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Abstract

In this work we investigate the possibilities offered by a minimal framework of artificial spiking neurons to be deployed in
silico. Here we introduce a hierarchical network architecture of spiking neurons which learns to recognize moving objects in
a visual environment and determine the correct motor output for each object. These tasks are learned through both
supervised and unsupervised spike timing dependent plasticity (STDP). STDP is responsible for the strengthening (or
weakening) of synapses in relation to pre- and post-synaptic spike times and has been described as a Hebbian paradigm
taking place both in vitro and in vivo. We utilize a variation of STDP learning, called burst-STDP, which is based on the notion
that, since spikes are expensive in terms of energy consumption, then strong bursting activity carries more information than
single (sparse) spikes. Furthermore, this learning algorithm takes advantage of homeostatic renormalization, which has been
hypothesized to promote memory consolidation during NREM sleep. Using this learning rule, we design a spiking neural
network architecture capable of object recognition, motion detection, attention towards important objects, and motor
control outputs. We demonstrate the abilities of our design in a simple environment with distractor objects, multiple
objects moving concurrently, and in the presence of noise. Most importantly, we show how this neural network is capable
of performing these tasks using a simple leaky-integrate-and-fire (LIF) neuron model with binary synapses, making it fully
compatible with state-of-the-art digital neuromorphic hardware designs. As such, the building blocks and learning rules
presented in this paper appear promising for scalable fully neuromorphic systems to be implemented in hardware chips.
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Introduction

The primate visual cortex exemplifies the brain’s unique ability

to extract and integrate vast amounts of sensory stimuli into

meaningful categorizations. Within the visual cortex, multiple

pathways exist for processing submodalities such as color, object

recognition, and motion detection. Even more impressive is the

brain’s ability to combine and integrate such pathways, processing

complex visual environments on the order of tens to hundreds of

milliseconds [1–5]. Feedback connections extend the abilities of

the visual cortex allowing for attention, anticipation, and pre-

diction in spite of noisy or complicated visual scenery [6,7].

Furthermore, the other various sensory and motor areas of the

primate neocortex similarly show crossmodal processing and

integration. These features of the primate neocortex, which are

vital for an animal’s decision making in its environment, are

implemented via a single basic computational module, the spiking

neuronal cell.

Because the brain is able to use such a simple functional

processing unit for inherently complicated and diverse tasks, it is

no wonder that computer designers have an interest in emulating

many of its properties in computing hardware. Furthermore, the

low-power and event-driven nature of neurons provides all the

more reason for chip designers to investigate these biologically

inspired computing systems [8,9]. However, for digital neurons to

rival the energy efficiency of their biological counterparts, various

design decisions must be made to approximate the attributes of

a spiking neuronal cell. Digital optimizations such as binary

synapses, linear (or at best, piecewise-linear) operations, and sparse

connectivity are clearly optimal choices with digital CMOS

technology.

In this paper, we investigate a simplified model of the visual

cortex in the context of digital neuromorphic hardware con-

straints. Our objectives are to 1) test the performance of a recently

proposed biologically-inspired learning paradigm in an environ-

ment with noise and distractors and 2) show that a trained

network, utilizing only the set of parameters available in a digital

hardware, is able to sufficiently replicate some of the important

features of the visual cortex. Our goal is therefore not to develop

a model able to outperform existing state of the art models of the

visual system, but to investigate the prospects offered by

a hardware implementation of a fully neuromorphic architecture;

while we focus on developing and testing a minimal system as

a proof of concept, our goal is to develop an architecture to be
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eventually scaled to larger sizes in order to cope with more

complex tasks and environments.

To achieve these objectives, we first introduce a hierarchically

organized network of spiking neurons which learns to both

recognize moving objects and determine the correct motor control

output for a particular object. This biologically inspired neural

network learns these tasks through a combination of supervised

and unsupervised spike timing dependent plasticity (STDP)

learning rules. STDP is a Hebbian learning paradigm [10–12]

which has been shown to be responsible for the strengthening (or

weakening) of synapses between neurons in relation to pre- and

postsynaptic spike times, both in vitro and in vivo. In our model, we

employ a recently proposed plasticity paradigm called burst-STDP

[13] which modifies synaptic strength based on correlating pre-

and postsynaptic bursting activity. Such a learning paradigm is

based on the concept that spiking activity is expensive in terms of

energy consumption [14]. Burst (rare) events must therefore

convey more information that single spikes (which are more

common). Burst-STDP exploits this principle by linking the

magnitude of plastic change to the level of burstiness of the

neurons. Additionally, this algorithm also takes advantage of

homeostatic renormalization of synaptic strength, a mechanism

which has been hypothesized to take place during sleep and

promote memory consolidation [15,16]. Furthermore, such

a mechanism can drastically improve the signal to noise ratio in

a network of neurons, as well as prime synapses for subsequent

learning epochs. Finally, an important aspect of the homeostatic

renormalization, as will be described, is that it promotes binary

synapse convergence in the neural network.

Through learning via burst-STDP and homeostatic renorma-

lization, we then demonstrate that our neural network is capable of

object recognition, motion detection, attention towards important

objects, and motor control outputs. After an epoch of offline

learning, the neuron parameters adhere to their digital approx-

imation, most importantly including binary synapses. We demon-

strate the abilities of this network in a simple environment by

varying the number of objects and the noise levels in a visual

environment. The results show that the network architecture

robustly exhibits the correct motor output in spite of such

obstacles. Furthermore, we show how such behavior can be

learned by a network constructed of less than 1000 simple LIF

neurons, utilizing only a very small number of configurable and

learned parameters, matching those present in the aforementioned

neuromorphic hardware. The framework we investigate is

therefore extremely simple when compared to many of the

complex models present in the literature. Given the hardware-

driven constraints described in this paper, we focus on developing

a model able to cope with an array of simple tasks, rather than one

large, complicated problem. As we will discuss, showing that such

tasks can be learned and then captured by binary representations

of spiking neurons is an important contribution step which

highlights the abilities of low-power spiking neuromorphic

hardware on silicon, paving the way for the implementation of

this novel technology in robotics.

Related work
Several attempts have been made to design neurally inspired

networks able to reproduce the performance of the primate visual

cortex in analyzing visual scenes. Hierarchical feedforward

convolutional networks have proven to be quite successful at

object recognition and represent a reference point for all works on

bio-inspired object recognition. Other successful approaches such

as scale-invariant feature transform (SIFT, [17]) and its evolutions

are not bio-inspired and have not been considered in this work.

Models such as HMAX [18], the Neocognitron [19] on which

HMAX is based, and their extensions [20,21] have shown

impressive performance at categorizing natural images, despite

some recently demonstrated limitations [22] that we will later

discuss. What is even more impressive about these models is that

they are directly inspired by the organization of the primate visual

cortex. These hierarchical models achieve their visual recognition

power by alternating simple cells (S), which respond maximally for

a preferred input, and complex cells (C), which provide translation

invariance by using a max pooling operation over a population of

simple cells. The lowest level of the HMAX model consists of

Gabor filters which optimally respond to a particularly oriented

edge, which is similar to the V1 area in the visual cortex. The

upper layers of the HMAX model combine lower level features to

achieve translation invariant recognition of images, similarly to the

organization of the IT in the visual cortex [23].

