2, RSK1/2, IKKb and CDK1, whereas
AMPK and GSK3 (glycogen synthase kinase-3) positively
regulate TSC1–TSC2 function. In addition, the process diagram
language used to illustrate the mTOR signaling network was
created using the CellDesigner software, which enables users
to store data for each molecule and reaction in the protein and
reaction notes, respectively. Moreover, the CellDesigner soft-
ware allows users to access references that are used for
individual reaction using PubMed ID (Figure 1). For the
purpose of this review, we used the process diagram language to
draw the comprehensive mTOR network map (Figure 2) and to
describe upstream regulators of mTORC1 signaling (Figure 3).

Activity flow diagram

The activity flow diagram language is essentially similar to
traditional notation used by molecular biologists in the current
literature. It depicts the flow of information between biochemi-
cal entities in a network and it omits information about the
state transitions of entities. As exemplified in Figure 1B,
activity flow diagrams show only influences such as ‘activa-
tion’ or ‘inhibition’ of the TSC1–TSC2 complex by different
protein kinases. By ignoring biochemical details of processes
in a network, the number of nodes in an activity flow diagram
is greatly reduced compared with an equivalent process
diagram. In Figure 4, the activity flow diagram has been used
to represent a simplified version of the mTOR map based on
key factors of the mTOR signaling network.

General characteristics of the mTOR map

In Figure 2, we present a comprehensive map of the mTOR
signaling network that was manually assembled based on the
published literature. To facilitate map exploration, it was
organized in different functional modules, including regula-
tion of mTORC1 and mTORC2, hypoxia, energy content,
growth factor, nutrient, Wnt and TNF signaling, ribosome
and rRNA biogenesis, cap-dependent translation, autophagy,
protein folding, mitochondrial metabolism, cytoskeleton
dynamics, transcription and cell cycle. The map was created
using CellDesigner 4.0.1 (http://celldesigner.org/), a model-
ing software tool that enable users to describe molecular
interactions using the process diagram language, as described
above. Also, the map complies with the SBML, a standard
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machine-readable format for computational analysis (Hucka
et al, 2003).

The map comprises 964 species and 777 reactions.‘Species’
are defined in SBML as ‘an entity that takes part in reactions’
and it is used to distinguish the different states that are caused
by enzymatic modification, association, dissociation and
translocation. In the comprehensive mTOR map, species were
categorized as follows: 380 proteins (241 unique proteins),
319 complexes, 20 simple molecules, 80 genes, 87 RNA, 2 ions,
24 degraded products, 6 unknown molecules and 46 pheno-
types. Among all species, 602 were located in the cytoplasm
and at the plasma membrane, 298 in the nucleus, 22 in
endomembranes, 17 in the mitochondria, 12 in Rab7 vesicular
structure, 6 in the extracellular environment, 4 at the

centrosome and 3 in the ER–golgi network. The reactions were
categorized as follows: 210 heterodimer associations, 251 state
transitions, 224 known transitions omitted, 43 dissociations, 32
transports and 17 unknown transitions. The criteria for inclusion
into the map are similar to those for the previously described
maps of the epidermal growth factor receptor (EGFR) and Toll-
like receptor (TLR; Oda et al, 2005; Oda and Kitano, 2006). The
map was manually constructed based on 522 publications
available in the Supplementary information section. This
approach provides better quality in terms of coverage over
major pathway and protein–protein interaction (PPI) databases
(Supplementary Table S2; Bauer-Mehren et al, 2009). As
illustrated in Figure 1, users can directly access references for
individual reaction represented in the map.

