
Review

Mapping Global Prevalence of Acinetobacter baumannii and
Recent Vaccine Development to Tackle It

Chaoying Ma and Siobhán McClean *

����������
�������

Citation: Ma, C.; McClean, S.

Mapping Global Prevalence of

Acinetobacter baumannii and Recent

Vaccine Development to Tackle It.

Vaccines 2021, 9, 570. https://

doi.org/10.3390/vaccines9060570

Academic Editor: Ernesto S. Nakayasu

Received: 20 April 2021

Accepted: 22 May 2021

Published: 1 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield,
D04 V1W8 Dublin 4, Ireland; chaoying.ma@ucdconnect.ie
* Correspondence: siobhan.mcclean@ucd.ie

Abstract: Acinetobacter baumannii is a leading cause of nosocomial infections that severely threaten
public health. The formidable adaptability and resistance of this opportunistic pathogen have
hampered the development of antimicrobial therapies which consequently leads to very limited
treatment options. We mapped the global prevalence of multidrug-resistant A. baumannii and showed
that carbapenem-resistant A. baumannii is widespread throughout Asia and the Americas. Moreover,
when antimicrobial resistance rates of Acinetobacter spp. exceed a threshold level, the proportion of
A. baumannii isolates from clinical samples surges. Therefore, vaccines represent a realistic alternative
strategy to tackle this pathogen. Research into anti-A. baumannii vaccines have enhanced in the past
decade and multiple antigens have been investigated preclinically with varying results. This review
summarises the current knowledge of virulence factors relating to A. baumannii–host interactions
and its implication in vaccine design, with a view to understanding the current state of A. baumannii
vaccine development and the direction of future efforts.

Keywords: Acinetobacter baumannii; antimicrobial resistance; ESKAPE; virulence factors; vaccines;
immune response

1. Introduction

Acinetobacter baumannii is an opportunistic gram-negative coccobacillus that demon-
strates exquisite survival under various environmental conditions and intrinsic resistance
to routinely prescribed antibiotics [1]. Multidrug-resistant (MDR) A. baumannii strains
are now prevalent worldwide, with the highest percentage of carbapenem resistance of
over 90% being reported in the Mediterranean region, imposing serious burdens on health-
care systems. The vast majority of A. baumannii isolates arise in medical institutions and
are closely associated with nosocomial infections, particularly in patients receiving in-
tensive care and in immunocompromised individuals. Ventilator-associated pneumonia
(VAP), central line-associated bloodstream infections (BSI), urinal tract infections (UTI),
and meningitis are the most common clinical manifestations [2]. Unfortunately, the lack
of efficacious treatments has led to high crude mortality ranging from 40% to 80% for
infections occurring in sterile sites [3–6]. In 2017, the World Health Organization (WHO)
listed carbapenem-resistant A. baumannii as a critical priority, for which, new antibiotics
are urgently needed [7]. In addition, once nosocomial outbreaks of A. baumannii occur, it
is difficult to thoroughly eradicate from the environment due to its remarkable resistance
to disinfectants and its capacity to rapidly develop tolerance to these antibacterial agents,
contributing to prolonged colonisation and transmission [8]. Therefore, vaccination of
susceptible individuals is likely to be a more effective intervention for the prevention of
A. baumannii infections. Compared with other nosocomial pathogens such as Pseudomonas
aeruginosa, Staphylococcus aureus, and Clostridium difficile, the search for vaccines against
A. baumannii is in its infancy [9]. Over the last decade, increased research efforts have
concentrated on identifying potential virulence factors, clarifying host–pathogen interac-
tions, and developing vaccines against this exquisitely resilient pathogen. In this review,
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we describe these advances and also provide a comprehensive appraisal of the relevant
microbiology, epidemiology, and antibiotic resistance of A. baumannii.

The genus Acinetobacter currently comprises more than 60 validly named species [10].
It has been classified in the family Moraxellaceae, within the order Pseudomonadales, and
the class Gammaproteobacteria since 1991 [11]. The whole genome of A. baumannii (strain
ATCC 17978) was first sequenced in 2007 by Smith et al. [12]. However, its unambiguous
identification in routine diagnostic laboratories has long been hindered as A. baumannii is
phenotypically similar to, and phylogenetically close to, several other Acinetobacter species
(Figure 1). The A. calcoaceticus–A. baumannii (Acb) complex consists of six valid species:
A. baumannii, A. calcoaceticus (formerly Acinetobacter genomic species 1), A. nosocomialis
(formerly Acinetobacter genomic species 13TU) [13], A. pittii (formerly Acinetobacter genomic
species 3) [13], A. seifertii (formerly Acinetobacter genomic species ‘close to 13TU’) [14],
and the most recently added A. lactucae (formerly Acinetobacter NB14, synonymous with
A. dijkshoorniae) [10,15–17]. While A. calcoaceticus is non-pathogenic, the other five members
are all clinically relevant and are frequently identified in a broad sense as A. baumannii,
or A. baumannii group, in clinical microbial identification. The dominant species among
the clinically isolated A. baumannii group vary with region [18,19], but from a clinical
perspective, A. baumannii is the most virulent [5,20].
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on a Clustal W alignment of the 16S rRNA in the selected type strains. The maximum likelihood-
kimura 2-parameter (ML-K2) model was used. Moraxella osloensis was chosen as an outgroup. Strain
names and their corresponding GenBank accession numbers are listed in Table S1, Supplementary
Materials. A. oleivorans has also been catalogued into the Acb group in some studies [21–23], though
its name has not yet been validated.

2. A. baumannii Is Ubiquitous

Acinetobacter spp. are ubiquitous organisms and the first isolate, described as Mi-
crococcus calcoaceticus back in 1911, was from soil [24]. Their widely distributed natural
reservoirs occupy nearly all environmental niches including waterbodies, soil, mines, crude
oil, sewage, sludge, solid surfaces, raw meat, cheese, milk, unprocessed vegetables, human
skin, wild animals, livestock, fish, shrimps, plants, and nectar [25]. The natural habitats
of A. baumannii, however, are still poorly defined as it is almost exclusively isolated from
hospital environments and communities involving close contact [2]. A. baumannii was
rarely detected on human skin (0.5%, n = 186), indicating that this is not the natural habitat
of A. baumannii, despite Acinetobacter spp. being associated with human skin flora [26]. The
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presence of A. baumannii in the human body louse has been reported in many countries
worldwide [27–29]. For example, the highly antibiotic-susceptible A. baumannii strain SDF
which is responsible for community-acquired infections was first isolated from the interior
of body lice collected on homeless people in France [30].

