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SUMMARY

CD8+ T cells recognize and kill tumor cells with HLA-I tumor antigens in early
tumorigenesis, the efficiency of which differs according to antigen-recognition
coverage, as shown in earlier tumor onset in HLA-I homozygosity. However,
the universality of these associations remains unknown. Here, we assessed the tu-
mor type and driver mutation specificity in the association between tumor onset
age and HLA-I zygosity. Statistical analyses identified an unexpected negative
relationship in tumors with VHL biallelic loss, wherein HLA-I heterozygosity
was associated with earlier tumor onset, while all others showed either no or
a positive association. Testing on an independent dataset reproduced the
VHL-dependent acceleration of tumor onset in the HLA-I heterozygous group,
confirming the association. Further speculation proposed VEGF-A-mediated
T cell exhaustion under VHL inactivation as a potential mechanism. Our findings
suggest that CD8+ T cell immunity in early tumor suppression can be conditional
to the genetic status of tumors and may even lead to adverse consequences.
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INTRODUCTION

The dynamic interplay between the immune system and cancer cells, known as immunoediting, has been a

long-standing theory in cancer immunology (Dunn et al., 2002). This interplay is believed to affect all phases

of tumor development and progression, including killing of initially transformed tumor cells (the elimina-

tion phase or immunosurveillance), suppression of tumor growth (the equilibrium phase), and the forced

modification of tumors and the consequential escape from the suppression (the escape phase) (O’Donnell

et al., 2019). While direct monitoring of immunoediting in human cancer development is yet to be accom-

plished, recent genome-level studies have provided compelling evidence, such as the negative selection of

randommutations in human leukocyte antigen class I (HLA-I) and T cells (Lakatos et al., 2020), and confine-

ment of oncogenic mutation types to the HLA-I genotypes (Marty et al., 2017). In particular, the role of

immune response in the elimination phase has only recently been revealed by the pan-cancer level

association between delayed tumor onset time and the lower coverage of immunogenic epitopes that

are measured by HLA-I genotype and zygosity (Marty Pyke et al., 2018); that is, homozygous HLA-I is

unfavorable in cancer immunosurveillance due to the reduced range for epitope recognition. These results

provide convincing and crucial effects of human T cell immunity on tumorigenesis and progression,

including the removal of early transformed cells.

The immunological characteristics of cancer are highly heterogeneous and vary by its types and

subtypes, as shown by their distinct immunogenicity (Lv et al., 2019), immune microenvironment

(Thorsson et al., 2018), and responses to therapy (Chen and Mellman, 2017). In particular, the role of

T cell immunity and its effects on tumor survival often deviates from expectations in specific types of can-

cers, including increased expression of HLA genes in cancer and shorter survival with T cell infiltration

(Jager et al., 2020). These findings imply that T cell immunity can be compromised in, or even co-opted

by, cancer cells for tumor progression under certain circumstances. Likewise, the size and direction of

immunoediting by T cell immunity in tumor initiation would also be variable. We presumed that a

more specialized statistical analysis would enable a closer look at the cancer-specific effects of

immunosurveillance.
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Table 1. HLA-I zygosity status in 11 TCGA cancer types

TCGA cancer type Heterozygous group No. Homozygous group No. Total No.

THCA 203 61 264

LUAD 162 54 216

LUSC 148 48 196

ccRCC (KIRC) 142 59 201

BRCA 117 42 159

KIRP 107 30 137

LIHC 89 27 116

TGCT 72 28 100

UCEC 72 14 86

SKCM 52 11 63

STAD 24 11 35

Total 1,188 385 1,573
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Here, we report our analysis of the relationships between HLA-I zygosity and tumor onset age in 1,573

patients of 11 cancer types that demonstrated unexpected associations in VHL-inactivated tumors.

VHL inactivation is a major oncogenic event in clear cell renal cell carcinoma (ccRCC), which is known

for its distinct immunogenic characteristics (Hsieh et al., 2017), including an increase in HLA expression

compared to autologous normal tissues (Stickel et al., 2011), and association of T cell infiltration with

shorter survival (Geissler et al., 2015). We confirmed the uniqueness and statistical significance of this

association in an independent dataset. Finally, we speculate on the potential mechanism of this

association.