In Masquelier and Thorpe’s model [24], the same HMAX

framework is extended to spiking neurons operating in the

temporal domain. During each presentation of a training image,

each neuron is able to fire at most once, with a spike latency

corresponding to a neuron’s selectivity for a given input. This

model uses unsupervised single-spike STDP to facilitate learning

between the lower level complex cells (C1) and upper level simple

cells (S2). As a result, their design is able to robustly recognize

images based on learned features. This model can also be

considered more biologically inspired, as much of the model uses

spiking neurons as the basic building block. However, the neurons

in this recognition model can be described as ‘‘memoryless’’, since

each neuron’s membrane potential is reset upon each presentation

of an image. By contrast, our design utilizes LIF neurons which

can maintain a membrane potential across multiple time steps,

and our results will show how such a design feature contributes

significantly to noise tolerance and improved decision making. A

similar approach–employing non-memoryless neurons–has re-

cently been introduced in a model of early visual areas [25],

showing that orientation selectivity can spontaneously emerge

thanks to the properties of STDP.

Recently, Perez-Carrasco et al. have proposed a convolutional

neural network design which uses event-based computation for the

vision problem, as opposed to the more traditional frame-by-frame

processing used by the majority of visual system models [26]. The

authors show not only that the computation is functionally

equivalent, but also argue that such an approach is more

biologically motivated and potentially better performing, as visual

sensing and processing can now almost entirely overlap. Finally,

the authors speculate that up-and-coming hardware will be based

on address-event representation (AER) convolution chips, and

show how their algorithm scales well with such proposed AER

hardware.

Several works have also focused on bio-inspired models for

motion detection. One approach–which we followed in our work–

is based on the HMAX framework [27,28] and has been shown to

perform successfully on standard datasets. Other bio-inspired

approaches have been able to mimic the visual stream from V1 to

the medial superior temporal area (MST) [29–32]. Other works

focused instead on modeling the properties of areas MT (medio

temporal) and MST, obtaining models able to cope with complex

problems, such as apertures and occlusions, with a biomimetic

approach [33–38]. A full comparison of the various models is out

of the scope of this work. Our choice was in fact based on the

advantages of employing a similar architecture for both the shape

classification and motion detection modules, in view of possible

expansions of the network to cope with a larger and more complex

environment.

A Neuromorphic Architecture with Burst-STDP
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The integration of multiple cortical areas has also been

addressed in previous work [39]. This computer model simulates

three visual streams for processing form, color, and motion. While

this architecture demonstrates the interactions between several

functionally segregated visual areas, it relies on a phase variable to

relay the short-term temporal correlations between these areas.

The network proposed here performs such integrations using an

energy efficient burst-STDP learning algorithm in combination

with much simpler LIF neurons.

Importantly, the entire model proposed in this paper has been

designed using only LIF spiking neurons, which are among the

simplest models of spiking neurons [40] and thus the most likely

candidate for realization in a hardware implementation. Several

hardware implementations of spiking neurons have been de-

veloped over the past years (see [41–44]) with much focus on

optimizing communication between neurons and reducing power

consumption. Our aim here is to create a minimal neural model,

in terms of neurons, architecture, and plasticity mechanisms, that

still shows a robust learned response for visual system tasks. With

this goal in mind, this paper focuses on combining an energy

efficient burst-STDP learning paradigm, a homeostatic renorma-

lization process that performs memory consolidation and con-

verges synapses to binary values, and simple LIF neurons that are

more easily captured in digital neuromorphic hardware designs.

Hardware constraints
In this section, we consider the design details and implications of

a fabricated neuromorphic hardware, which is the hardware

architecture on which we plan to deploy the neural network

presented here (as well as future neural models). International

Business Machine Corporation (IBM) has implemented two

Neurosynaptic Cores [8,9] for the DARPA SyNAPSE project.

The goal of the SyNAPSE project is to create a system capable of

interpreting real-time inputs at a biologically realistic clock rate.

IBM’s neuromorphic design seeks to model millions of neurons

and to rival the brain in terms of area and power consumption.

IBM has described one 256 neuron Neurosynaptic Core with

10246256 programmable binary synapses [8], and another 256

neuron Neurosynaptic Core with 2566256 plastic binary synapses

[9]. For the purposes of this paper, we assume that the binary

synapses are programmed offline; hence we do not consider the

online learning as proposed by [9]. Furthermore, these hardware

neurons operate at a biologically realistic clock rate of 1kHz. Each

neuron integrates spikes over one dendrite line, or column of the

SRAM crossbar, and outputs spikes on an axon.

As outlined in [8], these LIF neurons utilize a very small

number of configurable parameters to reduce area and power

consumption. Table 1 shows these parameters and their ranges of

values, as well as the number of bits necessary to capture these

configurable parameters. The core is structured so that K axons

connect to N neurons via a K 6 N SRAM crossbar, and the

synaptic connection between axon j and neuron i is indicated by

Wji. In this architecture, each neuron includes a wire for its

dendritic tree and a wire for its axon. The dendritic wire contacts

with N axons (from N other neurons), receiving spikes from

presynaptic neurons. Each axon connects with M dendrites, thus

allowing a neuron to propagate its own spikes to downstream

neurons. At each time step, the activity vector Aj(t) of the axons

must be integrated by the neurons on the chip, and the membrane

of each neuron leaks by Li. Each axon is assigned one type

(excitatory, inhibitory, etc.) via the Gj configurable parameter.

Finally, S
Gj

i indicates the synaptic multiplier between axon j and

neuron i. Because of the architectural decisions that went into the

Neurosynaptic Core, each spike produced by these hardware

neurons consumes only 45pJ, making it quite energy efficient.

For each neuron on the Neurosynaptic Core, the membrane

potential of neuron i is updated on spiking events using:

Vi tz1ð Þ~Vi tð ÞzLiz
XK

j~1

Aj(t)WjiS
Gj
i ð1Þ

Each spike produced by a presynaptic neuron is integrated by

the postsynaptic neurons in the following cycle. When a neuron

produces a spike, its voltage is reset to 0.

This type of neuromorphic hardware strongly motivates the

goals of our neural network design. Such hardware is attractive not

only because it is low-power, but also because the underlying

structure of the Neurosynaptic Core architecture much more

Table 1. The settable parameters and their corresponding bit
sizes for the LIF neurons implemented in digital
neuromorphic hardware [8,9].

Name Description Range Bit size

Wj

Connection vector for
neuron I’s dendrite

0,1 256 [9]

S0
i

Synapse Value 0 2256 to 255 9 [8]

S1
i

Synapse Value 1 2256 to 255 9 [8]

S2
i

Synapse Value 2 2256 to 255 9 [8]

Li

Linear Membrane
Leak

2256 to 255 9 [8]

hi

Firing Threshold 1 to 256 8 [8]

Gi

Output Axon Type 0,1,2 2 [8]

These parameters include an output axon type, three synaptic multipliers,
a linear membrane leak, firing threshold, and a binary vector for synapse
strengths.
doi:10.1371/journal.pone.0036958.t001
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accurately depicts the brain than does a traditional von Neumann

processor. However, in order to take advantage of such hardware,

we explicitly state the constraints of our neural network model to

ensure compatibility with the Neurosynaptic Core:

N Binary synapses (trained offline).

N Linear membrane leak neurons.

N Reset voltage = 0 V.

N Two axon types (excitatory, inhibitory).

N Two synaptic multipliers per neuron (S+ for excitatory, S- for

inhibitory).

N Timestep = 1ms (compatibility with 1kHz operating frequency).

This work seeks to show how burst-STDP learning and

homeostatic renormalization can shape a neural network compat-

ible with this type of hardware solution. Even though learning is

performed offline, our results demonstrate how neuron models

with the above mentioned parameters and constraints, can still

robustly perform interesting visual system tasks.