Identification of traces of A. baumannii in environmental soil and waterbody samples
has frequently been reported [31–37]. An early study reported that more than a third
of the soil samples from Hong Kong contained Acinetobacter spp., with A. baumannii
representing 14.7% (n = 34) [38]. More recently, Hrenovic et al. isolated an antibiotic-
resistant A. baumannii strain from acid paleosol in Croatia [39]. Most water-recovered
A. baumannii strains were from sewage or urban streams, and hence it is challenging to
define whether they are native residents or contaminants from other A. baumannii positive
fomites [34–37]. A. baumannii colonisation has also been observed in livestock animals,
mostly from cattle and poultry [37,40–43], with various reports in horses, pigs, donkeys,
mules, goats, rabbits, dogs, cats, as well as the food products made from them [37,44], but
the frequency varies depending on the geographic location of the farms. Wilharm et al.
investigated the relatedness of A. baumannii isolates from livestock avian in Germany to
the lineages spread in hospitals worldwide and found there were several strains closely
related to human clinical isolates indicating that livestock avian may serve as a powerful
vector for the spread of A. baumannii [43]. Considering the complex human–environment–
livestock interactions and the elusive transmission chains, these reported cases may be
relevant to ‘One Health’ infection control approaches. To date, localised studies have
shown considerable variability in the prevalence among birds. For example, an isolation
rate of 25% of white stork nestlings in Poland was documented, ranging from 4% to
48% [43]. In contrast, a recent regional study demonstrated A. baumannii barely existed
in the choana and rectums of wild songbirds and gulls captured in Germany and Poland
(0.19%, n = 1051) [45]. More culture-based screenings of avian populations worldwide,
including their living environments are necessary. Genomic approaches may facilitate the
linkage between environmental strains and clinical isolates in time excluding misleading
strains, that are hospital-derived but contaminating other places.

3. Antimicrobial Resistance

The antimicrobial resistance of A. baumannii is of major concern. It is classified as
an ESKAPE pathogen, an acronym referring to Enterococcus faecium, S. aureus, Klebsiella
pneumoniae, A. baumannii, P. aeruginosa, and Enterobacter spp., all of which are recognised
nosocomial bacteria with high potential to exhibit MDR and virulence [46]. Clinical isolates
A. baumannii strains are frequently reported to demonstrate resistance to the most routinely
prescribed antibiotics in varying degrees, including carbapenems such as imipenem and
meropenem. Carbapenem is one of the β-lactam antibiotics with the broadest spectrum and
highest efficiency. Resistance to carbapenem is considered to be a marker for extensively
resistant bacteria because it involves a broad range of co-resistance to unrelated antibiotic
classes [7]. We have collated an up-to-date profile on the global incidence of carbapenem-
resistant A. baumannii strains documented over the past decade (Figure 2). The parameter
R% was defined as the percentage of carbapenem-resistant isolates among all clinically
isolated A. baumannii strains. Data for each country or region were collected from their latest
antimicrobial resistance (AMR) surveillance annual reports, and in the case of those without
applicable surveillance data, published figures from the most recent research or reviews
were used. It is apparent that carbapenem-resistant A. baumannii is now problematic across
Asia and the Americas, except in Japan and Canada. Moreover, Oceania, Western Europe,
the Nordic region, and part of central Europe have the lowest R% (<10%), however, in
areas surrounding the Mediterranean, including southern Europe, the Middle East, North
Africa, up to 90% of A. baumannii clinical isolates are resistant to carbapenems. Details for
central Africa and island countries are limited.
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In the treatment of A. baumannii infections, MDR often compels the adoption of last-
resort antibiotics such as colistin when essentially no other options are available. However,
the increasing quantity of recent cases reporting the emergence of pan-drug-resistant (PDR)
strains tolerant to last-resort therapies has dimmed their potential [47–52].

4. Clinical Importance
4.1. Susceptible Populations

A. baumannii has been long been recognised as a major opportunistic pathogen causing
nosocomial infections, or healthcare-associated infections, and manifests as a broad range
of infections, including respiratory infections, BSIs, UTIs, and meningitis. [2]. Patients
admitted to intensive care units (ICU), patients with indwelling medical devices, or with
immunocompromised medical conditions are particularly predisposed to its infections.
Falagas et al. demonstrated that the length of ICU stay was significantly increased in
patients with A. baumannii infections [53]. Previous studies demonstrated that the crude
mortality rate of A. baumannii infection was over 50% [3], although the attributable mortal-
ity varies with infection type. For example, in a multicentre study conducted in eight US
metropolitan areas from 2012–2015, the overall recorded death rate of carbapenem-resistant
A. baumannii infections was 17.9%, of which infections occurring at normally sterile sites
had much higher mortality of 41.3% compared with UTIs (8.3%) [3]. A. baumannii is one of
the leading causes of VAP worldwide, especially in Asia, Latin America, and the Middle
East [54]. The ICU mortality of MDR A. baumannii caused VAP has been reported to be
as high as 84.3% [4]. Crude mortality in patients with A. baumannii bacteraemia ranges
from 37% to 52% in the U.S. [5]. Although the incidence of A. baumannii meningitis is
comparably low, it is an increasing threat in post-neurosurgical patients, with a mortality
rate approaching 70% [6]. A. baumannii skin and soft tissue infections in trauma (wound,
burn) victims following natural disasters or wars have also been recorded, such as those
during the Iraq conflicts, the Syrian war, the Wenchuan earthquake, the Marmara earth-
quake, and the Indian Ocean tsunami [47,55–58]. According to a single site study, after
the Wenchuan earthquake, 14% of wound infections in the hospitalised survivors were
caused by A. baumannii [58]. Noticeably, during the Coronavirus disease 2019 (COVID-19)
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pandemic, hospital-acquired co- or secondary infections in COVID-19 in-patients caused
by A. baumannii were reported worldwide [59–61]. An acute care hospital in New Jersey
reported 70% (14/20) of patients with hospital-acquired A. baumannii infections developed
VAP and 85% (17/20) of them had co-infections with SARS-CoV-2 [61]. In a serious outbreak
in Texas, COVID-19 patients with secondary A. baumannii infections experienced a two-fold
higher mortality rate relative to COVID-19 patients without A. baumannii infections. These
reports suggested that A. baumannii co-infection may exacerbate the development and
prognosis of COVID-19 and hinder the clinical diagnosis and treatment [62].

Community-acquired A. baumannii infections are rarely reported but comparably more
often in some tropical or sub-tropical areas in the Asia–Pacific such as northern Australia
and Taiwan [63–66], indicating the potential climate drivers of its prevalence [67]. Unlike
healthcare-associated infections, A. baumannii strains involved in community-acquired
infection are more susceptible to antibiotics. Farrugia et al. sequenced the whole genome
of a community strain D1279779 obtained from Darwin, Australia, and found that the
antibiotic resistance island AbaR, associated with nosocomial strains, was absent in that
strain [68]. Despite their low occurrence, community-acquired A. baumannii infections
are characterised by an acute fulminant course involving septic shock, respiratory failure,
severe sepsis, pneumonia, and the mortality can be quite high, i.e., over 60% [67,68].