PMID: 18508509
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Figure 1 Graphical notations adopted by CellDesigner to illustrate the mTOR signaling network. (A) Process diagrams, explicitly displaying different phosphorylated
forms of the TSC1–TSC2 complex, as well as the processes of phosphorylation on different serine and threonine residues by AKT, ERK1/2, RSK1/2, CDK1, AMPK,
GSK3 and IKKb. The active state of the molecule is indicated by a dashed line surrounding the molecule. Phosphorylation state of the component is represented with
target residues and positions. For individual proteins and reactions, specific notes such as PubMed ID (PMID) were added, enabling a direct link to the relevant
references. (B) Activity flow diagrams depicting the activation and inhibition of the TSC1–TSC2 complex by the enzymes illustrated in A. In this diagram language, the
biochemical details are omitted.
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In order to achieve a better coverage of all proteins involved
in the mTOR signaling network and to identify potential
modulators, we constructed an mTOR protein interaction
network (PIN) from a set of 85 central mTOR pathway proteins
and physical interaction data from multiple protein interaction
databases using APID2NET (Hernandez-Toro et al, 2007;
Supplementary Figure S1). In the PIN, we identified 317
additional proteins not present in the current version of the
mTOR map. Thus, integration of proteins and reactions from
the curated mTOR signaling network and the constructed PIN
from public databases offers opportunities to formulate and
test new hypotheses. These are essential if we wish to expand
the current mTOR map and continuously benefit to the
community.

Description of the mTOR signaling
network

In the following section, we review and highlight our current
knowledge of the mechanisms regulating the mTOR signaling
network, as captured in the comprehensive mTOR map
(Figure 2). As mentioned earlier, the comprehensive map
was organized in functional modules and includes annotations
for the specific reactions and molecular species (PubMed ID of
the relevant literature, outlinks to gene and protein databases,
etc) to facilitate navigation by researchers.

Upstream regulators of mTORC1 signaling

mTORC1 is a rapamycin-sensitive multi-protein complex that
contains mTOR, Raptor and mLST8 (also known as GbL;
mTORC1 module in Figure 2) (Wullschleger et al, 2006;
Bhaskar and Hay, 2007). Other proteins have been shown to
be part of mTORC1, including FKBP38, PRAS40 and Deptor
(Laplante and Sabatini, 2009). Most recent studies also suggest
that Raptor binds to PRAS40 (Sancak et al, 2007; Yip et al,
2010). Raptor positively regulates mTOR activity and is
thought to function as a scaffold that recruits mTORC1
substrates (Hara et al, 2002; Kim et al, 2002), whereas
PRAS40, Deptor and FKBP38 negatively regulate mTOR
activity (Bai et al, 2007; Sancak et al, 2007; Vander Haar
et al, 2007; Peterson et al, 2009). The role of mLST8 in mTORC1
function is currently unclear, as the chronic loss of this protein
does not affect mTORC1 activity in vivo (Guertin et al, 2006b).
mTORC1 senses and integrates various environmental cues
and intracellular signals to regulate cellular processes involved
in the promotion of cell growth (Jacinto, 2008). To facilitate
interpretation of the major signaling inputs to mTORC1
described below, and to encourage the use of the SBGN
notation, we have drawn from the mTOR map a small-scale
scheme of mTORC1 signaling events using the SBGN process
diagram language (Figure 3). This simplified mTORC1 map
comprises 110 species, 77 reactions and 4 cellular compart-
ments, and highlights positive and negative regulatory signals
to mTORC1.

mTORC1 signaling is positively regulated by growth factors
through the PI3K–AKT pathway (Growth Factor/Nutrient
module in Figures 2 and 3). The binding of insulin to its cell
surface receptor leads to the recruitment and phosphorylation