Methods

An STDP Based Learning Algorithm
In this section we describe our implementation of the the burst-

STDP learning algorithm, for which a more detailed description

and rationale can be found in in [13]. This is a Hebbian plasticity

paradigm which has been described as an effective learning rule

observed in experiments both in vitro and in vivo.

In the STDP framework, plastic changes will occur on a single

synapses if post- and pre-synaptic spikes both fall within an STDP

timing window. If a pre-synaptic spike is followed by a post-

synaptic one within the timing window, potentiation will occur.

Conversely, if the post-synaptic spike is followed by the pre-

synaptic, the connection will be depressed. Figure 1 shows an

implementation of an STDP learning rule and demonstrates how

the magnitude of strength change depends on the delay between

the two spikes: the smaller the delay, the greater the change

[45,46].

Another experimentally derived property of STDP is weight-

dependency, according to which the magnitude of plastic events is

inversely related to the initial strength of a connection. In [46], the

authors consider that no upper bound should be placed on

synaptic strength, as persistent potentiation will lead a connection

to a saturating value. If such an upper bound was placed on

synaptic strength, all potentiated synapses would converge on the

same upper bound. While not imposing a maximum synaptic

weight does not necessarily mean synapses will reach infinite

values, the strengths they may reach could be too large to be

considered biologically plausible.

Finally, the parameters of STDP are dependent on the

preceding pre-synaptic spiking history. Thus, each pre-synaptic

spike allows the increase in intra-cellular calcium concentration

[Ca], flowing through NMDA receptors (NMDAR). In particular,

low levels of intra-cellular [Ca] favor synaptic depression, while

high levels promote potentiation [47,48]. Thus, strong pre-

synaptic firing would increase intra-cellular [Ca] and favor

potentiation. This phenomenon has been successfully implemen-

ted in computational models to perform STDP learning, based not

only on pre- and post-synaptic spike timing, but also on firing

history [49,50].

Burst-STDP has been developed as a variant of STDP able to

incorporate the fact that spikes, being energetically expensive,

must be parsimoniously generated by neurons. The greater the

number of spikes, therefore, the greater the saliency of the message

a neuron communicates. From this it has been inferred that bursts

of spikes–carrying a lot of information–should have a primary role

in plastic events. Burst-STDP exploits this fact by relating plastic

changes not only to the relative timing between pre- and post-

synaptic events, but also on their magnitude, i.e. their level of

‘‘burstiness’’.

In the following subsections we will present the three main

characteristics of our learning algorithm: 1) an unsupervised burst-

STDP paradigm for learning stimulus features based on their

persistence on the retina, 2) reward gating for linking network

responses to particular rewarded stimuli and 3) homeostatic

renormalization for balancing synaptic strength.

Burst-STDP. As outlined in the previous sections, we

modeled the unsupervised learning algorithm based on the

theoretical considerations presented in [13]. Briefly, it is assumed

that neurons communicate the importance of their outputs by

modulating their firing rate over a certain window of time. Given

that most of neurons’ energy consumption is devoted to signaling

[51], it is reasonable to accept that the brain as a whole should try

to minimize the number of spikes necessary to convey information.

Thus a neuron with a high output firing rate must be signaling

a relevant event. Burst-STDP exploits the observation that spikes

are expensive by modulating the magnitude of plastic change in

accordance with the level of ‘‘burstiness’’ of pre- and post-synaptic

spike trains within a certain time frame. In particular, a connection

will be reinforced if a pre-synaptic burst is followed by a post-

synaptic one. In a computational framework it would therefore be

necessary to define and keep track of pre- and post-synaptic

burstiness traces, and to implement a function relating burtiness

levels to changes in synaptic strength. For our purposes–i.e.

a hardware implementation of burst-STDP–we developed a sim-

plified version of this plasticity paradigm, which requires fewer

computations and has more limited memory requirements.

Burstiness is defined as a memory trace of spiking activity; the

trace will decay with time, and will be increased if a spike occurs.

In detail, we measure the level of pre-synaptic burstiness of each

connection as:
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Figure 1. Basic STDP rule. It has been found experimentally that the
strength of synaptic change is controlled by the timing between pre-
and post-synaptic spikes. Here, the magnitude is estimated as the
temporal relation of the post-synaptic spike to the pre-synaptic spike
(origin). When the post-synaptic spike follows the pre-synaptic one, the
synapse is potentiated, otherwise depressed. Moreover, the closer the
two spikes are, the greater the potentiation/depression is.
doi:10.1371/journal.pone.0036958.g001
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burstpre tz1ð Þ~burstpre tð Þzlinc:spikepre tð Þ{ldec ð2Þ

Here burstpre is the pre-synaptic burstiness trace and spikepre tð Þ
is 1 if the pre-synatic neuron fired at time t, and 0 otherwise. linc
defines the increment of the burst trace on every spike, set to 0.4,

and ldec defines the decay in the burst trace at every time step, set

to 0.05. Although no upper bound was placed on burstpre, neurons
and network parameters were such that we never measured any

divergence in its value, i.e. the network did not show ‘‘epileptic’’

activity. A lower bound set at 0 was instead placed on burstpre, so
that it could not decrease indefinitely. Instead of computing post-

synaptic burstiness, we simply applied the plastic rule for each

post-synaptic spike, thus implicitly giving more relevance to high

levels of post-synaptic activity:

w tz1ð Þ~w tð Þzk:spikepost tð Þ:burstpre tð Þ ð3Þ

Here k represents the learning rate. As was stated, future work

will focus on deploying the entire network architecture in silico,

complete with the burst-STDP learning rule. Hence, this

simplification makes implementing a learning rule in hardware

more feasible, since it can simply be modeled as a leaky trace of

spiking activity and the plastic process is called at each post-

synaptic spike. For the original formulation of burst-STDP [13],

instead, it would be necessary to keep track of changes in

burstiness across time, thus increasing the storage burden. We

must point out that, in its current form, our algorithm may lead to

results similar to ‘‘all-to-all spikes’’ STDP, as reported for example

in [52], with differences being the absence of depression and

a linearly rather than exponentially decreasing weight update. The

similarities, however, are limited to the outcomes of the two

approaches, since the rationales behind them are clearly different.

Previous research work has evidenced that learning is obtained

predominantly via long-term potentiation (LTP) [53–56], and

consequently for these experiments, we modeled only the

potentiation side of unsupervised burst-STDP. As we will show

in Section, this is sufficient to learn invariant features of the

environment. This bias towards potentiation, which could possibly

destabilize network activity, is counterbalanced by a homeostatic

mechanism (see Section). In our current implementation of our

learning algorithm, we have placed an upper bound of 1.5 and

a lower bound of 0 on the synaptic strength that occurs during

training periods. While placing an upper and lower bound on

synaptic strength somewhat opposes the results found in [46],

maintaining realistic synaptic weights that converge on simple

binary values (and thus would be more easily realized in silicon

neuromorphic hardware) is a major goal of our neural system

architecture. Through this learning mechanism the repeated

presentation of a stimulus results in the selective strengthening of

those connections relaying persistent inputs to output neurons.

Value Dependent Learning. Reinforcement learning is

implemented by simulating the role of neuromodulators in

signaling reward and punishment [13,57]. Neuromodulators such

as dopamine and noradrenaline are responsible for much of the

reinforcement learning that happens in biological systems. In our

model, a supervisory system outside of the actual neural network is

used to evaluate the response of the network to a stimulus during

training and reward or punish the appropriate synaptic connec-

tions contributing to the response. A correct reward is followed by

multiplying the previously computed burst-STDP plastic change

(Equation 3) by a positive constant, and a negative constant is

employed for wrong responses. Moreover, the constants we

employed for reward and punishments varied during the course

of training, according to a process of simulated annealing [58],

similarly to what has been shown to take place during de-

velopment, i.e. a progressive decrease of synaptic plasticity [59].