RESUTLS

Cancer type-specific association of HLA-I genotype and tumor onset age

We examined the effects of HLA-I zygosity on immunosurveillance based on 1,573 patients with cancer

from 11 cancer types. The 1,573 patients were classified into the homozygous group (n = 385, 24.5%) or

the heterozygous group (n = 1,188, 75.5%) (Table 1), and applied to accelerated failure time

model (AFT) regression with three covariates: race, gender, and tumor type (STAR Methods). The baseline

distribution at regression was determined by Akaike information criterion (AIC) (Table S1). The time ratio

(TR), which denotes the effect of the variable (here, HLA-I zygosity) on the time to tumor onset (i.e., accel-

eration or deceleration), was evaluated for the 11 cancer types (Figure 1 and Table S2). At the pan-cancer

level, we found that HLA-I heterozygosity insignificantly delayed tumor onset by 0.65 years (TR, 0.98; 95%CI

0.96–1.01; p = 0.36). Among the covariates, race (white vs. non-white) was the only significant factor,

wherein white patients took a longer time to tumor occurrence by 2.52 years (TR, 1.04; 95% CI 1.01–1.07;

p = 0.01).

Deeper assessment showed diversity in the effects of HLA-I zygosity depending on the tumor type. When

the AFT model was applied on each individual cancer type, the acceleration of tumor onset by HLA-I ho-

mozygosity ranged from +9.68 years (later in the heterozygous group; in stomach adenocarcinoma,

STAD) to �4.26 years (earlier in the heterozygous group; in clear cell renal cell carcinoma, ccRCC)

(Table S3). STAD and ccRCC were the only tumor types of statistical significance in AFT regression

(TR, 0.87 and 1.08; p = 0.007 and 0.01, respectively). We found that pan-cancer analysis of 10 tumor types,

excluding ccRCC, TR reached statistical significance (TR, 0.97; 95% CI 0.94–0.99; p = 0.04) (Table S4).

These results are consistent with those of a previous study (Marty Pyke et al., 2018) that low MHC-I

coverage (corresponding to HLA-I homozygosity) is associated with earlier tumor onset, measured in

14 tumor types without ccRCC. Overall, the effect of immunosurveillance efficiency on tumorigenesis

was reproduced in terms of HLA-I zygosity, while showing tumor type specificity. In particular, the poten-

tial adverse effect in ccRCC is noteworthy.

Furthermore, we evaluated tumor acceleration by HLA-I various criteria. The effects of HLA-I was analyzed

by homozygosity in each of the three genes and the number of homozygous gene (Table S5). At the pan-

cancer level, no pattern of tumor acceleration by zygosity of each gene was observed. On the other hand, in
2 iScience 25, 104467, June 17, 2022
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Figure 1. Summary of the Time ratio and onset age distribution

The figure shows the TR by HLA-I zygosity for each tumor type. The TRs for race and gender used as adjusted variables in

the pan-cancer analysis are shown at the bottom of the figure. The p values are represented by AFT regression. *p% 0.05,

**p% 0.01. Box plot on the right side of the figure shows the onset age distribution for each group. Data were presented

as median +/� interquartile range (IQR).
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ccRCC, homozygous HLA-A was significant for tumor delay (TR, 1.09; 95% CI 1.01–1.18; p = 0.03). In addi-

tion, an increase in the number of homozygous HLA-I genes in ccRCC was also associated with tumor delay

(TR, 1.05; 95% CI 1.01–1.10; p = 0.03).

Next, we focus on effect of the particular HLA-I allele. In pan-cancer excluding ccRCC, A*29:02, A*33:01,

and B*41:01 were significant alleles for tumor acceleration. Significant alleles for tumor delay were found

to be B*07:05, C*07:01, C*04:01, C*05:01, C*16:01, C*14:02, and C*17:01. These results are consistent with

alleles that are advantageous for tumor suppression in the immune checkpoint inhibitor therapy in previous

studies (Manczinger et al., 2021). This finding suggests that differences in the effects of HLA alleles on tu-

mor suppression may affect the immunosurveillance consistency of HLA zygosity.
VHL biallelic loss accelerates tumorigenesis with heterozygous HLA-I