of IRS-1, which promotes the recruitment and activation of
PI3K at the cell surface membrane. Active PI3K converts
phosphatidylinositol-4,5-phosphate to phosphatidylinositol-
3,4,5-phosphate (PIP3), a process antagonized by the lipid
phosphatase PTEN. When produced at the plasma membrane,
PIP3 recruits both PDK1 and AKT, resulting in the phosphory-
lation and partial activation of AKT. Whereas PDK1 phos-
phorylates AKT at Thr308, additional phosphorylation at
Ser473 by mTORC2 (see below) is necessary for optimal
activation of AKT in vitro (Sarbassov et al, 2005). mTORC1 is
thought to be activated in part by AKT through the tuberous
sclerosis complex proteins, TSC1 and TSC2. The TSC1–TSC2
complex is a critical negative regulator of mTORC1 (Huang and
Manning, 2008b). Because of its central role in regulating
mTORC1, 34 species depicting extensive details about the
TSC1–TSC2 complex (post-translation modifications, interac-
tors, cellular locations) were represented in the comprehen-
sive mTOR map. In response to growth factors, TSC2 is
phosphorylated and functionally inactivated by AKT (Inoki
et al, 2002; Manning et al, 2002). ERK1/2 and RSK1/2 were
also shown to phosphorylate and inactivate TSC2 in response
to growth factors (Roux et al, 2004; Ballif et al, 2005; Ma et al,
2005), suggesting that PI3K and Ras/MAPK pathways colla-
borate to inhibit TSC1–TSC2 function in response to growth
factors. Whereas TSC2 functions as a GAP toward the small
Ras-related GTPase Rheb, TSC1 is required to stabilize TSC2
and prevent its proteasomal degradation (Huang and Man-
ning, 2008b). While the active GTP-bound form of Rheb was
shown to directly interact with mTOR to stimulate its catalytic
activity (Long et al, 2005), Rheb may also promote substrate
recognition by mTORC1 (Sancak et al, 2007; Sato et al, 2009).

Nutrients, such as amino acids, regulate mTORC1 signaling
via different mechanisms. Amino acid availability regulates
mTORC1 in a TSC2-independent but Rheb-dependent manner
(Smith et al, 2005; Gulati and Thomas, 2007), but the exact
mechanism remains poorly understood (Growth Factor/Nu-
trient module in Figures 2 and 3). Two complementary studies
have provided compelling evidence that the Rag family of
small GTPases is both necessary and sufficient to transmit a
positive signal from amino acids to mTOR (Kim et al, 2008;
Sancak et al, 2008). The current model proposes that amino
acids induce the movement of mTORC1 to lysosomal
membranes, where Rag proteins reside. More precisely, a
complex encoded by the MAPKSP1, ROBLD3 and c11orf59
genes, interacts with the Rag GTPases, recruits them to
lysosomes, and was shown to be essential for mTORC1
activation (Sancak et al, 2010).