This can be summarized by a modulation of the learning rate k:

k~g r,tð Þk0 ð4Þ

Here k0 is the predetermined value of the learning rate (see the

previous section) and g r,tð Þ is the modulation performed by value-

gating, which depends on both rewards r and time t. In summary,

if the networks responds correctly to a stimulus, g will affect the

learning rate k by making it positive, otherwise negative.

Furthermore, early in the learning process learning rates will

have higher absolute values to promote plastic changes.

In the initial phase of training, the reward constant is set to 0.5

and the punishment constant is set to 20.1. Thus, potentiation is

always stronger than depression and, at the same time, connec-

tivity can easily be changed from its initial condition. In the course

of training, we set the punishment constant to 0 and gradually

reduced the reward constant to 0.1. By observing the training of

our network during experiments, we verified that including

punishment helped perturb the synapses out of their initial

condition quickly. However, as synaptic connections became more

refined, training with positive reward alone is enough to achieve

robust learning in the supervised regions of our model.

Renormalization. Homeostatic renormalization of synaptic

strength has been hypothesized to take place during NREM sleep

[15,16] and be responsible for counterbalancing the predomi-

nance of potentiation occurring during waking time. A growing

body of literature supports this hypothesis, showing that average

synaptic strength, as well as its correlates in terms of neural

activity, increase during waking and decrease during sleep

[54,55,60–62] in a self-regulatory fashion [63]. One of the

hypothesized consequences of synaptic renormalization is its

contribution to memory consolidation, which we have recently

shown in a large scale model of the thalamocortical system [50].

As we have described, burst-STDP works by mainly potentiating

synapses, either for the repeated presentation of a stimulus

(unsupervised learning) or because neuromodulators reward the

correct response of the network. Thus a renormalization pro-

cedure is necessary to avoid a saturation of connection strengths.

Recently, we have proposed that renormalization may be

implemented by a combination of both global and local

mechanisms [50]. Previous in vivo works showed that changes in

the levels of neuromodulators between waking and sleep may drive

plastic processes towards either potentiation or depression [64].

This global mechanisms would favor potentiation during waking

and depression during NREM sleep. At a single synapse (local

level), instead, the weight-dependent properties of STDP [46]

might play a fundamental role in memory consolidation. It has in

fact been shown that the stronger a synapse is, the the smaller its

strength changes will be following plastic events, in relative terms

[46]. Thus stronger synapses will tend to remain fairly constant

compared to weak ones. It can therefore be seen how

a renormalization process following learning will play a role in

memory consolidation, by preserving strong, trained synapses and

pruning weak ones.

The renormalization we implemented here is a simplified

version of the mechanisms we just described and works by linearly

rescaling all incoming synaptic connections of a neuron so that the

A Neuromorphic Architecture with Burst-STDP
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highest synaptic connection is set to 1. The ith connection wi is

therefore changed according to:

wrenormalized
i ~wi=wmax ð5Þ

All incoming connections for a certain layer are renormalized

simultaneously after a predetermined number of simulation steps.

This is similar to having a period of waking (potentiation) followed

by an offline sleep session (renormalization). We found the best

delay between subsequent sleep sessions varied from layer to layer

(from 500 to 2500 time steps on average). Intuitively, the optimal

delay between such sleep sessions is related to the learning rate.

However, it is also related to the particular learning tasks, as strong

salient inputs drive the degree to which burst-STDP modifies the

synapses. Renormalization promotes memory consolidation by

setting the strongest connections to a value of 1 and progressively

weakening unused ones, until they become negligible.

This homeostatic normalization process automatically binarizes

synapses. This can be understood by considering one neuron and

all its inputs. At the beginning, all synaptic strengths are uniformly

distributed in the 0–1 range. Just before the first renormalization

occurs, some connections will have been potentiated, and others

depressed. After renormalization, the strongest connection will be

set to 1, and all others will be weaker. Thus, during the next

training period, the strongest synapse will be the one with the

highest likelihood of causing spikes in the post-synaptic neuron,

and therefore the highest likelihood of being strengthened. At

every renormalization, the difference between stronger and weaker

synapses will increase, until some connections will be fixed to

a value of 1, and all others will be virtually 0. While in our

experiments we notice that it is typically the case that synapses

have converged, we utilize a simple threshold function to

guarantee that synapses are set to binary values before testing.

The major benefit to this binarization is that such simple synaptic

weights are much more easily realized in actual hardware, where

single synapses could be easily modelled as open (0) or closed (1)

gates. While some level of resolution may be lost using a neural

network with only binary synapses, we note that the results

presented in this paper were collected after learning and

binarization of the synapses, and thus show robust performance

is still possible with such simplifications.

Neural System Architecture
In the subsequent section, we describe in detail the hierarchical

neural network architecture. This system is inspired by the

anatomical and functional connectivity of several different brain

areas. Figure 2 depicts the interaction among areas of the visual

cortex for motion and feature processing, the prefrontal regions

where decisions are made, and the motor area of the brain which

interacts with the outside environment. Likewise, our biologically

inspired neural network is composed of similar modules: the shape,

motion, attention, and decision subsystems. The overall system

architecture is depicted in Figure 3, and Table 2 describes in detail

each of the neural layers used in the entire neural network. As

motivated earlier, the choices we made in neuron and synapse

models are highly motivated by neuromorphic hardwares. For this

reason as well, we constrained our entire neural network to be

composed of less than 1000 neurons, with the goal of demon-

strating a minimal, yet scalable, network architecture.

Model Neurons. Models of cortical neurons and biological

neural networks can vary extensively in terms of their biological

plausibility and computational efficiency [40]. These models can

span from the simplest implementation of memoryless perceptron

based neural networks, to the highly complicated Hodgkin-Huxley

model which emulates details such as ion channels and neural

conductances in biological systems. The neurons we have

simulated for this paper are classified as leaky integrate-and-fire

(LIF) neurons and are modeled according to the previously

outlined hardware constraints. We simulate both excitatory and

inhibitory neurons with a number of configurable parameters.

Each neuron has a local membrane potential (M), leakiness factor

(L), and firing threshold (T). The synapses we model are

a combination of simple hard-wired connections, purely un-

supervised burst-STDP synapses, and supervised value gated

burst-STDP synapses. While synaptic strengths may vary during

training epochs, the homeostatic renormalization rule we employ

guarantees that synapses will eventually converge onto binary

solutions. Each neuron also has a multiplicative synaptic weighting

value which determines how much an excitatory (S+) or inhibitory
(S2) synaptic input will affect the membrane potential. At each

simulation cycle, M is updated according to the Equation 6 below,

where N is the total number of excitatory synapses and O is the

number of inhibitory synapses of a given neuron. If the membrane

potential is greater than the firing threshold T, the neuron fires

and M resets to zero. X and Y are respectively the excitatory and

inhibitory presynaptic inputs to the model neuron.

M(tz1)~M(t)z(Sz) �
XN

i~1

Xi
:Wiz(S{) �

XO

j~1

Yj
:Wj{L ð6Þ

In many LIF neuron models, the membrane leak factor is

proportional to the current membrane potential [40]. However, as

motivated earlier, a digital implementation of the LIF may utilize

a linear leak factor with a lower bounded membrane potential to

meet power, area, and complexity constraints. Likewise, our

modeled neuron uses a constant, linear leak factor L. In order to

avoid negative values for M, the membrane potential utilizes

a lower bound of 0 V.