We further investigated the genetic effect on immunosurveillance in ccRCC tumorigenesis. The most

frequent genetic aberrations in ccRCC were mutations in VHL (46%), PBRM1 (43%), and 3p loss (79%), lead-

ing to major driver events (Figure S1). Among the drivers, 3p loss was the earliest event, followed by VHL

and/or PBRM1 inactivation as a second hit (Batavia et al., 2019). As 3p harbors VHL and PBRM1, the final

genetic status can be biallelic, where both copies of VHL or PBRM1 are lost (e.g., 3p loss + VHL/PBRM1

inactivation), or monoallelic (e.g., 3p loss only, or VHL/PBRM1 inactivation without 3p loss) (Figure 2A). A

study of multi-regional sequencing analysis identified that approximately 15–30 years are required from

the driver event to cancer diagnosis (Mitchell et al., 2018). A long-term oncogenic setting after genetic mu-

tations suggests potential continuous effects on pre-malignant cells, such as the microenvironment or

immunoediting.

We subdivided the 208 patients with ccRCC into five different categories based on the genetic status of

VHL and PBRM1: (1) wild type in both genes (n = 20); (2) PBRM1 monoallelic loss (PBRM1WT/-, n = 30); (3)
iScience 25, 104467, June 17, 2022 3
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Figure 2. Tumor onset age distribution by HLA-I zygosity and inactivation of VHL and PBRM1 in TCGA cohort

(A) The classification of VHL and PBRM1 by allelic loss. The Venn diagram shows the sample size by the inactivation classification in stage 1 ccRCC.

(B) Age distribution of onset age by HLA-I zygosity with VHL and PBRM1 biallelic loss in stage 1 ccRCC.

(C) Cumulative onset comparison by HLA-I zygosity and by biallelic loss status in stage 1 ccRCC. The difference between the two groups was compared with a

log rank test. TR denotes the effect of the variable on the time to tumor onset.

(D) Comparison of onset in each condition. TR denotes the effect of the variable on the time to tumor onset. Left, stage 1 ccRCC with VHLWT/WT or VHLWT/-.

Middle, all tumors in stage 1 with VHL biallelic loss. Right, all tumors at all stage with VHL biallelic loss. Data in boxplot were presented as median +/� IQR.
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VHL monoallelic loss (VHLWT/-, n = 34); (4) PBRM1 biallelic loss (PBRM1�/�, n = 60); and (5) VHL biallelic loss

(VHL �/�, n = 64), and applied it to the same AFT model. Comparisons of onset age between the HLA-I

zygosity groups revealed that earlier onset in HLA-I homozygous (as in other cancer types) was confined

to the wild-type group (median onset age = 61.5 vs. 46.5 in hetero- and homozygous; p = 0.03 by log-

rank test; TR, 0.78, 95% CI 0.63–0.96) (Figures 2B and 2C). In contrast, ccRCC with PBRM1 and VHL loss

showed an earlier onset in heterozygous HLA-I. Specifically, the gap between tumor onset ages was great-

est in the VHL biallelic loss group (median onset age = 55 vs. 73 in hetero- and homozygous) with statistical

significance (p = 0.002 byWilcoxon rank-sum test). The difference in VHL biallelic loss was maintained even

in PRBM1 wild type (VHL�/�PBRM1WT/WT; p = 0.002 by Wilcoxon rank-sum test) (Figure S2), confirming that

the major genetic effect on immunosurveillance in ccRCC is VHL inactivation, not PBRM1. Log-rank test on

the same groups showed a similar gap of tumor onset in the VHL biallelic group with statistical significance

(TR, 1.26; 95% CI 1.10–1.43; p = 0.001) (Figure 2C).
4 iScience 25, 104467, June 17, 2022
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Finally, we extended the analyses to determine whether the origin of the association was ccRCC or VHL inac-

tivation. We found that the previous difference in onset age between HLA-I homo- and heterozygous

genotypes in ccRCCwas diminishedwhen VHL biallelic loss was excluded (median onset age= 57 vs. 63 in het-

ero- and homozygous; p = 0.22 by Wilcoxon rank-sum test; TR, 1.03, 95% CI 0.96-1.11, p = 0.37) (Figure 2D).

However, the difference was maintained in all tumor types with VHL biallelic loss (median onset age = 55 vs.

73 in hetero- and homozygous genotypes, p = 0.002 by Wilcoxon rank-sum test; TR, 1.26, 95% CI 1.10–1.43,

p = 0.001), or even extended to all tumor types at all stages (median onset age = 59 vs. 65.5, hetero- and ho-

mozygous, p = 0.005 by Wilcoxon rank-sum test; TR, 1.13, 95% CI 1.05–1.22, p = 0.002). These results confirm

that the HLA-I type-dependent acceleration of tumorigenesis stems from VHL inactivation, while ccRCC is

subordinate.