mTORC1 activity is sensitive to oxygen deprivation, and
one pathway by which this occurs involves activation of the
TSC1–TSC2 complex by REDD1, a hypoxia-inducible protein
(Hypoxia module in Figures 2 and 3l; Brugarolas et al, 2004).
Newly synthesized REDD1 was found to interact with 14–3–3
and relieve TSC2 from 14–3–3-dependent repression (DeYoung
et al, 2008). mTORC1 also senses insufficient cellular energy
levels through AMPK, a protein kinase activated in response to
a low ATP/AMP ratio (Inoki et al, 2003) and by LKB1-mediated
phosphorylation (Low Energy module in Figures 2 and 3;
Lizcano et al, 2004; Shaw et al, 2004). Upon energy depletion,
AMPK phosphorylates and activates TSC2, resulting in the
inhibition of mTORC1 (Inoki et al, 2003). The GSK3 may also
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be involved in the activation of TSC1–TSC2, as it was shown to
phosphorylate TSC2 at Ser1337 and Ser1341 in response to
AMPK-mediated TSC2 phosphorylation (Wnt module in
Figures 2 and 3; Inoki et al, 2006). Site-specific phosphoryla-
tion of Raptor also has an important role in the activation of
mTORC1 in response to energy depletion. Indeed, low energy
status promotes Raptor phosphorylation at Ser722 and Ser792
by AMPK, thereby providing binding sites for 14–3–3, which
attenuates mTORC1 signaling (mTORC1 module in Figures 2
and 3; Gwinn et al, 2008). In contrast, insulin- and Rheb-
stimulated mTOR phosphorylates Raptor on Ser863 to promote
mTORC1 signaling (Wang et al, 2009; Foster et al, 2010). The
Ras/MAPK pathway activated protein kinase RSK was also
shown to directly phosphorylate Raptor on Ser719, Ser721 and
Ser722, thereby promoting mTORC1 signaling (Carriere et al,
2008a, b). Four mTOR phosphorylation sites have been
identified so far: Ser1261, Ser2448, Ser2481 (an autophos-
phorylation site) and Thr2446 (Foster and Fingar, 2010).
While Ser1261 is the only site demonstrated to affect mTOR
activity (Acosta-Jaquez et al, 2009), phosphorylation of
Ser2481 was shown to correlate with the activation status of
mTOR (Soliman et al, 2010). Phosphorylation of Ser2448 was
originally found to be regulated by Akt (Nave et al, 1999), but
more recent studies demonstrated that S6K1 phosphorylates
this site as part of a feedback loop with unknown functions
(Chiang and Abraham, 2005; Holz and Blenis, 2005). The
phosphorylation status of PRAS40 and Deptor was also found
to affect mTORC1 signaling. Indeed, phosphorylation of
PRAS40 by both AKT (on Thr246) and mTORC1 (on Ser183,
Ser212, Ser221) and subsequent association of PRAS40 with
14–3–3 is critical for the activation of mTORC1 (Fonseca et al,
2007; Oshiro et al, 2007; Vander Haar et al, 2007; Wang et al,
2008). Upon activation, mTORC1 also directly phosphorylates
Deptor to promote its degradation, which further activates
mTORC1 signaling (Peterson et al, 2009). Although 13 specific
phosphorylation sites have been identified on Deptor (see
protein notes from the SBML-format file of the comprehensive
mTOR map), functional role for individual phosphorylated
residues have yet to be characterized. Collectively, these
reports suggest that multiple phosphorylation events on
mTORC1 components cooperate to regulate mTORC1 signaling
in response to a wide variety of upstream signals.

Downstream targets of mTORC1 signaling

As described above, mTORC1 responds to diverse external and
intracellular signals to promote anabolic and inhibit catabolic
cellular processes (Foster and Fingar, 2010). Under favorable
conditions, mTORC1 promotes protein synthesis, cell growth
and proliferation (Ma and Blenis, 2009). Conversely, various
cellular stresses inhibit mTORC1 signaling to reduce biosyn-
thetic rates and allow initiation of macroautophagy. To review
major output responses from mTORC1, we have drawn a
reduced version of the mTOR map based on central mTOR
network components using the SBGN activity flow diagram
language (Figure 4). This simplified map also highlights the
architecture of mTORC1 signaling and underscores the flow of
positive and negative regulatory signals, which are briefly
discussed in the last section.

mTORC1 regulates protein synthesis via phosphorylation of
both S6K1 and 4E-BP1 (Cap-dependent translation module in
Figures 2–4). Upon growth factor or nutrient stimulations,
mTORC1-mediated phosphorylation of 4E-BP1 induces its
dissociation from eIF4E, which enables assembly of the eIF4F
complex for competent translation initiation (Ma and Blenis,
2009). When activated by mTORC1, S6K1 phosphorylates both
PDCD4 and eIF4B, resulting in activation of the eIF4A RNA
helicase, which unwinds secondary structures in the 50