4.2. Prevalence

Since the 1990s, outbreaks of A. baumannii in clinical sites have often been reported [69],
particularly in regions with high levels of carbapenem-resistant rates. In Europe, the clini-
cal isolation rate ranges from less than 1% to over 30% [70,71], and clinical outbreaks are
most intensively reported in eastern and southeast Europe. We defined F% as the propor-
tion of Acinetobacter spp. isolates identified among all the clinical samples of monitored
AMR species (Escherichia coli, K. pneumoniae, P. aeruginosa, Acinetobacter spp., Streptococcus
pneumoniae, S. aureus, and Enterobacter spp.). The parameter F% was compared to R%
by region (Figure 2) using the 2018 data from two international surveillance networks,
the European Antimicrobial Resistance Surveillance Network (EARS-Net) initiated by
the European Centre for Disease Prevention and Control (ECDC) and the Central Asian
and European Surveillance of Antimicrobial Resistance Network (CAESAR) from WHO,
which together covered the entire European data where both the world’s lowest (<1%)
and the highest resistant rates (>95%) can be found (Table S3, Supplementary Materials).
There is a strong positive correlation between the two variables with a Spearman’s rank
correlation coefficient (ρ) of 0.808 (p-value of 0.000). Curve estimation (Figure 3) shows
the data points fit best in the exponential regression model described by the equation of
F% = 0.7015 × e0.0304×R% (adjusted R2 = 0.736). This exponential model suggests that when
antibiotic resistance rates are low in a region, the clinical isolation rates of Acinetobacter spp.
generally remain relatively stable, but once the R% exceeds a certain level, the proportion
of A. baumannii isolates from clinical samples surges, a stark warning that there might
be considerably more A. baumannii associated infections and a higher risk of nosocomial
outbreaks in the future. In this case, with an R% of less than 10%, the detecting frequency
F% can be as low as <1%; whereas F% increases by ten-fold if the R% is more than 90%.
However, due to the small sample size (n = 41) and high variance, the relationships between
the prevalence of A. baumannii outbreaks and its antibiotic resistance should be further
validated with more relevant data. No evidence of gender or age difference in incidence
has been reported so far.
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Regional differences in the overall proportion of A. baumannii among all clinical iso-
lated, aerobic, and facultative gram-negative pathogens have been reported, ranging from
0.7% in North America to 4.6% in the Middle East [72]. The Middle East is one of the areas
hardest hit by A. baumannii. Historically, A. baumannii was also known as ‘Iraqibacter’
because it caused outbreaks of MDR strains in the US military hospitals based in Iraq,
Kuwait, and Afghanistan during the Iraq War [55,73]. These strains then spread outside
the army to the civilian health care system, most probably via the transfer of colonised
casualties [1,55], and have continued to be a persistent issue in these areas. Unfortunately,
although serious infections and mortality caused by MDR A. baumannii have been re-
ported [47,51,74], regional epidemiology studies are quite limited. A recent MLST-based
study showed that sequence types ST2, ST195, and ST208 had been repeatedly reported
from many Middle Eastern countries [75]. Moreover, US service members continue to be
colonised with ‘Iraqibacteria’ and, although controversial, they may serve as reservoirs par-
ticipating in the community transmission [76,77]. For example, a record review performed
on the prevalence of MDR pathogens in a burn centre dedicated to military personnel
reported that A. baumannii was the most prevalent organism recovered (22%) during the
study period of 2003–2008 [78]. Subsequently, from 2009 to 2013, an equivalent level was
reported in a study of nationwide data [79]. In contrast, the proportion was approximately
10% before 2000 [80], suggesting that A. baumannii has spread from the US military system
to the civilian settings.
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5. Virulence Factors

Severe tissue damage with infiltration of large numbers of inflammatory cells is fre-
quently observed at A. baumannii infectious sites. High levels of interleukin 2 (IL-2), IL-4,
IL-17, tumour necrosis factor α (TNF-α) and interferon γ (IFN-γ), as well as a lower
CD4+/CD8+ ratio, have been reported [81]. The virulence of A. baumannii is strain-
dependent and involves complicated mechanisms of pathogenicity which are only be-
ginning to be elucidated. Many efficacious vaccines against other pathogens have been
developed based on virulence factors, consequently, A. baumannii virulence factors are
worth reviewing.

5.1. Adhesins and Invasins

Studies have demonstrated that the respiratory epithelial cells are more easily invaded
by A. baumannii than non-respiratory epithelial cells [82], which likely contributes to the
high occurrence and mortality rate of A. baumannii pneumonia. Outer membrane proteins
(OMP), including OmpA (also known as Omp38), are the most well-studied A. baumannii
adhesins [82–85] (Table 1). OmpA is a conserved, abundant porin in A. baumannii with a
molecular weight of 38 kDa and plays an essential role in adhesion and invasion. Competi-
tive binding studies with recombinant A. baumannii OmpA attenuated both cell binding
and invasion [82]. A. baumannii attaches with moderate affinity to epithelial cells, secret-
ing OmpA into the cells, which leads to bacterial uptake via actin rearrangement and
membrane reorganisation of host cells, known as a zipper-like mechanism [82]. The in-
ternalised bacteria are located in membrane-bound vacuoles [82] and the internalised
OmpA is translocated to the nucleus and mitochondria, causing the release of a series
of proapoptotic molecules, which promotes cell apoptosis [83,84]. Consequently, OmpA
also acts as a toxin contributing to pathogenesis. Notably, we ran BLASTp against the
Swiss-Prot database and found that the A. baumannii OmpA (UniProt ID: Q6RYW5) has no
significant homology with E. coli (K12) OmpA (96% query cover, 23% identities) but shares
46% and 41% identities with probable lipoprotein YiaD and YfiB, respectively. Consider-
ing the query covers are relatively low (31% for both), the results should be interpreted
cautiously. Similarly, Omp33–36 (also known as Omp34) is another outer membrane viru-
lence factor involved in host–cell attachment. It is also cytotoxic, inducing apoptosis by
activation of caspases and modulation of autophagy, with the consequent accumulation
of sequestosome 1 and autophagosome LC3B-II [86]. An isogenic A. baumannii mutant
deficient in the omp33 gene resulted in a significant reduction in adherence, invasion, and
cytotoxicity of human lung epithelial cells, compared to the wild type [86,87]. Other OMPs
functioning as A. baumannii adhesins include the biofilm-associated protein (Bap), which
increases the membrane hydrophobicity [88]; the FhaB/FhaC and CdiA/CdiB type Vb
secretion system [89]; and the Acinetobacter trimeric autotransporter (Ata). Ata mediates
adherence through binding to type IV collagen in the extracellular matrix (including basal
lamina) of host cells [90–92]. It also contributes to cytotoxicity by inducing the secretion of
pro-inflammatory cytokines, such as IL-6 and IL-8, and leading to cellular apoptosis in a
caspase-dependent manner [92].

Recently, non-OMP adhesins and invasins have been identified. Both the response
regulator, BfmR, and the sensor kinase, BfmS, in the BfmRS two-component system have
been reported to play a role in cell adherence [93,94]. Several pili have been found to
be relevant with the attachment to both biotic and abiotic surfaces, indicating that the
motility may correlate with the adherence ability. Wood et al. showed that A. baumannii
is capable of producing different adhesins and pilus assembly systems in response to
changes in environmental conditions, such as the BlsA mediated, photoregulated type I
pilus assembly system PrpABCD [95]. Eijkelkamp et al. found that type IV pili, associated
with twitching motility, may also mediate adhesion [96]. Interestingly, they later found
the expression of a homologue of the histone-like nucleoid structuring (H-NS) protein,
a known global transcriptional repressor, was disrupted in an A. baumannii strain with
enhanced adherence and motility [97]. Thioredoxin-A protein (Trx-A) is a mediator of the
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type IV pilus system and hence, is also involved in host–cell adhesion [98]. In contrast, the
chaperone-usher (Csu) type I pili does not play a role in adherence [99]. Phospholipase
C (PLC) and phospholipase D (PLD) both play significant roles in invasion and their
inactivation led to impaired epithelial cell invasion and a reduction of the extrapulmonary
tissue bacterial burden [100–102]. OMPs containing phosphorylcholine (ChoP) are also
involved in bacterial adherence and invasion [103]. A. baumannii bound via ChoP to the
platelet-activating factor receptor (PAFR) on human lung cells, resulting in activation of
signalling involving G protein, clathrin, β-arrestins, proteins involved in the direction of
the vacuolar movement, and intracellular calcium, which eventually led to invasion [103].
Host cell receptors are poorly understood. Johansson et al. recently investigated the
potential glycoconjugate receptors by binding A. baumannii to various glycosphingolipids
on thin-layer chromatograms [104]. Collectively, three predominant glycosphingolipid
receptors were isolated and identified, neolactotetraosylceramide, lactotetraosylceramide,
and lactotriaosylceramide, indicating that N-acetylglucosamine (GlcNAc) was the basic
recognition pattern [104].