Validation in an independent cohort

We tested whether VHL inactivation was dependent on earlier tumor onset in HLA-I heterozygotes and this

was apparent in an independent dataset. A total of 182 patients with stage I tumors with HLA-I genotype

information were used for the analysis (STARMethods). Among 182 tumors, 70 and 29 were ccRCC and VHL

biallelic loss, respectively.

Statistical analysis clearly reproduced the association found in the discovery set (Figure 3). Thus, earlier tu-

mor onset in HLA-I heterozygotes was statistically significant only in the VHL biallelic loss group (median

onset age 59 vs. 67 in hetero- and homozygous, p = 0.03 by Wilcoxon rank-sum test) (Figure 3A). Likewise,

the log-rank test and AFT analysis showed statistical significance (p = 0.016 by log-rank test; TR, 1.19, 95%

CI 1.06–1.35) (Figure 3B). We again confirmed that the association was specific to VHL inactivation, not

ccRCC (Figure 3C). These results indicate that VHL biallelic loss is strongly associated with tumor acceler-

ation of heterozygous HLA-I.

DISCUSSION

A role for the immune system in recognition and elimination of early cancer cells has been a controversial

concept for a long time. Today, while extensive supporting evidence strongly advocates immunosurveil-

lance, long-term, gradual, and continuous effects on non-cancerous cells hinder direct observation, espe-

cially in vivo. Most of the evidences, therefore, are based on statistical analysis of the outcome, such as

increased tumor growth or incidence in animal models with conditional immunodeficiency (Teng et al.,

2013). In this study, we adopted the same approach, but with a different hypothesis, to discover

diverse effects by applying more specified grouping and stringent criteria to minimize the effects of other

factors.

In the current study, an unfavorable effect of HLA-I heterozygosity on antitumor immunity was observed

in patients with ccRCC with VHL biallelic loss, indicating that VHL inactivation can negatively

modulate antitumor CD8+ T cell responses, as reported in a previous retrospective study (Zhang

et al., 2020). Under normal conditions, pVHL, the protein product of the VHL gene and an E3

ubiquitin ligase, regulates transcription factor HIF by targeting the alpha-subunit of the heterodimer

and inducing proteasomal degradation (Lendahl et al., 2009). However, pVHL inactivation by VHL

biallelic loss, which is common in ccRCC tumors, induces accumulation of HIF-alpha and,

consequently, hypoxia-responsive genes are transcriptionally upregulated, including the VEGFA

gene, which encodes VEGF-A (Majmundar et al., 2010; Ramakrishnan et al., 2014; Semenza, 2013).

Although VEGF-A is known to be a critical factor for tumor angiogenesis, it also acts as an immunosup-

pressive factor and directly influences CD8+ T cells in the tumor microenvironment. VEGR2 expression,

which can be induced by antigen stimulation, makes tumor-infiltrating CD8+ T cells available to respond

to VEGF-A. The VEGF-A/VEGFR2 interaction can enhance the expression of TOX, a master regulator of

T cell exhaustion in CD8+ T cells (Kim et al., 2019; Voron et al., 2015). As a result, tumor-infiltrating

CD8+ T cells undergo exaggerated exhaustion in a VEGF-A-rich environment resulting from VHL biallelic

loss.

Here, we provide evidence of T cell exhaustion through RNA data of samples that have completed

tumor development. Differential expression gene (DEG) and Gene Ontological terms (GO) enrichment

analysis were performed in normal matched samples for VHL biallelic loss (STAR Methods). Various

immune activation and proliferation were included in the significant GO terms, and genes associated

with T cell activation were most enriched (Figure S3). Despite T cell activation gene enrichment,
iScience 25, 104467, June 17, 2022 5
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Figure 3. Tumor onset age distribution by HLA-I zygosity and inactivation of VHL and PBRM1 in ICGC cohort

(A) Age distribution of onset age by HLA-I zygosity with VHL and PBRM1 biallelic loss in stage 1 ccRCC.

(B) Cumulative onset comparison by HLA-I zygosity and by biallelic loss status in stage 1 ccRCC. The difference between

the two groups was compared with a log rank test. TR denotes the effect of the variable on the time to tumor onset.