Shape Categorization Module. The shape categorization

module provides the translation-invariant recognition of an object

in the environment. Our shape categorization module is similar in

nature to Poggio’s HMAX [20] as well as Masquelier’s STDP

implementation of HMAX [24]. Like these visual cortex models,

the shape categorization stream alternates simple cells (S) which

elicit a spiking response for their preferred input and complex cells

(C) which provide translation invariance by using a max pooling

operation over a population of simple cells. The overall

architecture of the shape module creates a four layer hierarchy

(S1-C1-S2-CLA), with the top level of the hierarchy being

a classifier. Our current implementation of this architecture is

a simple one, employing only a single processing scale and two

preferred edge-orientations (vertical and horizontal lines) at the

lowest level. While this work focuses on the abilities of LIF neurons

using the burst-STDP learning in a very basic hierarchical

architecture, we have performed preliminary testing to ensure

our design can easily be expanded to incorporate more preferred

edge-orientations, processing scales, and neuron groups.

As in the visual area V1, the first layer of our hierarchy (S1) acts

as a simple edge detector [18]. The S1 cells are tuned to respond

maximally to a particular edge of a certain orientation. A key

design feature of our network is that the LIF neurons used are able

to maintain a membrane potential between simulation time steps,

as opposed to resetting the membrane potential for each

evaluation of the network. This leaky membrane potential, as
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opposed to a memoryless membrane potential, allows the neuron

best tuned to a particular edge to respond first, even if that edge is

not a perfect match (as in the case of a noisy environment, or slight

variation of the same feature).

At each time step, the outputs from the S1 neurons propagate to

the C1 cells, which is responsible for propagating the spikes of the

maximally responsive S1 cells to the higher levels of the system. In

the shape categorization module, the C1 area for a particular edge

orientation is composed of three groups of neurons to properly

implement a max pooling function [65,66]. To illustrate the

design, we will consider the C1 area preferring horizontal edges in

Figure 3. In this area, C1-hor-ex are excitatory neurons strongly

basic feature 
extraction

motor 
command

attention / 
decision 

Figure 2. Basic architecture of the visuo-motor system. Primary visual areas perform basic feature extraction. The dorsal and ventral stream
analyze the extracted information in terms of, respectively ‘‘where’’ and ‘‘what’’ content. A motor command is then elaborated in motor areas, with
the contribution of prefrontal regions, devoted to tasks of higher complexity.
doi:10.1371/journal.pone.0036958.g002

Figure 3. The architecture of the biologically inspired neural network. Each layer is depicted as a grid of cells (dimensions do not
correspond to actual layer sizes) and all connections are showed. Parallel or converging connections represent topographic connectivity without or
with dimensionality reduction; overlapping connections represent random connectivity. Subsystems consisting of multiple neural layers are grouped
with dashed lines; four modules have been designed: a shape categorization module, a motion detection module, an attention module and a decision
module. All hard-wired synaptic connections are black, and STDP learned connections are colored (red: unsupervised learning; green: supervised
learning).
doi:10.1371/journal.pone.0036958.g003
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connected to the corresponding S1 neurons directly beneath them.

The C1-hor-ex neurons are connected as the presynaptic inputs to

a set of inhibitory neurons known as C1-hor-inh, which in turn

project their inhibitory outputs back to a localized area in the C1-

hor-ex neurons. This localized inhibitory behavior allows the C1

layer to filter out noise as well as propagate only the strongest

edge-detection responses for a given receptive field (or neighbor-

hood of neurons). Finally, C1-hor-ex cells also project to the

excitatory C1-hor-max neurons, which converge the responses

over a neighborhood of C1-hor-ex neurons. The lower levels of

the shape categorization module (S1–C1) are hard-wired neural

connections which separately observe the environment for each

preferred orientation. Each of these layers is a retinotopically

organized 2D grid of neurons, with each neuron’s location

corresponding to the region of the visual environment where it

receives its receptive field inputs (whether directly from the retina

or through other retinotopically organized neurons).

The S2 layer combines the responses of C1 neurons from the

different orientations of preference using the unsupervised burst-

STDP learning rule. Similarly to the C1 neuron layer, the S2 is

composed of multiple populations of neurons. First, the connec-

tions between the C1-max neurons and S2-shape-ex neurons are

initialized to random weights. The S2-shape-inh neurons are

activated by the firing of a S2-shape-ex cell, which have reciprocal

connections back to the S2-shape-ex region to inhibit neighboring

cells. In this way, the S2-shape-ex cell that first responds will be

reinforced with the STDP learning rule, while its neighbors will

not since the S2-shape-inh cell has inhibited them from firing. This

competition creates a weakly-enforced winner-takes-all (WTA)

method to encourage neurons to learn different objects. We do not

consider this a strictly-enforced WTA, since nothing prevents two

S2-shape-ex cells from starting with the same random weight

connections, activating, and strengthening their synapses at the

same time–though this behavior has been observed rarely in our

Table 2. Each group of neurons in the network described in detail.

Module Layer
Neuron
Type Size Target Layers

Topographic
RF Size

Train
Only T L S+ S–

Retina Retina Ex 10610 (100) All S1 cells 161 N N/A N/A N/A N/A

Shape S1-ver Ex 1065 (50) C1-ver-ex 162 N 31 16 16 0

Shape S1-hor Ex 5610 (50) C1-hor-ex 261 N 31 16 16 0

Shape C1-ver-ex Ex 1065 (50) C1-ver-inh,
C1-ver-max

161 N 4 2 8 64

Shape C1-hor-ex Ex 5610 (50) C1-hor-inh,
C1-hor-max

161 N 4 2 8 64

Shape C1-ver-inh Inh 1065 (50) C1-ver-ex 161 N 4 2 32 0

Shape C1-hor-inh Inh 5610 (50) C1-hor-ex 161 N 4 2 32 0

Shape C1-ver-max Ex 565 (25) S2-shape-ex 261 N 1 2 32 0

Shape C1-hor-max Ex 565 (25) S2-shape-ex 162 N 16 2 32 0

Shape S2-shape-ex Ex 666 (36) CLA-shape,
Attention,
S2-shape-inh

N/A N 100 64 32 255

Shape S2-shape-inh Inh 666 (36) S2-shape-ex 161 Y 2 32 32 0

Shape CLA-shape Ex 3610 (30) Shape-inh,
Shape-decision

N/A N 16 2 32 128

Motion S1-inst Ex 464 (16) S2-where-ex 464 N 27 26 4 0

Motion S1-del Ex 464 (16) S2-where-ex 464 N 27 26 4 0

Motion S2-where-ex Ex 466 (24) CLA-where,
Atention,
S2-where-inh

N/A N 100 64 64 192

Motion S2-where-inh Inh 466 (24) S2-where-ex 161 Y 16 2 32 0

Motion CLA-where Ex 8610 (80) Target, Obstacle N/A N 32 16 64 0

Attention Attention Inh 466 (24) S2-where,
CLA-shape,
Attention

N/A N 5 16 16 128

Decision Target Ex 168 (8) Motor 1610 N 21 5 1 80

Decision Obstacle Ex 168 (8) Motor 1610 N 21 5 1 80

Decision Shape-inh Inh 163 (3) Target, Obstacle 1610 N 4 4 1 0

Decision Shape-decision Ex 163 (3) Motor 1610 N 13 3 1 0

Decision Motor Ex 168 (8) N/A N/A N 8 7 4 0

As can be seen, the entire network is built around a modest set of parameters for the odeled neurons. Each column describes the properties of neuronal groups.
Module: the architecture sub-system to which the group pertains. Layer: the neuronal layer in which the group is incorporated. Neuron type: either excitatory (Ex) or
inhibitory (Inh). Size: the shape of the rectangular layer (between parentheses the total number of neurons). Target layers: the projecting layers for the group.
Topographic RF size: the receptive field of each neuron (N/A if not applicable). Train only: whether the group is active only during training (Y) or not (N). T: firing
threshold. L: leakiness factor. S+: excitatory weighting value. S-: inhibitory weighting value.
doi:10.1371/journal.pone.0036958.t002
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experiments. Because of the initial random connectivity of this