5.2. Cytotoxins

The envelope of A. baumannii, particularly lipooligosaccharides (LOS), contributes
to its cytotoxicity towards host cells. LOS is the major component on the outer leaflet
of the outer membrane [105] and contributes to both immunogenicity and cytotoxicity
of A. baumannii. Erridge et al. showed that A. baumannii LOS stimulates TNFs and IL-8
secretion from macrophages [106]. Several studies have demonstrated that the absence
or disruption of any of the first three enzymes in the lipid A biosynthetic pathway, acyl-
transferase (LpxA), deacetylase (LpxC), and N-acyltransferase (LpxD), results in less-lethal
infections and reduced serum survival [107–110], highlighting the immunogenicity of
A. baumannii LOS.

As previously mentioned, several envelope proteins including OmpA, Omp33–36,
and Ata, also contribute to cytotoxicity. Bacterial γ-glutamyl transferase enzyme (GGT),
secreted via the type II secretion system, was also reported to cause cell damage directly by
caspase activation and apoptosis, depletion of ATP and subsequent necrosis, and cell-cycle
arrest. A high level of serum GGT was associated with oxidative stress and the exacerbation
of chronic obstructive pulmonary disease (COPD) [111,112]. Very recently, Elhossieny et al.
characterised A. baumannii GGT and showed A. baumannii strains with higher extracellular
GGT activity resulted in more severe tissue damage by inducing increased inflammation
and oxidation activities with elevated phenoloxidase, lysozyme, lactate dehydrogenase,
and lipid peroxidation observed [113].

There are additional virulence factors whose roles and molecular interactions are
not fully understood, but their absence has resulted in impaired virulence or lethality.
For example, Smith et al. reported a type IV secretion system may contribute to the
pathogenesis of A. baumannii based on its identification within pathogenicity islands (PAI)
after whole-genome sequencing, but its specific roles have not been studied to date [12].
Further, it has been suggested that A. baumannii may utilise a type VI secretion system to
kill competing bacteria [114].

5.3. Persistence

In addition to adhesion, invasion, and cytotoxicity contributing to A. baumannii patho-
genesis, serum persistence also affects the infection process indirectly. Capsular exopolysac-
charide (CPS) is an envelope component mediating the persistence of many invasive
bacteria, enabling organisms to survive better under unfavourable conditions, e.g., desicca-
tion. It also effectively protects pathogens from phagocytosis and humoral immune attack
and inhibits the activation of the alternative complement pathway [115]. Many clinical
isolates of A. baumannii express the K locus gene cluster, responsible for the biosynthesis
and export of CPS [105,116]. However, CPS is not usually, in itself, a pathogenicity determi-
nant as many organisms possessing polysaccharide capsules do not cause human diseases.
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Russo et al. identified two capsule associated genes, ptk and epsA, that were predicted to
encode a putative protein tyrosine kinase (PTK) and a putative polysaccharide export OMP
(EpsA), respectively, and the ptk and epsA mutants showed significantly decreased survival
in soft tissue infection sites [117]. Similarly, pglC and pglL mutants showed impaired
survival in mouse septicaemia models [118,119], suggesting that CPS may act more as a
protectin, maintaining serum resistance during the infection process, rather than cytotoxin.

LOS may be important for A. baumannii serum resistance, conferring a competitive ad-
vantage in vivo, as mutants lacking LpsB, a highly conserved glycosyltransferase involved
in LOS synthesis, showed reduced resistance to human serum [107]. Metal acquisition
systems, such as iron (BasD, BauA, NfuA), zinc (ZnuABC, ZigA), and manganese (MumC,
MumT) acquisition systems also contribute to in vivo survival [101,120–123]. Koenigs et al.
identified a novel plasminogen binding protein, CipA, the absence of which resulted in
the efficient killing of A. baumannii by human serum and impaired its ability to penetrate
the endothelial monolayers [124]. Universal stress protein A (UspA) has also been docu-
mented to play a role in protecting A. baumannii from H2O2, low pH, and 2,4-DNP, and the
uspA mutant formed fewer colonies in sepsis or pneumonia mouse models [125–127]. The
capacity of A. baumannii to confer resistance to and degrade H2O2 is also largely dependent
on the catalases KatE and KatG, which may attenuate the production of reactive oxygen
species (ROS) by phagocytic cells of the innate immune system [128]. Finally, OmpA,
phospholipase, BfmR/S system, Tuf, and RecA, have also been shown to contribute to
persistence [129].

Table 1. Identified A. baumannii Virulence Factors and Associated Functions.

Virulence Factors Functions Involved Adhesion Invasion Cytotoxicity Ref

Ata type Vc secretion system + + + [90,91]
Bap type I secretion system + [88]

BasD, BauA iron acquisition system + + [130]
BfmR/S two-component regulatory system + + [93,94]

BLP-1, BLP-2 Bap like protein + [131]
Capsular polysaccharides outer membrane component + [117]

CdiA/CdiB type Vb secretion system + [132]
ChoP phosphorylcholine + + [103]
CipA plasminogen binding protein + [124]

FhaB/FhaC type Vb secretion system + [89]
GGT type II secretion system + + [113]
LOS outer membrane component + [106,107]
LpsB LOS production + [107]

LpxA, LpxC, LpxD LOS production + [107–110]
NfuA iron acquisition system + + [101,120,122]

OmpA porin + + + [82,83]
Omp33-36 porin + + + [86,87]

paaE production of toxic epoxide
compounds + [129,133]

PLC, PLD phospholipase + [100–102]
TrxA type 4 pili production + [98]

Type 4 pili motility apparatus + [96]
T6SS type VI secretion system + + [114,134]
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6. Anti-A. baumannii Vaccine Development

With the extensive spread of MDR A. baumannii worldwide and increasingly frequent
reports of emerging PDR strains, more effective control implications are urgently needed
to combat this imminent threat. Thus, novel antibiotics and anti-A. baumannii vaccines
are the two main routes being followed, with the latter being especially important in
view of the likelihood of the development of resistance to new antibiotics. A. baumannii
has an intracellular lifestyle, invading host cells via a zipper-like mechanism [82] and
therefore A. baumannii vaccines should induce acquired cellular immunity with long-term
memory [135], while those that can elicit both humoral and cellular immune memory are
expected to be optimal. Over a decade ago, McConnell et al. pioneered their develop-
ment [136–138], and currently, several laboratories around the world focus on developing
A. baumannii vaccines for targeted populations.