(C) Comparison of onset in each condition. TR denotes the effect of the variable on the time to tumor onset. Left, stage 1

ccRCC with VHLWT/WT or VHLWT/-. Right, all tumors in stage 1 with VHL biallelic loss. Data in boxplot were presented as

median +/� IQR.
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CTLA4 and PD1 (log fold change = 3.99 and 3.53, respectively) as T cell exhaustion markers (Wherry and

Kurachi, 2015) were overexpressed along with VEGFA (log fold change = 3.36) in tumor samples

(Table S6).

Considering that HLA-I zygosity determines the antigen-recognition coverage of CD8+ T cells, HLA-I het-

erozygosity in patients with VHL biallelic loss can enrich more exhausted CD8+ T cells in the tumor micro-

environment than HLA-I homozygosity.
6 iScience 25, 104467, June 17, 2022
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However, the status of dysfunction is only limited to exhausted CD8+ T cells themselves and cannot

explain the paradoxical adverse effects of CD8+ T cells on tumor development. Regarding this

point, we hypothesize that exaggerated exhaustion of CD8+ T cells in a VHL biallelic loss-associated

VEGF-A-rich condition makes them not only dysfunctional cells but also immune-suppressive cells, for

which their abundance in the tumor microenvironment can restrain antitumor immune activity. Further

studies are required to unveil the mechanism by which exaggerated exhaustion of CD8+ T cells leads

to immune-suppressive functions in the tumor microenvironment. The results should be interpreted

with caution.

Limitations of the study

This study focused on the onset of tumors based on the HLA-I genotype. However, it is challenging to

determine the actual time of tumor occurrence, as the observation begins with clinical diagnosis. Although

we expect that the time gap between the diagnosis with stage 1 and the actual tumor occurrence is close,

patient-specific variations in the gap would be a confounding factor for our analysis.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

TCGA clinical data resources (Liu et al., 2018) https://gdc.cancer.gov/about-data/publications/pancanatlas

TCGA HLA-I genotypes (Kahles et al., 2018;

Thorsson et al., 2018)

https://gdc.cancer.gov/about-data/publications/panimmune,

https://gdc.cancer.gov/about-data/publications/PanCanAtlas-Splicing-2018

TCGA Germ line genetic variants (Huang et al., 2018) https://gdc.cancer.gov/about-data/publications/PanCanAtlas-Germline-AWG

TCGA viral infection status (Thorsson et al., 2018) https://gdc.cancer.gov/about-data/publications/panimmune

TCGA somatic mutation (Ellrott et al., 2018) https://gdc.cancer.gov/about-data/publications/mc3-2017

TCGA aneuploidy Broad GDAC Firehose https://gdac.broadinstitute.org/

TCGA mRNAseq Broad GDAC Firehose https://gdac.broadinstitute.org/

ICGC clinical data resources and

raw RNA sequence

(Zhang et al., 2019) https://dcc.icgc.org/

ICGC HLA-I genotypes, somatic

mutation, aneuploidy

(The ICGC/TCGA Pan-Cancer Analysis

of Whole Genomes Consortium, 2020)

https://dcc.icgc.org/releases/PCAWG

Software and algorithms

R (version 3.6.3) R Foundation https://cran.r-project.org/

Survreg R library https://cran.r-project.org/web/packages/survival/index.html

ggplot2 R library https://ggplot2.tidyverse.org/

Optitype (Szolek et al., 2014) https://github.com/FRED-2/OptiType

arcasHLA (Orenbuch et al., 2020) https://github.com/RabadanLab/arcasHLA

DESeq2 (Love et al., 2014) https://bioconductor.org/packages/release/bioc/html/DESeq2.html

clusterProfiler (Yu et al., 2012) https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Sangwoo Kim (swkim@yuhs.ac).
Materials availability

This study did not generate new unique reagents.