untranslated region of mRNA to facilitate scanning of the
ribosome (Ma and Blenis, 2009). S6K1 also controls transla-
tion elongation by regulating the activity of eEF2K. SKAR-
mediated recruitment of activated S6K1 also increases the
translation efficiency of spliced mRNA during the pioneer
round of translation (Ma and Blenis, 2009). While both 4E-BP1
and S6K1 regulate protein synthesis, 4E-BP1 appears to be
mainly involved in cell proliferation, while S6K1 regulates cell
size (Dowling et al, 2010a). Recently, S6K1 and RSK were
found to phosphorylate the b-subunit of CCT (Abe et al,
2009). CCT is part of a chaperone network linked to
protein synthesis and has been shown to facilitate folding of
newly translated proteins in vivo (Protein Folding module in
Figures 2 and 4; Camasses et al, 2003; Albanese et al, 2006).
Although the functional role of S6K1-mediated phosphoryla-
tion of CCTb remains elusive, these findings suggest that
mTORC1 may have roles in optimizing folding of newly
synthesized proteins during or shortly after translation of
polypeptides.

While rapamycin treatment has been shown many years ago
to promote macroautophagy in yeast (Noda and Ohsumi,
1998), mTORC1 was recently demonstrated to regulate this
process through a protein complex composed of ULK1, ATG13
and FIP200 (Jung et al, 2009). Under nutrient-rich conditions,
mTORC1 inhibits autophagy through phosphorylation and
inactivation of ULK1/2 and ATG13 (Autophagy module in
Figures 2 and 4). Upon nutrient starvation or following
rapamycin treatment, inactivation of mTORC1 results in the
activation of ULK1/2, which promotes phosphorylation of
FIP200 and induces macroautophagy (Jung et al, 2009).
Intriguingly, FIP200 was also shown to interact with the
TSC1–TSC2 complex in response to nutrients, resulting in
increased S6K1 activity and cell growth (Growth Factor/Nu-
trient module in Figure 2; Gan et al, 2005). Taken together,
these observations raise the possibility that FIP200 binds
distinct protein complexes both upstream and downstream of
mTORC1 to regulate macroautophagy in response to nutrient
status.

Gene expression profiling experiments have shown that
B5% of the transcriptome was differentially expressed in
response to rapamycin-mediated mTOR inhibition (Guertin
et al, 2006a), suggesting a role for mTORC1 in regulating gene
expression. Additional studies have demonstrated that
mTORC1 controls lipid biosynthesis by activating PPAR-g and
SREBP-1, two transcription factors that control expression of
many lipogenic and adipogenic genes (Transcription module
in Figures 2 and 4) (Laplante and Sabatini, 2009). mTORC1
also targets Lipin1, which was shown to have a key role in
adipogenesis by promoting triglyceride synthesis and serving
as a coactivator of PPAR-g (Laplante and Sabatini, 2009). A
recent study also identified mTORC1 as an important regulator
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of mitochondrial gene expression by altering the physical
interaction of YY1 and PGC1-a (Cunningham et al, 2007), two
transcription factors that have key roles in mitochondrial
biogenesis (Mitochondrial Metabolism module in Figures 2
and 4). In the transcription module of the comprehensive
mTOR map, we have drawn several mTOR network-related
genes that were shown to be differentially expressed in
response to various stimulations. Although most regulatory
mechanisms involved in mTOR-dependent gene expression
remain to be determined, these studies highlight the important
roles of mTORC1 in regulating the transcriptome.