6.1. Target Populations

As an opportunistic pathogen, A. baumannii rarely causes diseases in healthy people,
nevertheless, protection is needed for vulnerable individuals, particularly those residing
in, or frequently travelling to, areas with a high prevalence or historic outbreaks of A.
baumannii. These susceptible cohorts are the main target population of A. baumannii
vaccines and were nominally identified and characterised into three groups (Table 2) based
on reported epidemiology studies.

Table 2. Target Populations of A. baumannii Vaccines.

Susceptible Group 1 Examples Vaccination Indication

Inpatients with immune deficiencies
or compromising health conditions.

People with hematologic disorders,
neutropenia, immune regulatory
abnormalities, or receiving splenectomy,
organ transplantation; patients kept in ICU
or long-term hospitalisation, particularly
those intubated.

Ideally vaccination before or soon after
being admitted to hospital, especially in
medical institutions with historical
nosocomial outbreaks.

People who are more likely to suffer
trauma or receive untimely,
inappropriate wound treatments.

Soldiers or peacekeepers serving in ‘hot’
conflict regions; survivors from natural
disasters and war; residents of temporary
refugee settlements; employees with
high-risk jobs such as logging, mining,
fishing, emergency response.

Troops assigned to regions with high
prevalence of A. baumannii should be
vaccinated before deployment; large-scale
vaccination in advance, unlikely, thus
injured people with severe open wounds
should be vaccinated as soon as possible
after receiving first aid treatment.

People exposed to a high risk of
community transmission.

Vulnerable people, e.g., the elderly, in
communities with high skin-colonisation or
environmental isolation rate, e.g., tropical
areas in Asia–Pacific.

People may require vaccination more
voluntarily.

1 Especially for areas of high prevalence and incidence.

6.2. Vaccine Candidates

Scientists have been pursuing an effective vaccine against A. baumannii for the past
decade and several antigens and strategies have been examined in preclinical studies.

6.2.1. Whole-Cell Vaccines

Given that a considerable proportion of the individuals susceptible to A. baumannii are
those with compromised health conditions, there are perceived potential safety risks with
administering live-attenuated vaccines to vulnerable cohorts. Consequently, to our knowl-
edge, only one attenuated whole-cell A. baumannii vaccine candidate has been reported to
date which comprises a genetically modified, attenuated MDR clinical strain deficient in
the TrxA adhesin (Table 3). Mice immunised via intraperitoneal (i.p.) or subcutaneous (s.c.)
routes were protected by 100% and 90% respectively against a ten-fold lethal dose (LD50)
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challenge for a period of four weeks post-challenge. Moreover, immunisation-induced anti-
sera provided fully effective protection in passive immunisation experiments, highlighting
that this attenuated live vaccine induced robust humoral responses despite minimal splenic
cell-mediated immunity [139].

Several inactivated whole-cell vaccine candidates formulated either with or without
adjuvants were also evaluated [137,140–142]. The first reported vaccine candidate against
A. baumannii was a formalin-killed ATCC 19606 whole-cell vaccine administered with
aluminium phosphate adjuvant. Mice intramuscularly (i.m.) immunised with this vaccine
were effectively protected from a lethal sepsis challenge raised by heterologous clinical
strains, including one PDR strain, with seven-day survival rates between 85%–100%.
Significant increases in the serum levels of immunoglobulin G1 (IgG1), IgG2a, and IgM
were detected, suggesting a mixed Th1/Th2-mediated response was stimulated [137].
Interestingly, while sepsis is the most frequently used challenge model, KuoLee et al.
first reported an experimental vaccine for protection against respiratory challenge, to test
a candidate administered via mucosal route. This intranasal (i.n.) immunisation with
formalin-killed cells of a hypervirulent A. baumannii strain LAC-4 successfully elicited both
mucosal and humoral immune responses in mice with significant levels of IgA, IgG1, and
IgG2a in bronchoalveolar lavage (BAL) fluid being achieved. All immunised mice were
completely protected from lethal i.n. or i.p. challenges raised by the LAC-4 strain for up to
10 days [141].

6.2.2. Subunit Vaccines

As novel virulence factors of A. baumannii and their molecular interactions continue
to be identified in the past decade, their immunogenicity and their potential as subunit
vaccines have been more extensively investigated (Table 3). Outer membrane immunogenic
proteins functioning as adhesins or invasins are the main targets for vaccine development
because they represent the initial stages of infection, namely bacterial attachment to host
cell receptors and colonisation, and blocking this may be the most effective strategy to
prevent bacterial infections [143].

Probably the most understood and promising subunit candidate for A. baumannii
vaccines is OmpA because, as previously discussed, it is an all-round player involved
in almost every critical step of A. baumannii pathogenesis, including adhesion, invasion,
cytotoxicity, and also in vivo persistence, and is highly immunogenic in animal models.
Elucidation of the native structure of A. baumannii OmpA showed that its amino acid
sequence has no homology to the human proteome but shows a low variation (≥89%
conserved) across clinical isolates [144,145], which indicates that A. baumannii OmpA
would be less likely to cause mutual interference with other OmpA-containing commensal
bacteria, minimising the potential side effects as a vaccine. Several studies have presented
positive results demonstrating active immunisation with OmpA-based vaccines could
confer prophylactic benefits against A. baumannii (Table 3). Intranasally immunised rOmpA
conjugated to cholera toxin, showed 15-day survival rates from 40% to 100% following i.p.
challenges compared with 100% mortality in two days in the control groups [146]. A study
in older (>6 months) diabetic mice demonstrated protection of 50% for up to 28 days
following rOmpA vaccination which was equivalent to that in the juvenile group [147]
suggesting that OmpA-based vaccine protection may translate across a broad age range
and include people with diabetes. The dose of antigen administered may impact the profile
of the immune response with low dose (3 µg) rOmpA immunised mice showing a balanced
IFN-γ and IL-4 immune responses, while mice that received a higher dose (100 µg) showed
a polarised Th2-response as demonstrated by IL-4 secretion [148].

Besides OmpA, several other virulence factors have also been tested as prospective
vaccine candidates. Omp33–36 was specifically recognised by IgG, IgM, and IgA from
A. baumannii colonised patients and showed no cross-reaction with sera from other in-
fections, [149], highlighting its potential as a vaccine antigen. In addition, this highly
conserved adhesin is present in over 1600 strains of A. baumannii with ≥98% identity [150].
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Omp33–36 is considered as a suitable immunogen to protect against A. baumannii and its
co-administration with OmpA may confer even greater protection; however, data from
active immunisation studies are currently insufficient. In silico simulation also predicted
peptides constructed by exposed epitopes of Omp33–36 could trigger antibody responses
with higher avidity [150]. Alternatively, Bentancor et al. reported the passive administra-
tion of anti-Ata rabbit sera protected both immunocompetent and immunocompromised
mice from A. baumannii-induced pneumonia by engendering anti-adhesive and robust
opsonic activities [151], making Ata a potential vaccine antigen. Although Ata has been
identified in many clinical isolates, the variable expression of Ata among clinical isolates
suggests that it may not provide adequate coverage [17] as a monovalent vaccine. CPS
PNAG and K1 were also suggested as targets for protective immunity against A. baumannii
infections [152,153] but their efficacy, when conjugated with carriers, has not been studied
yet. Recombinant Bap completely protected immunised mice from sepsis following a lethal
challenge, and when mice were challenged at the extreme dose of 106 × LD50 (1013 CFU),
a five-day survival rate of 60% was obtained [154]. It should be noted that the use of
Freund’s adjuvant (FA) as adjuvant undermines the relevance of this response, given its
reactogenicity. Two siderophore receptors in A. baumannii, BauA, and BfnH, proved only
moderately effective against lethal sepsis challenges with survival rates of 40% and 44.5%,
respectively [155].
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Table 3. Preclinical active immunisation studies of A. baumannii vaccine candidates.