neural layer, the S2-shape-ex neurons’ receptive fields are not

retinotopically organized as in the lower level neural layers. While

this connectivity means that a certain level of detail is lost to the

upper levels of the shape categorization module, it does not hinder

the performance of the system given the simplicity of the current

retina implementation and the scale of neural system we are

interested in modeling. Future extensions to our model may justify

the use of maintaining a topographical organization for the higher

neural modules, and we have performed some initial experiments

which utilize topographical receptive fields in the S2 neural layer.

Finally, the uppermost layer of the shape categorization module

is the classifier (CLA-shape), which learns to invariantly recognize

a particular object anywhere in the visual environment, similar to

the IT region of the visual cortex. While using a single neuron per

shape or object classification worked in our initial experiments

(i.e., one neuron learned to fire invariantly for the presentation of

the letter ‘T’ anywhere on the retina), we found that learning rates

were significantly improved using a population, or pool, of

neurons per learning category. Given that the network has been

trained long enough, various S2-shape-ex neurons will consistently

fire in response to an object stimulus as it moves through the

environment. Each category pool of neurons is initialized with

random connectivity to the S2-shape-ex neuronal layer, and the

synapses are strengthened using the value gated burst-STDP

described earlier. The main advantage of using a neuron pool is

that the response of each neuron in the pool will depend on its

initial connectivity, which in turn will elicit rewards or punish-

ment. The more neurons that are activated, the more the reward

system induces the value gated burst-STDP, which ultimately

drives the CLA-shape layer to learn the appropriate categoriza-

tions of the S2-shape-ex layer neurons. We note again that other

bio-inspired models for visual categorization have been developed

(see for example [21,67,68]). However, the scope of our work was

not to develop a model able to outperform existing ones, but

rather to show the capabilities of a minimal, in silico, fully

neuromorphic approach, and HMAX provided a good, wide-

spread framework.

Motion Detection Module. The architecture of the motion

detection module draws inspiration from previously published

works in the field, such as [27,28], which are based on an HMAX-

like architecture. This approach, far from being the only bio-

inspired model present in the literature, has the advantage of

allowing us to implement an architecture similar to the shape

categorization model, thus increasing the modularity of the whole

network. Therefore, the architecture of the motion detection

module is organized hierarchically like the shape categorization

module and features both hard-wired and plastic/learned synap-

ses. First, a hard-wired feature detection step exhibits firing for

a preferred stimulus location. Next, unsupervised learning

associates the detections across multiple of these hard-wired

feature detectors. Finally, supervised learning via value gated

burst-STDP categorizes these associations.

Motion is first divided into basic steps–or primitives–which are

then combined into higher level paths. Our implementation–

although simplified to account only for few straight-line paths–is

however based only on spiking neurons and is therefore a starting

point for designing fully neuromorphic motion detection models.

The feature detection step is made up of 2D retinotopically

organized neural layers, S1-inst and S1-del. Both receive inputs

from the retina and have the same receptive fields, but the

connections between the retina and S1-del introduce a delay that

allows the network to detect the motion of a shape. Thus, if a shape

can only move every 10 time steps, the optimal delay will

correspond to 10 time steps as well. The receptive field of each

neuron covers a 464 area of the retina, and each neighboring

neuron in the S1-inst and S1-del layer overlaps its receptive field

by two pixels with its neighbor in both the horizontal and vertical

directions. These neurons–which are memoryless in the sense that

they are highly leaky and do not maintain a membrane potential

between subsequent time steps–have a threshold which allows

them to fire whenever any of the input stimulus shapes is present in

their receptive field. Thus, these cells show no preference for

a particular object, but simply fire when an object is present at all.

Next, unsupervised learning forms connections between the S1

and S2 layers in the motion detection module. The S2 area in this

module consists of two neural layers, S2-where-ex and S2-where-

inh, both composed of 24 cells. Each cell in S2-where-ex is

connected by random weights to all units in both S1-inst and S1-

del. Cells in S2-where-inh receive inputs from a single correspond-

ing cell in S2-where-ex, and reciprocal output connections inhibit

all other S2-where-ex neurons. In the training phase, only one

shape is present at any given time on the retina (without noise);

thus only one cell in S1-inst and S1-del are active simultaneously.

The combination of the S2-where-ex and S2-where-inh again

create a weakly enforced WTA network. Since connections from

the S1 layers to S2-where-ex are initialized with random synaptic

weights, it is likely that a single S2-where-ex neuron will build up

membrane potential, fire, inhibit its neighbors through the S2-

where-inh cells, and update its synaptic connections through burst-

STDP. Because the initial connectivity is random, nothing strictly

enforces that only a single cell wins every time, but in practice each

S2-where-ex neuron typically learns a unique combination of S1-

inst and S1-del cells. At the end of training, cells in S2-where-ex

will be specialized for a particular combination of S1-inst and S1-

del spikes, i.e. for a particular localized direction of motion.

Finally, the value gated step works by associating several S2-

where-ex units to a corresponding direction and starting point

combination. Each direction/starting point combination is repre-

sented by a pool of neurons in layer CLA-where. Here we

modeled eight different direction/starting point combinations (two

directions of motion are possible at each starting point in each of

the four corners of the retina) and each pool contains ten neurons.

Again, eight neurons (one per category of motion) could achieve

this task, but we found using pools of neurons improved learning

rates for the system. Whenever activity integrated over time in

a pool is greater than that of the other pools, the external reward

system is activated, and a subset of connections is potentiated or

depressed, depending on whether it is the correct or wrong pool

that is firing. After extensive training, each pool groups several S2-

where-ex cells (each of which has learned a small, localized

preferred direction of motion) through its synaptic connections. As

such, the same pool of neurons in the CLA-where neural area will

fire consistently as an object moves all the way across the retina.

This architecture is a simple yet effective model of cortical

motion detection systems. S2-where cells perform the most basic

motion detection step, by comparing the position of features in

subsequent steps, each along one predefined direction. Thus they

basically replicate (in a very simple manner) the role of the medio-

temporal cortex (MT). CLA-where cells, instead, represent higher

areas, such as parietal ones, where this information is integrated

over larger receptive fields.

Attention Module. Because of the vast amount of raw data

the retina provides to the visual cortex, it is useful to have

a mechanism to discriminate important features and objects from

other distractors. The attention module accomplishes this impor-

tant task by providing top-down signaling to the lower level visual

processing areas through feedback connections to place emphasis
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on important features and filter out distractors. In our network, the

visual attention neurons perform this task when multiple objects

are present; they provide focus on the objects in the visual

receptive field determined to be the most important through

feedback connections, while silencing the neurons firing for

distractor objects.

As can be seen in Figure 3, the attention module receives

excitatory input from both the shape categorization and motion

detection modules. While the attention module receives topolog-

ical hard-wired connections from the motion detection module,

the synapses from the shape module are initialized to random

weights and strengthened through value gated burst-STDP.