Regulation of mTORC2 signaling

The second mTOR complex, mTORC2, controls cell survival,
metabolism and proliferation in part by phosphorylating both
AKT and SGK1 (mTORC2 module in Figures 2 and 4; Jacinto
et al, 2006; Guertin et al, 2006b; Garcia-Martinez and Alessi,
2008). Some studies have also suggested a role for mTORC2 in
the control of cytoskeleton organization by promoting PKCa
and paxillin phosphorylation (Cytoskeleton Dynamic module
in Figures 2 and 4; Jacinto et al, 2004; Sarbassov et al, 2004).
mTORC2 is comprised of mTOR, Rictor, mSin1, mLST8, and
is often accompanied with PROTOR-1/PPR5 and Deptor
(Wullschleger et al, 2006; Bhaskar and Hay, 2007). Similar to
its role in mTORC1 signaling, Deptor negatively regulates
mTORC2 activity (Peterson et al, 2009). Deletion or knock-
down of the mTORC2 components mTOR, Rictor, mSin1 and
mLST8 has a dramatic effect on mTORC2 assembly and
activation of AKTand SGK1 (Jacinto et al, 2006; Guertin et al,
2006b). To be fully activated and stabilized, AKT requires
phosphorylation of both Ser308 and Ser473 by PDK1 and
mTORC2, respectively (Bhaskar and Hay, 2007; Oh et al, 2010).
While phosphorylation of both AKT sites is required for full
AKT activity in vitro, Ser473 phosphorylation is dispensable
for phosphorylation of most AKT substrates in vivo with the
exception of FOXO3 and PKCa (Guertin et al, 2006b). The
mechanisms leading to PDK1-mediated phosphorylation of
AKTare well described, but the functional interaction between
mTORC2 and AKT is incompletely understood (Jacinto, 2008).
One possibility hinges on the presence of a PH-like domain in
mSIN1, which would promote the translocation of mTORC2 to
the plasma membrane much like what was found for PDK1
(Schroder et al, 2007).

In contrast to mTORC1, recent work revealed that the TSC1–
TSC2 complex promotes mTORC2 activity (Huang et al, 2008a,
2009). Interestingly, a physical interaction between these two
complexes was identified, but the exact role for this new
interaction is not currently known. mTORC2 is also generally
described as being rapamycin insensitive, but it is now
becoming apparent that while short-term rapamycin treatment
does not inhibit mTORC2, longer treatments suppress the
assembly and function of mTORC2 through a mechanism that
may involve dephosphorylation and delocalization of Rictor
and mSin1 (Sarbassov et al, 2006; Rosner and Hengstschlager,
2008). Although we still know very little about the function
and regulation of mTORC2, the availability of competitive
ATP antagonists against mTOR will likely help deciphering
mTORC2-mediated cellular processes.

Inhibition of mTOR in drug-based cancer
therapy

Inappropriate amplification of the mTOR signaling pathway, as
a result of diverse genetic lesions, is implicated in a variety
of human cancers (Shaw and Cantley, 2006). Consequently,
mTOR has emerged as a key target for the treatment of cancer.
Rapamycin has initially been shown to possess strong cytostatic
activities against a wide range of tumor cells in vitro, and was
found to be effective at suppressing growth of cancer cells in vivo
(Gibbons et al, 2009). A number of clinical trials using rapalogs
as anticancer drugs have been performed, and has led to FDA
approval in the case of renal cell carcinoma. However, the
overall efficacy of rapamycin analogs as single agents for cancer
therapy did not meet expectations (Guertin and Sabatini, 2009;
Dowling et al, 2009). As highlighted in Figure 4, one notable
architectural feature of mTORC1 signaling is the possible
existence of a bow-tie structure. Typically, bow-tie networks
are composed of a highly conserved core part of the network
connected by diverse and redundant input and output subnet-
works with various feedback control loops (Csete and Doyle,
2004; Oda et al, 2005; Oda and Kitano, 2006). In this section, we
briefly review key mTOR regulatory mechanisms within the
architecture of the mTOR network and discuss their implications
in cancer therapy.