Platform
and

Immunogen

Mice
Strain

Immunisation
Schedule In Vivo Challenge Study

Immune
Responses

Ref.
Day Route Dose Chall.

Strain(s) Model (Route)
Dose *
(CFU)
(LD50)

Survival (%)
Survival

monitored (days
post challenge)

Live Attenuated Vaccines

Ci79 ∆trxA
C57BL/6
(4w–6w) 0, 14 i.p. /

s.c.
2 × 105

CFU
WT Ci79

day 28
sepsis (i.p.)

5 × 106 (10 × LD50) i.p.—100%
s.c.—90% 28 days

robust humoral
responses, minimal
cellular immunity

[139]

1 × 106 (2 × LD50) i.p.—100%
s.c.—100%

Inactivated Vaccines

formalin-killed ATCC
19606 with AlPO4

C57BL/6
(6w–8w) 0, 21 i.m. 1 × 108

CFU

ATCC 19606
Ab-154
113-16

day 28
sepsis (i.p.)

1.6 × 106 (242 × LD50)
3.1 × 106 (6.5 × LD50)

4.1 × 106 (74.5 × LD50)

100%
100%
~85%

7 days

significant levels of
IgG and IgM, Th2-
and Th1-mediated

responses

[137]

formalin-killed LAC-4
C57BL/6
BALB/c

(8w–12w)
0, 14, 21 i.n. 5 × 107

CFU LAC-4
day 42

sepsis (i.p.)
pneumonia (i.n.)

8.4 × 105 (i.p.)
7 × 107 (i.n.) 100% 10 days

mucosal immune
responses, dominant

Th2 responses
[141]

formalin-killed IB010
(ATCC 19606 ∆lpxD)

with AlPO4

C57BL/6
(6w–8w) 0, 14 i.m. 1 × 109

CFU
ATCC 19606

Ab-154
day 21

sepsis (i.p.)
2.3 × 106 (341 × LD50)
1.1 × 106 (2.2 × LD50)

100%
100% 7 days robust IgG1 and

IgG2c responses [142]

Subunit Vaccines

rOmpA (ATCC 19606)
conjugated with

cholera toxin

BALB/c
(6w–8w) 0, 21 i.n. 10 µg

strain A
strain B
strain C
strain D
strain E

day 28
sepsis (i.p.)

5 × 108 (2.5 × LD50)
2 × 108 (2 × LD50)
5 × 107 (2 × LD50)
3 × 108 (3 × LD50)
3 × 107 (3 × LD50)

~50%
~40%
~55%
100%
~70%

15 days significant levels of
IgG and IgA [146]

rOmpA (ATCC 17978)
with Al(OH)3

diabetic BALB/c
(>6 m and
6w–10w)

0, 21 s.c. 3 µg HUMC 1 day 35
sepsis (i.v.) 2 × 107 ~50% 28 days robust humoral

responses [147]

rBap (Kh0060) with FA BALB/c
(4w–6w) 0, 14,28 not stated 10 µg Kh0060 day 35

sepsis (i.p.)

1 × 109 (100 × LD50)
1 × 1011 (104 × LD50)
1 × 1013 (106 × LD50)

100%
80%
60%

5 days robust humoral
responses [154]

rBauA or rBfnH (ATCC
19606) with FA

BALB/c
(6w–8w) 0, 14,28 s.c. 20 µg ATCC 19606 day 49

sepsis (i.p.) 1.5 × 107 (2 × LD50) ~40% 7 days not specified [155]

rBamA (ATCC 19606)
with Al(OH)3

BALB/c
(6w–8w) 0, 14,28 i.p. 20 µg P-562 day 45

pneumonia (i.n.) 1 × 109 ~80% 7 days non-neutralising,
opsonic IgG [156]

rBamA (ATCC 19606]
with FA

BALB/c
(6w–8w] 0, 14, 28, 42 s.c. 20 µg ATCC 19606 day unknown,

sepsis (i.p.)
2 × 106 (4 × LD50)

7 × 106 (14 × LD50)
100%
25% 4 days not specified [157]

rTrx-OmpW (ATCC
17978) with alum

ICR
(6w–8w) 0, 14,28 s.c. 50 µg ATCC 17978 day 49

sepsis (i.p.) 1 × 106 100% 7 days opsonic IgG,
complements [158]
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Table 3. Cont.

Platform
and

Immunogen

Mice
Strain

Immunisation
Schedule In Vivo Challenge Study

Immune
Responses

Ref.
Day Route Dose Chall.

Strain(s) Model (Route)
Dose *
(CFU)
(LD50)

Survival (%)
Survival

monitored (days
post challenge)

rTrx-Omp22 (ATCC
17978)

ICR
(6w–8w) 0, 14, 28 s.c.

50 µg
20 µg
10 µg
5 µg

Ab1 day 49 sepsis
(i.p.) 1 × 106

100%
33%
33%

0

7 days opsonic IgG,
complements [159]

rOmp22 (ATCC 19606)
with FA

BALB/c
(6w–8w) 0, 14,21 s.c. 20 µg ATCC 19606 day 42

sepsis (i.p.) 2 × 108 37.5% 8 days not specified [160]

rOmpK (ATCC 19606)
with FA

BALB/c
(6w–8w) 0, 14,21 s.c. 20 µg ATCC 19606 day 42

sepsis (i.p.) 2 × 108 25% 8 days not specified [160]

rOmp22-OmpK (ATCC
19606) with FA

BALB/c
(6w–8w) 0, 14,21 s.c. 20 µg ATCC 19606 day 42

sepsis (i.p.) 2 × 108 67% 8 days not specified [160]

rOmp22-OmpK (ATCC
19606) with MF59

adjuvant

BALB/c
(6w–8w) 0, 14,21 i.t. 30 µg ATCC 19606 day 42

respiratory (i.t.) 1 × 108 83.3% 10 days significant levels of
IgG and IgA [161]

Multi-Component Vaccines

OMC (ATCC 19606)
with AlPO4

C57BL/6
(6w–8w) 0, 21 i.m. 25 µg

ATCC 19606
Ab-154
113-16

day 35 sepsis
(i.p.)

1 × 106 (151.3 × LD50)
1 × 107 (20.9 × LD 50)

1.5 × 106 (27.3 × LD50)

100%
80%

100%
7 days robust IgG and IgM

responses [136]

OMV (ATCC 19606)
with AlPO4

C57BL/6
(6w–8w) 0, 14 i.m. 10 µg

ATCC 19606
Ab-154
113-16

day 35 sepsis
(i.p.)