Data and code availability

d The TCGA and ICGC data reported in this study cannot be deposited in a public repository because data

policy. To request access, contact the TCGA data portal (https://portal.gdc.cancer.gov) and ICGC Data

Portal (https://dcc.icgc.org/), respectively. The accession numbers are also listed in the key resources

table.

d All original code has been deposited at https://github.com/Yonsei-TGIL/HLA-classI-tumorigenesis and

is publicly available as of the date of publication.

d Any additional information and data required to reanalyze the data reported in this paper is available

from the lead contact upon request.
METHOD DETAILS

Acquisition of discovery dataset

We downloaded clinical data of 11,163 patients with 33 cancer types from The Cancer Genome

Atlas (TCGA)-Clinical Data Resources (Liu et al., 2018) using the Pancancer Atlas publication
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(https://gdc.cancer.gov/about-data/publications/pancanatlas). TCGA data were approved by Genomic

Data Commons (accession number: phs000178). The clinical data included pathological stage, age at diag-

nosis, race, sex, and information on prior malignancy. HLA-I genotype information of the patients in the

same cohort was acquired from two prior studies (Kahles et al., 2018; Thorsson et al., 2018), wherein the

HLA-I genotype was predicted using PolySolver (Shukla et al., 2015) and OptiType (Szolek et al., 2014),

respectively. Germ line genetic variations and viral infection status were assessed as predisposing factors

for cancer. Pathogenic genetic variants of the patients were collected from a recent study (Huang et al.,

2018). Viral infection status was determined by the normalized number of sequencing reads that mapped

to the genomes of human papilloma virus, Epstein-Barr virus, and hepatitis B virus, following the proced-

ures described in a previous study (Thorsson et al., 2018).

Patient selection and downstream analyses

We applied strict inclusion criteria that consisted of two-phase filtration (based on clinical and genetic

information, respectively; Figure S4) of the 11,163 patients in the discovery (TCGA) cohort. The main pur-

poses of the filtration were to (1) achieve the best approximation of the time of tumor onset from the time of

diagnosis; and (2) remove any other that predisposes tumorigenesis, so the role of immunosurveillance can

be fairly assessed.

In the first phase, 8,838 patients with (1) tumor pathological stage of >1 (n = 8,438), (2) prior malignancy

(n = 314), (3) missing diagnosis age (n = 21) and (4) missing HLA-I genotype (n = 65) were excluded, to retain

2,325 patients. In the second phase, 544 patients with (5) predisposing germline mutations (n = 77), and (6)

detectable oncogenic viral infection (n = 467) were excluded, leaving 1,781 patients for analyses.

Based on the genotyping of the three classical HLA-I genes (HLA-A, -B, and -C), the 1,781 patients were

classified into two major groups: the homozygous group, wherein any of the three genes were homozy-

gous, and otherwise the heterozygous group. Finally, tumor types with a homozygous group of less than

10 patients were excluded due to the lack of statistical insignificance, to retain 1,573 patients of 11 tumor

types for further analyses.

Covariates selection for AFT regression

We obtained 186 variables for clinical and exposure information from GDC (https://portal.gdc.cancer.gov)

to select variables to use as covariates for AFT regression. 137 variables for which all values were missing

were removed preferentially. 16 variables including alcohol history and smoked history were excluded

because more than 80% were missing values. We then filtered out 28 variables that were duplicated or

not related to tumor development, such as patient ID, tumor staging method, and treatment information.

The remaining variables were tumor type, ethnicity, gender, race, and prior malignancy.

Among them, prior malignancy affects tumor development, but it is difficult to analyze without additional

information, so it was used for patient filtering. We analyzed the categorical correlation between race and

ethnicity variables. As a result of the Chi-square test, the two variables were determined to have a corre-

lation with a p-value of 4.9e-06. Finally, race, gender and tumor type were selected as covariates.

Judgement of VHL genotypes

Inactivating genetic mutations in VHL was judged based on somatic mutation status and copy number loss.

Somatic mutation information was collected from a previous study (Ellrott et al., 2018). To select deleterious

mutations, only nonsynonymous mutations with a variant allele frequency exceeding 0.1 were included. For

copy number variation, previously analyzed data based on GISTIC2 were downloaded from Firehose

(http://firebrowse.org/). Genes with log2 copy number ratio < �0.3 were determined as copy number

loss. We classified allelic loss using two alterations: (1) bi-allelic loss, genes with both somatic mutations

and copy number loss; (2) mono-allelic loss, genes with only one of the two alterations; and (3) wildtype,

in which neither mutation was found.