During training, the value gated burst-STDP only modifies the

plasticity of these connections when the target object is present in

the retina. In this way, the attention module learns associations

between the directions of motion, as well as the neurons in the S2-

shape-ex layer that fire for a particular presentation of a target

object. During learning, attention neurons inhibit their neighbors

to promote learning of unique shape and motion pairs. In this way,

a single attention neuron should fire whenever a target object is

present in the retina.

After learning has completed, the attention module sends top-

down inhibitory connections to both the motion detection and the

shape categorization modules. In the shape categorization module,

the attention module inhibits all neurons in the CLA-shape layer

except for those firing for the target object. Since the connections

from the S1-where-ex layer are topologically organized, the firing

of an attention neuron indicates both that the target object is

present, as well as its local range of motion. In turn, the attention

module projects reciprocal connections back to the S1-where-ex

layer, inhibiting any motion detection that is not associated with

the target object.

In this way, attentional modulation is first triggered bottom-up

by the recognition of a target object. Afterward, attention provides

top-down inhibition to filter out distractor objects in the CLA-

shape layer as well as distractor motion in the S1-where-ex layer.

This inhibition also provides some noise filtering for both neural

layers. This method of global inhibition was first proposed by

Fukushima [69], though more localized attentional modulation

systems have been proposed [70] and experimentally validated

[71].

Other attention models have been proposed in the context of

object recognition, with most recent works focusing on saliency as

a tool to extract relevant features. One example is bottom-up

attention based on salience [72,73], which has also been shown to

work in conjunction with HMAX [74]. Interestingly, saliency has

been applied either as a tool to extract the most relevant features

from the environment [75], or as a way to focus further

computational efforts on significant features only [76,77]. A

combined bottom-up and top-down approach has also been

introduced not only to extract relevant features, but to modify eye

position accordingly [78], thus implementing a feedback loop.

Finally, attention has been proposed as a strategy to focus

reinforcement learning on the most behaviorally relevant circuits

[79]. In our network, instead, the attention module has been

designed to play a more focused role in a simple yet effective

manner. Thus, rather than focusing network activity on the most

relevant features present in the visual field, the attention module

has to select the most behaviorally relevant object among several

ones that may appear simultaneously. It must also be pointed out

that, although the attention module has been designed specifically

for the task of discriminating between two classes of moving

objects, it could easily be adapted to more complex cases, the only

limiting factor being the number of available artificial neurons.

Decision Module. The decision module is responsible for

determining the motor output reaction to the state of the visual

environment. This decision module helps the network cope with

the presence of noise in the input environment. In particular, it

evaluates whether the classifications performed by the shape and

motion detection modules are consistent over time or just sporadic

detections (and thus likely to be erroneous detections caused by

noise).

There are several neural groups that make up the decision

module and are ultimately responsible for making the motor

output decision. The Target and Obstacle neuron groups are

hard-wired to the CLA-where neuron layer, competing to activate

the motor output given the particular motion detection that has

been classified. In the current implementation, the ‘‘high level’’

motor output is the decision to avoid an obstacle or approach

a target, while the lower level motor outputs determine the precise

motor outputs required to achieve this decision. Biologically, we

consider how a mammal may make the high level decision to get

some food or avoid a predator, while lower level motor outputs

actually orchestrate the motion and minute actions. The Target

neuron group attempts to activate the motor neuron pool which

moves the ‘‘catcher’’ (see Figure 4) to the destination of the target

object, while the Obstacle neuron group moves it to the furthest

corner. The Shape-inh is a layer of inhibitory neurons which are

activated by the shape categorization module CLA-shape neurons

(i.e. they are easily activated by having a very low firing threshold),

which in turn inhibit either the Target or Obstacle neuron layers

depending on the current shape categorization. Finally, the Shape-

decision neural layer is also activated by the CLA-shape neurons,

though they require consistent activations of the same shape over

multiple time steps before activation (i.e. they have a high firing

threshold, requiring many activation inputs), thus creating a robust

classification even in a noisy environment. The motor neurons

activate once simultaneous firing occurs between the Shape-

decision and either the Target or Obstacle neurons.

Figure 4. The 10610 pixel simulation environment, as seen by
the retina. The object (here a white ‘‘T’’) appears in the upper left
corner and moves along the top edge of the visual field. After learning,
the decision module motor output moves the catcher (visualized as the
dark grey object) from its previous location to a location and
orientation where it will catch the object.
doi:10.1371/journal.pone.0036958.g004
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Results

We evaluated the performance of the network using several

different recognition tasks. For these tasks, we trained the network

in a noiseless environment on a single object at a time using

a 10610 pixel visual stimulus environment. The choice for this

simple visual environment again was motivated chiefly by our

desire to show a minimal multi-modal network architecture of less

than 1000 neurons. Given this strict constraint, we were able to

develop a network in which 100 neurons (10% of all cells) were

employed as a noisy retina, and the rest of the network was still

able to discriminate two orientations, three different objects – also

appearing simultaneously in the visual field, eight possible

trajectories, and associate a distinct behavior to each object.

Although the environment was necessarily simple, we are

nevertheless able to show the potential of our architecture. In

the following experiments, we show the network’s abilities to

classify multiple simple objects, track motion in a noisy environ-

ment, and make correct motor outputs for multiple moving stimuli

in a noisy environment. We also demonstrate the necessity for the

top-down modulation provided by the attention module.

Learning Multiple Categories
Our first experiment tested the network’s ability to learn

translation invariant representations of multiple objects as they

move through the visual field. In the training phase of the

experiment, we presented a single object at a time, which

appeared in one of the four corners of the retina, moved in the

lateral or vertical direction, and finally moved out of the receptive

field of the retina (see Figure 4) The corner where the object

initially appeared, as well as its direction of motion, were chosen at

random. This experiment used three different objects, the letters:

T, L, and J, in both the training and testing phases (see Figure 5).

Figure 6 shows the average performance of the shape classification

module’s response after a single training session. Here we tested

four different random initializations of connection strengths with

the same training set, in order to verify the robustness of our

network in categorizing the shown stimuli. Testing consisted of

100 presentations of each letter, with the starting corner and

direction of motion chosen at random. We see that the average

correct recognition of each of the letters was between 80 and 92%

after a single training epoch. The variance of recognition across

trials was predominately a result of variable random initialization

of the plastic synapses. For all subsequent experiments where the

degree of noise on the retina is varied, the network was trained for

multiple epochs to ensure robustness.

Figure 7 shows how the connectivity differed before, during,

and after training for the shape categorization module. In the top

of the figure, we examine the synaptic connections from the C1-

hor-max neural layer to the S2-shape-ex layer. Initially, the

connectivity is randomized (top left of Figure 7), with no designed

bias. However, during training we see that various plastic synapses

have strengthened, and homeostatic renormalization has ensured

that the maximum synaptic strength is 1. After training, we see all

of the S2-shape-ex neurons have formed just a few strong synapses

with the C1-hor-max neurons. These S2-shape-ex neurons have

also formed strong synaptic connections with neurons in the C1-

ver-max layer, and as a result an S2-shape-ex neuron will fire for

a single shape at a specific position in the retina. Above the S2-

shape-ex layer, the CLA-shape classifies the various S2-shape-ex

cells into three categories corresponding to the three learned

shapes (bottom of Figure 7). Again, initial random connectivity

does not show a designed bias for a particular learned set of

synapses, but we see the final connectivity classifies nearly all S2-

shape-ex neurons into one of three pools (bottom right). Thus each

S2-shape-ex cell will lead to the activation of one of the three pools

in CLA-what layer, which will classify shapes independently from

their position on the retina (position invariance). It can also be seen

from this figure that the homeostatic renormalization has

Figure 5. The trained stimulus of the neural network. ‘‘T’’ is a Target object, the catcher must be positioned in front of it; ‘‘L’’ is an avoidance
object, the catcher must be placed in the position opposite to it; ‘‘J’’ is a distractor and should not elicit a motor response.
doi:10.1371/journal.pone.0036958.g005
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Figure 6. Performance of the shape categorization module. This
graph shows the percentage of correct responses to the presentation of
the three letters in each possible position in the visual field (mean
values + standard errors, 4 different random initial conditions for
connection strengths). Each initialized network was trained for a single
epoch. A correct response is given around 80% of times or more for all
letters.
doi:10.1371/journal.pone.0036958.g006
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converged the synaptic weights, initialized as random, to binary

values, since each synapse is a an on-synapse (red pixel) or an off-

synapse (blue pixel).