4.5 × 105 (71.3 × LD50)
1.7 × 106 (4.3 × LD50)
2 × 106 (39.9 × LD50)

100%
~90%
100%

7 days robust IgG1, IgG2c
and IgM responses [138]

ClyA-Omp22 (ATCC
17978) with E. coli

derived OMV

ICR
(6w–8w) 0, 14 s.c.

5 µg
10 µg
20 µg
50 µg

Ab1 day 35
sepsis (i.p.) 1 × 106

30%
40%

63.6%
100%

7 days opsonic IgG [162]

Nucleic Acid Vaccines

pVAX1-ompA (LAC-4)
with CpG-ODN

adjuvant

C57BL/6
(6w–8w) 0, 14, 21 i.m. 100 µg

LAC-4
SJZ04
SJZ18
SJZ28

day 28
respiratory (i.t.)

1.2 × 107 (2 × LD50)
1 × 108

1 × 108

1 × 108

~50%
~40%
~60%
~50%

7 days

robust humoral
responses, mixed
Th1/Th2/Th17

cellular responses

[163]

pBudCE4.1-ompA BALB/c
(6w–8w) 0, 7, 14, 28 i.m. 25 µg not stated day 35

respiratory (i.n.) 1 × 108 60% 15 days significant levels of
IgG and IgM [164]

Abbreviations: i.m., intramuscular; i.n., intranasal; i.t., intratracheal; i.p., intraperitoneal; s.c., subcutaneous. * Dose includes LD50, when reported.
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Additionally, some OMPs which are less relevant to A. baumannii pathogenesis and
overlooked as virulence factors may also have a potential impact as vaccines. These im-
munogens are likely to be safer even when a high dose is given [159] and have been
shown to be efficacious antigens in other infections [165]. Purified renatured OMP assem-
bly factor BamA protected mice against a lethal pneumonia challenge with a seven-day
survival rate of 80% and 60%, respectively following active and passive immunisation.
The opsonophagocytic killing assay showed the immunisation elicited a high titre of non-
neutralising, opsonising antibodies [156]. The carbapenem resistance OMP (CarO) was also
predicted to contain structurally important linear B cell epitopes based on bioinformatic
design [166]. OmpW is an A. baumannii porin involved in iron uptake and colistin binding
which is conserved across 804 strains with more than 91% identity in protein sequence [167].
We have previously reported that the Burkholderia pseudomallei OmpW homolog afforded
extended protection (81 days) against a lethal melioidosis challenge [165]. Immunisation
with a recombinant Trx–OmpW fusion protein fully protected mice from sepsis challenge
for up to seven days. The antisera demonstrated significant opsonophagocytic activities
against homologous strains and clonally distinct clinical isolates in vitro [158]. Later, the
same research group identified a novel OMP with a molecular weight of 22 kDa, namely
Omp22, highly conserved (95% identity in amino acid sequence) in 851 reported A. bauman-
nii strains and with almost negligible homology to human proteins. Again, a recombinant
Trx–Omp22 fusion protein showed 100% protection of immunised mice for seven days
after lethal challenge at high doses, with lower doses showing protection of a third of
the mice [159]. Although Omp22 has immunogenic and prophylactic properties, it may
not be sufficiently potent to invoke adequate protection unless being administered at a
high dose. Fusion of Omp22 with another weak antigen, OmpK, improved the protection
against A. baumannii to a higher level than those immunised with either of the two proteins
individually [160,161] demonstrating the utility of a multivalent vaccine approach.

6.2.3. LOS and Conjugate Vaccines

A rather controversial and neglected antigen for subunit vaccine candidates is LOS
(Section 5.2). OMPs extracted from A. baumannii cells or recombinant A. baumannii proteins
produced by E. coli customarily require a detoxification step reducing the content of
LOS to a minimal level to weaken the endotoxin activity, ensuring vaccine safety, and
critically ensuring that the immunological response is mediated by the protein antigen
being evaluated. LOS is also not a popular target for vaccine development due to the
short-lasting B cell memory it induces; however, mice vaccinated with LOS alone were
protected from a lethal challenge [142]. LOS is recognised by TLRs, particularly TLR-4,
and safer derivatives may be feasible adjuvants. This has been supported by a study
where LOS-free OMPs developed from an A. baumannii mutant deficient in LOS production
showed significantly reduced protection (40%) compared with those derived from the
wild-type cells, and administration of exogenous LOS restored the survival levels [142].
Noticeably, García-Quintanilla et al. reported that A. baumannii can acquire resistance to
colistin and collateral sensitivity to azithromycin, rifampicin, and vancomycin through
the complete loss of LOS, suggesting that LOS-based vaccines may deliver weakened
protection against some problematic LOS-deficient A. baumannii MDR or PDR strains [142].
Despite this, although it may not be applicable as an immunogen, LOS (or safer derivatives)
represent potentially powerful adjuvants boosting protective immune responses, and its
usage as well as potential risks should be evaluated more comprehensively.

6.2.4. Multi-Component Vaccines

Unfortunately, despite encouraging results in pre-clinical studies, single subunit
antigens are unlikely to elicit comprehensive protection in humans against heterologous
A. baumannii strains. To date, single recombinant protein vaccines have performed poorly
in providing protection against bacteria that mediate pathogenesis via multiple virulence
mechanisms. A. baumannii expresses several virulence factors that allow successful evasion
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of innate immune defence [168], contributing to the challenge of selecting appropriate anti-
gens. Vaccines containing multiple antigens will display a higher density of epitopes with
enriched diversity and are expected to exhibit increased immunogenicity, bringing better
protection efficiency. Multi-component vaccines against A. baumannii are insufficiently
studied and most of them are outer member complex (OMC) or outer membrane vesicle
(OMV) based.

OMPs extracted from A. baumannii reference strain ATCC 19606 effectively elicited
both humoral and cellular responses in vaccinated mice and induced 80% to 100% protec-
tion against sepsis following challenge with heterologous A. baumannii isolates. Notably,
the antisera elicited with this OMC vaccine also cleared established A. baumannii infections
(70–100% recovery rate) [136]. However, a drawback of these preparations is that the
composition can be ill-defined, leading to major concerns on safety, regulatory compliance,
and feasibility for consistent industrial production.

Despite this, the use of naturally secreted outer membrane vesicles (OMV) as vaccine
technology platforms has gained renewed interest in recent years particularly since the
approval of meningococcal group B vaccine, Bexsero®, an OMV-based product [169]. Cru-
cially they present a wider variety of antigens, including both OMPs and other membrane-
associated proteins, and can be further designed to package and deliver antigens. Conse-
quently, with optimal bioengineering design, isolation, LOS detoxification, OMVs could
be developed into safe, effective, and cost-effective vaccines against bacterial infections.
This topic is covered in two excellent reviews [169,170]. Natural OMVs produced by the
A. baumannii reference strain ATCC 19606 proved highly effective in immunising mice,
and 90% of the immunised mice were protected against heterologous strains. Subsequent
MALDI–TOF MS analysis identified six proteins with high immunogenicity in the OMVs,
including previously mentioned, OmpA, OmpW, Omp33–36, and CarO, as well as two
other putative proteins [138] which were likely critical to the protective response. In a later
study, Huang et al. successfully engineered E. coli-derived OMVs packaging fused proteins
of exogenous A. baumannii Omp22 and a pore-forming haemolytic protein ClyA, which
protected over 60% and 100% of mice against a sepsis challenge, without any additional
adjuvants. It is worth noting that the carrier control groups administered unmodified
E. coli OMVs showed 35–63.6% survival indicating that E. coli-derived OMVs elicited
cross-immunity to A. baumannii infection [162].