Differential expression analysis and enrichment analysis

Read count data for ccRCC was downloaded the from Firehose (http://firebrowse.org/). We extracted a

normal matched sample for VHL bi-allelic loss (n = 8). DEG was calculated by DESeq2 (Love et al., 2014)

and the genes with a FDR adjusted p-value < 0.05 and log-fold change > 1 were considered DEGs. To
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observe the biological functions of the DEGs, GO enrichment analysis was performed. Package clusterPro-

filer (Yu et al., 2012) was used to convert gene ID and profile the GO analysis.
Acquisition and analysis of validation dataset

For the validation dataset, clinical information of 12,790 patients from 61 cancer types was downloaded

from the International Cancer Genome Consortium (ICGC) (Zhang et al., 2019). ICGC data were approved

by ICGC Data Portal (https://dcc.icgc.org/). Datasets only deposited in the ICGC part of the data portal

were used to prevent cross-contamination between the discovery and validation datasets. Procedures

for patient selection and HLA-I genotyping were similarly conducted using the discovery set. RNA

sequencing data were downloaded from the Cancer Genome Center Collaboratory (https://

cancercollaboratory.org/) and used for HLA-I genotyping using OptiType and arcasHLA (Orenbuch

et al., 2020). For tumors without available RNA sequencing data, HLA-I genotypes predicted from Pan-Can-

cer Analysis of Whole Genomes (PCAWG) were used (The ICGC/TCGA Pan-Cancer Analysis of Whole

Genomes Consortium, 2020), wherein a whole genome sequencing based HLA genotype (ALPHLARD)

(Hayashi et al., 2018) was used. From 12,790 patients, 1,591 were annotated with pathological stage and

HLA-I genotype, 182 of which were stage I tumors. Mutation information was imported from the

PCAWG study (The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium, 2020) and used

to identify VHL mutation status.
QUANTIFICATION AND STATISTICAL ANALYSIS

For statistical analyses, the AFT was applied, together with the conventional log-rank test. AFT is a para-

metric model similar to proportional hazard models, whereas AFT assumes the effect of a covariate to

be the acceleration or deceleration of events, which more directly corresponds to our assumption. Briefly,

the AFT model was specified as follows:

sðtjxÞ = s0
�
expðb0xÞt� for tR0

where sðtjxÞ and s0ðexpðb0xÞtÞ are the survival and the baseline survival functions at time t, with the accel-

eration factor expðb0xÞ (Wei, 1992). If expðb0 Þ is larger than 1, the effect of the covariate is decelerated; if

expðb0 Þ is less than 1, the effect of the covariate is accelerated. In our analysis, t is the observed (approxi-

mated by the diagnosis time) time to tumor onset, whereby the HLA-I zygosity is presumed to function as

the acceleration factor along with other covariates, race, gender and tumor type (if applicable). The effects

and direction (acceleration or deceleration of tumor onset) of HLA-I zygosity are presented as the TR with a

95% confidence interval (95% CI) and p-values. In addition, to evaluate the effect of specific HLA, we built

three AFT models for the zygosity of each gene (HLA-A, -B, -C), the number of homozygosity and HLA

allele. In all three models, race, gender, and tumor type (if applicable) were used as covariates with each

HLA variable. For the first model, HLA was used as a binary variable for zygosity for three genes. Next,

the number of HLA zygosity was used as a continuous variable in the model. In the allele model, minor al-

leles (less than 1% of the TCGA population) were filtered, and the inclusion of each patient’s allele was used

as a binary variable.

For different distributions, that is, exponential, Weibull, lognormal, and log-logistic, were initially assumed

as the baseline distributions of AFT, followed by selection with the AIC (Akaike, 1981):

AIC = � 2 lnðbLÞ+ 2k

where bL is the logmaximum likelihood of the regression model using each distribution, and k is the number

of parameters. The optimal distribution that minimizes information loss was selected with the lowest AIC

value. The cumulative incidence plots created using the Kaplan-Meier (K-M) estimator and the log-rank test

were used to compare differences in cumulative incidence curves. The Wilcoxon rank-sum test was used to

test the difference in onset age for HLA-I zygosity. All analyses were performed using R software (version

3.6.3; www.r-project.org; R Foundation for Statistical Computing, Vienna, Austria). The Survreg function in

the R survival package was used to perform the AFT model and compute AIC. Data in boxplot were pre-

sented as median +/� IQR. All statistical tests were conducted on two sides, and the threshold of statistical

significance was set at p < 0.05. A p-value is denoted by an asterisk, in which * %0.05, ** %0.01.
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