Impact of mTOR feedback and crosstalk
regulations in rapamycin-based therapy

In recent years, mTORC1 was shown to be involved in the
initiation of several negative feedback regulatory mechanisms
(Efeyan and Sabatini, 2010; Figure 4). Many of the described
feedback and crosstalk reactions have not been confirmed
in vivo and may be cell and stimuli dependent. Nonetheless,
upon growth factor stimulation, mTORC1 activates S6K1,
which in turn phosphorylates IRS-1 at the plasma membrane,
and ultimately suppresses PI3K-mediated activation of AKT
(Manning, 2004; Harrington et al, 2005). Rapamycin-mediated
mTORC1 inhibition results in the attenuation of this negative
feedback loop, leading to increased AKTactivity and activation
of prosurvival signals, which would be a possible explanation
for the relative inefficacy of rapamycin in cancer treatment
(Manning, 2004; Harrington et al, 2005). Activation of
elements in collateral pathways has been observed in the
bow-tie architecture of the TLR signaling network (Oda and
Kitano, 2006). As illustrated in Figure 4, mTORC1-mediated
S6K1 activation might engage mTORC2 in regulating collateral
signals that modulate upstream components of the main bow-
tie network. Indeed, two independent studies have recently
found a new crosstalk between the two mTOR complexes that
could also promote cell survival signaling in rapamycin-based
cancer therapy. Thus, mTORC2-dependent AKT activation in
the upper wing of the bow-tie was found to be negatively
regulated through S6K1-mediated phosphorylation of Rictor
on Thr1135 (Dibble et al, 2009; Julien et al, 2010). In addition,
inhibition of mTORC1 was found to stimulate Ras-dependent
activation of the MAPK pathway, a signaling cascade
frequently activated in human cancers (Carracedo et al,
2008). While the exact molecular mechanisms underlying this
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negative feedback loop remain elusive, these results demon-
strate the potential benefit of using combinatorial mTOR and
MEK inhibitors for the treatment of certain cancer types.

Recent studies have also shown that rapamycin, previously
thought to completely inhibit mTORC1 activity, does not
equally suppress mTORC1 signaling to its substrates (Choo
et al, 2008; Choo and Blenis, 2009; Thoreen et al, 2009). While
rapamycin treatment completely and sustainably inhibits S6K1
activation, it only partly and variably inhibits 4E-BP1
phosphorylation (Choo et al, 2008). Because 4E-BP1 is
critically involved in cap-dependent translation via regulation
of eIF4E, rapamycin-resistant mTORC1 signaling toward 4E-
BP1 is a plausible explanation for failed rapamycin-based
cancer therapies.

The mTOR signaling map outlined in this review provides a
picture of the intricate maze of regulatory interactions
and feedback control loops mediated by mTOR, both within
a bow-tie architecture and between components of different
pathways.

Combination therapies and second generation
of mTOR inhibitors

The implication of mTOR signaling in oncogenesis and the
interaction of mTOR with other pathway components suggests
the potential benefit of combination therapy (Dancey, 2010).
Indeed, properly designed multicomponent therapies are the
first step in controlling robustness to achieve clinical efficacy
(Kitano, 2007). Efforts to combine the antitumor effects of
therapeutic agents targeting different molecular components
have been studied by several groups (Nelander et al, 2008;
Lehar et al, 2008a, b). With respect to mTOR, synergisms
between rapalogs and conventional therapeutics have already
been explored (reviewed in Abraham and Eng, 2008). The
ability of mTOR inhibitors to downregulate HIF1 and VEGF has
made them interesting combination partners with VEGFR
inhibitors, such as Sorafenib and Sunitinib (Hudson et al,
2002; El-Hashemite et al, 2003). The feedback interaction
between MAPK and mTOR pathways also makes them
potential combination partners. MEK inhibitors, such as CI-
1040, in combination with rapalogs exhibit dose-dependent
synergism in human lung cancer cell lines (Legrier et al, 2007).
Targeting mTOR/AKT and MEK/ERK pathways have shown
synergistic antigrowth phenotypes in androgen-dependent
prostate tumors in the mouse (Kinkade et al, 2008). Combina-
tion therapies with IGF-1 or MAPK2 inhibitors and rapalogs are
currently in various stages of clinical evaluation (Dancey, 2010).
Combination therapies with an mTOR inhibitor provide a
promising avenue in eliciting synergistic efficacy by exploiting
regulatory interaction between different pathways, which might
not be possible in monotherapy. However, combination of
therapeutic agents can also lead to synergistic toxicity. Thus,
strategies for evaluation of toxicity and side effects need to be
systematically explored, and as signaling pathway interactions
are context-specific, different dosage regimen need to be
evaluated based on cancer subtypes or patient subgrouping.