6.2.5. Nucleic Acid Vaccines

Despite nucleic acid vaccines have gained increasing interest as vaccine platforms
in recent years, there are barely any studies on nucleic acid vaccines against A. bauman-
nii. Very recently, DNA vaccines delivering A. baumannii OmpA gene were reported to
induce a mixed humoral and cellular response protecting lethal bacterial challenges in
murine pneumonia models [163,164]. Recently, a pVAX1 vector encoding A. baumannii
OmpA and proteoglycan associated lipoprotein (PAL) genes administered intramuscularly
resulted in the protection of >80% of immunised mice to lethal pulmonary challenge with
four heterologous strains, while immunisation with an OmpA encoding vector elicited
50% survival in response to challenge. A high level of humoral responses and mixed
Th1/Th2/Th17 cellular responses, and reduced bacterial loads were reported with reduced
inflammatory cytokines and inflammatory cell infiltration in the BAL [163]. Immunisation
with an alternative plasmid-encoded-ompA vaccine utilising a eukaryotic expression vector
pBudCE4.1 protected 60% of the immunised mice against pulmonary infection for up to
15 days post-challenge, eliciting moderate Il-2, IL-4, Il-12, and IFN-γ responses [164]. These
nucleic vaccine approaches are still at an early stage but hold promise as safe cost-effective
methods of administering multivalent vaccines.
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6.3. Lessons from A. baumannii Vaccines and Future Directions

Despite the aforementioned efforts, the progress of vaccines against A. baumannii
has lagged behind that for nosocomial pathogens such as C. difficile, P. aeruginosa, and
S. aureus [9], and to date no candidate has entered clinical trials, suggesting the challenges
in developing safe and efficacious A. baumannii vaccines.

6.3.1. Modern Vaccine Technologies

Current investigations on anti-A. baumannii vaccines are still in their infancy, with
most research efforts looking into conventional approaches and platforms, e.g., subunit
and killed vaccines. Novel antigen carriers and advanced delivery systems, such as nucleic
acid vaccines, virus vectors, conjugated carriers, and co-delivery of multiple antigens are
rarely explored. Nevertheless, as the mRNA and DNA vaccine technologies have been
acknowledged throughout the world during the COVID-19 vaccine race, it is foreseeable
that burgeoning attention may be paid to nucleic acid vaccines against A. baumannii and
other pathogens in the coming future. In addition, proteomic approaches and reverse
vaccinology exploit modern bioinformatics, allowing the systematic in silico evaluation
and selection of putative immunogens for vaccine candidates, which may have a wider
application for future antigen selection and vaccine design against A. baumannii infections.

6.3.2. Long-Term Cellular Immunity

In pre-clinical trials, a promising vaccine candidate against A. baumannii should
demonstrate its protective benefits in immunised animals with a significantly improved
survival rate, reduced bacterial burdens within organs, and the suppressed accumulation
of inflammatory cytokines and chemokines in sera. Furthermore, the resulting anti-sera are
expected to contain sufficient antibody titre for effective passive immunisation and even for
antibody therapy treating established infections. Therefore, most studies have laid empha-
sis on evaluating post-immunisation or post-infection humoral immune responses, while
cell-mediated immunity remains largely unstudied. However, as an invasive pathogen,
it is essential that A. baumannii vaccines elicit dominant cellular immune responses and
prime sustained T memory cells for long-term protection. In this context, though most
studies reported robust vaccine-induced humoral or Th2-mediated immune responses,
their performance in stimulating cellular immunity was not specified. Besides, the intervals
between the last immunisation and bacterial challenge were only one week in some studies,
making the evaluation of the endurance of the protective response even less reliable. It
is hence important for the A. baumannii vaccine research community to standardise the
evaluation protocols, such as the animal models, intervals between immunisation and
challenges, challenge strains, doses, and routes, so that the comparison in the efficacy of
the experimental vaccines between different laboratories is more rigorous [9].

6.3.3. Multivalent Protection

It is encouraging to note that many A. baumannii vaccine studies have evaluated the
protection against not only homologous strain challenges but also challenges raised by
other clinical isolates to demonstrate the broad protection offered by the vaccine candidates.
However, as the protection rates reported in these studies varied considerably with strain,
immunisation, and/or challenging dose, their protective effects require more comprehen-
sive evaluations covering a broader range of heterologous strains in diverse challenging
scenarios, especially for those involving highly virulent strains and massive exposure dose.
Strain-dependent diversity in the selected antigens may also increase the challenges in de-
veloping a vaccine providing broad or multivalent protection, as even in a specific bacterial
strain, the amino acid sequences of some antigen proteins, e.g., OmpA, may vary among
multiple subclasses [145,171]. At a high level, A. baumannii has an exceptional ability to
acquire foreign DNA and generate new variants as the whole genome sequencing of ATCC
179878 found a significant fraction of open reading frames (ORF) (17.2%) in 28 putative
alien islands [12], and such multiplicity of strains makes repeated infections possible and
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complicates vaccine development. Therefore, choosing conserved antigens and developing
multi-component vaccines will be critical to effective protection.

7. Conclusions

The increasing attention to A. baumannii arose following outbreaks in the US army
during the Iraq conflicts, and since then is becoming a global concern. Currently avail-
able treatment options for MDR A. baumannii-caused infections are quite limited where
colistin is often reported as the only antibiotic delivering therapeutic effects, making the
pathogen extremely difficult to treat. Massive research efforts have been devoted to its
antibiotic resistance mechanisms and epidemiology but so far, our understanding of its
pathology is comparably limited. In this context, vaccines against A. baumannii infections,
are urgently needed and will be of great value in the prevention of infection and control of
this canny pathogen. The past decade has witnessed the very first efforts in A. baumannii
vaccine development, however, none have entered clinical trials, which is clear evidence of
the challenges involved and the need for further progress in understanding the complex
A. baumannii–host relationships at each stage of the infection process. Most A. baumannii
vaccine candidates developed to date explored conventional protein-based technologies,
inducing opsonophagocytic antibody-mediated killing and/or antibody-mediated toxin
inhibition. However, a polarised Th2 response may not be sufficient for effective and
long-term protection, considering that A. baumannii is an invasive pathogen; consequently,
a mixed Th1/Th2 orTh1/Th17 response may be more beneficial. Investigations of novel
platforms, as well as adjuvant development, could offer the possibility of optimising im-
mune mechanisms and targeting multiple antigens, which will eventually deliver vaccines
with broad coverage and clinical efficacy. In addition, the COVID vaccine and associated
technology acceleration could change the landscape of future vaccine research and de-
velopment. With the licensing of the first mRNA vaccines, nucleic acid vaccines against
A. baumannii and other invasive pathogens are expected to generate more interest in the
near future. There is some urgency, however, in order to tackle the global spread of MDR
A. baumannii, and vaccine development needs to accelerate in order to keep up with the
pace of spread.
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