While combination therapies with rapamycin or a rapalog
may turn out to be efficacious in controlling deregulated mTOR
signaling, several groups have developed small-molecule

active-site inhibitors of mTOR (reviewed in Guertin and
Sabatini, 2009; Dowling et al, 2010b). This research has been
bolstered by the fact that acute rapamycin treatment does not
inhibit mTORC2 and incompletely inhibits mTORC1 signaling
(Choo et al, 2008; Thoreen et al, 2009). Several ATP-
competitive mTOR inhibitors have been described (Torin1,
WYE-125132, PP242, KU-0063794) that inhibit mTOR irre-
spective of whether it is within mTORC1 or mTORC2 (Growth
Factor/Nutrient module in Figures 2 and 4; Feldman et al,
2009; Garcia-Martinez et al, 2009; Thoreen et al, 2009; Yu et al,
2009; Janes et al, 2010). Generally, these inhibitors are more
potent suppressors of protein synthesis and 4E-BP1 phosphory-
lation, and strongly promote autophagy. Some of these have
already been tested for their antitumor activities in various
cancer subtypes (breast cancer, glioma, lung and renal tumors),
which generally appear to be more potent than what was found
for rapamycin (Mayer et al, 2004; Yu et al, 2009).

The comprehensive machine-readable interaction map
presented in this review will likely facilitate computational
modeling and systems-level study of mTOR pathway compo-
nents and interacting partners toward the discovery of novel
targets and therapeutic intervention strategies for cancer.

Perspectives

We foresee the comprehensive mTOR network to be a
guidance map in the study of mTOR signaling and its
regulation. Akin to a geographical map that facilitates the
navigation of new territories by explorers, the mTOR signaling
map will provide researchers with a tool to quickly and
efficiently maneuver through the complexity of mTOR inter-
actions in their quest for novel interactions and potential
pharmacological targets. Further, the availability of the map in
standardized formats (SBML and SBGN) renders the network
amenable to computational analyses based on various SBML
compliant tools (http://sbml.org/SBML_Software_Guide/
SBML_Software_Summary).

Our knowledge of the mTOR signaling network evolves
rapidly. Thus, a key feature to the construction of large-scale
biological networks is the ability to enrich the product with up-
to-date information curated from the latest scientific literature.
Further, it is of paramount importance to allow this knowledge
to be available for community-wide curation and collabora-
tion—allowing researchers to not only access the information,
but also to curate the reactions and share comments on
possible scientific implications, hypotheses, in a community-
wide collaborative manner (Web 2.0). In this direction, we
have developed a platform for community-based curation and
enrichment of biological pathways called Payao (Matsuoka
et al, 2010). Payao is a community-based, collaborative web
service platform for gene regulatory and biochemical pathway
model curation, based on SBML and uses CellDesigner for
rendering the network. The Payao system (www.payaologue.
org) enables a community to work on the same models
simultaneously, insert tags as pop-up balloon to the parts of
the model, exchange comments, record the discussions and
eventually update the models accurately and concurrently.
The current mTOR network elucidated in this review as well as
the maps in Figures 3 and 4 have been published on the Payao
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platform. From the Payao site (http://sblab.celldesigner.org/
Payao10/bin/), search for mTOR in the ‘Search Models’ field to
access the models (a snapshot of the map on Payao is available
in Supplementary Figure S2).

We envision that the comprehensive mTOR map presented
in this review will provide researchers with access to up-to-
date and annotated mTOR knowledge base, allow for the
sharing of information through comment tags that will enrich
the network in a continuous cycle of open-flow community-
collaborative framework.

Supplementary information

Supplementary information is available at the Molecular
Systems Biology website (www.nature.com/msb).
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