Motion Detection in a Noisy Environment
Our second experiment tested the motion detection ability of

the network in a noisy environment (as in the example of Figure 8).

Again, in the training phase of the experiment, the retina was

presented with a single object at a time, appearing in one of the

four corners. The object then moved in a lateral or vertical

direction until it moved outside of the receptive field of the retina.

Since the retina is organized as a simple square, the amount of

time an object is present in the retina is the same from trial to trial.

The same three simple letters (T, L, and J) were chosen randomly

with equal likelihood. For each trial, the response of the network

was interpreted as follows. If no motor response was recorded

between the time a new object appeared and when it had moved

out of the retina’s receptive field, the response was considered

a ‘‘No Decision’’ However, if a motor response was recorded

during this time, the last response was considered to be the final

decision. For example, if initially the network responds with

a correct decision, but then changes to an incorrect decision before

the object dissappears, the network’s response is considered

‘‘Incorrect’’.

Figure 9 shows the results of this experiment, as the level of

noise is increased up to 45%. We see from the figure that the

network is able to correctly classify (with 100% accuracy) the

direction of motion, even with 33% noise on the retina. As the

level of noise continues to increase, the network begins to make

incorrect decisions. For a noise level greater than 42%, an

incorrect decision becomes more likely than a correct decision.

However, overall the results show that the motion detection

module is quite robust.

Full Network Response in a Noisy Environment
We next evaluated the performance of the entire network in the

presence of a noisy environment.

In biology, the inputs to the visual cortex always exhibit some

level of noise, yet somehow is able to make sense of its

surroundings. Since the cells modeled in our neural network are
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Figure 7. Changes in connectivity as a consequence of training and burst-STDP with renormalization in the shape categorization
module. Top: unsupervised learning, connections from layer C1-hor-max to layer S2-shape-ex. Bottom: value-gated learning, connections from S2-
shape-ex to CLA-shape. In each subfigure, the X-axis is the presynaptic layer, and the Y-axis is the postsynaptic layer.
doi:10.1371/journal.pone.0036958.g007

Figure 8. Visual environment with 8% noise injection. The
object (here a white ‘‘T’’) appears in the upper left corner and moves
along the top edge of the visual field. Noise has been modeled as an 8%
probability of changing the value of any pixel (from 0 to 1 or vice versa).
The catcher is correctly moved to the top right corner, facing the arrival
of the target.
doi:10.1371/journal.pone.0036958.g008
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LIF, the cell membranes will still potentiate in response to noisy

inputs and maintain a memory across multiple time steps, so long

as the noise is within a reasonable limit. As a result, the network

has an inherent resilience to filter out much noise on its own, as

even noisy inputs will eventually cause the cell tuned for

a particular edge, feature, or object to fire. Additionally, the

decision module makes the network more robust by determining if

classifications performed by the shape and motion detection

modules are consistent over a reasonable time interval.

We varied the total amount of noise in the visual receptive field

for a given simulation cycle from 0 to 25%. That is, in the 10610

pixel environment, if there is 8% noise injection, on average

8 pixels will be flipped at any given time (see Figure 8). Again, the

object, the starting position, and direction of motion are chosen at

random. A response is considered correct if the correct motor

output neuron fires before the object has moved out of the visual

environment. The response is considered incorrect if the motor

output is to the wrong location for target and avoidance objects.

For these practical purposes, tests were conducted using only the

T-shape (target) and L-shape (avoidance object). Finally, all other

responses are categorized as non-decisions, in which no motor

output was chosen at all.

In Figure 10, we see the results of the network performance as

noise is increased. The testing phase (for each percent of noise

injection) consisted of 100 object presentations, and the target

object and avoidance object were chosen with equal probability.

We see that the network is able to always give a correct response

for up to 8% noise injection on the retina. As the degree of noise is

further increased, the number of non-decisions begins to rise, and

the number of correct decisions falls. The network responds

correctly 80% of the time with 20% noise injection, and 54% of

the time with 25% noise injection. However, as a result of the

decision module, we see that the number of incorrect decisions is

consistently low, only reaching 10% when 25% of the retina is

exhibiting noise.

Multiple Moving Objects
Next, we tested the response of the network in an environment

where multiple objects could appear in the presence of noise. The

network was trained over multiple learning epochs for this

experiment, as well as those that follow. Extensive training for

the network meant that most, if not all, synapses would converge

on useful values, making the network more resilient to noise. In

this experiment, the system was tested on a total of 100

presentations (for each percent of noise injection). On each

presentation, 25% of the time a target object (T) appeared, 25% of

the time the avoidance object (L) appeared, and 50% of the time

both appeared. The starting position and direction of motion of all

objects were chosen independently and randomly. During

training, the attention module neurons were value gated to reward

firing for presentations of the T–that is, to pay attention to the

target object over the avoidance object. For this learning task, we

trained the network to catch the target object, regardless of what

other objects may be present.

Figure 11 details the performance of the network with a variable

amount of noise injection. Here, the correct motor response is to

catch the T if it is present and avoid the L if the target object T is

not present. The results are quite comparable to those shown in

Figure 10, as the network shows 100% correct responses even with

8% noise on the retina. Afterwards, the number of non-decisions

begins to rise, similarly to the results shown in Figure 10. However,

we also notice that the number of incorrect decisions is much

higher when there is a high level of noise. When both a target

object and an avoidance object are present at the same time, but

the target object goes undetected because of noise, it is more often

the case that the avoidance object will cause an incorrect decision.

However, we see that the performance of the network degrades

gracefully as the amount of noise is increased.

The scale and complexity of our network is minimal in

comparison to many other learning models, and the stimulus

space in which it operates is also very simple. Yet, we find its

ability to robustly learn and perform tasks of object recognition

and motion detection promising and foresee an expansion of the

model in order to cope with more complex environments.

Evaluating the Attention Module
Finally, we demonstrate the importance of the attention module

for the multiple moving objects task. The network tested in

Figure 11 includes an attention module which utilizes top-down

Figure 9. Performance of the network at motion detection task.
The graph shows the performance of the network for the motion
detection task as a function of the % of noise on the retina. A ‘‘Correct’’
response means the last motor decision of the network matched the
direction of motion, and an ‘‘Incorrect’’ response means the last motor
decision of the network did not match the direction of motion for the
stimulus. Finally, ‘‘No Decision’’ indicates that no motor response was
recorded. The network shows 100% accuracy until the noise on the
retina is above 33%.
doi:10.1371/journal.pone.0036958.g009

Figure 10. Performance of the network with single object
presentation and a varying level of noise. The graph shows the
performance of the network when a single object is presented, as
a function of the % of noise on the retina. All letters, positions and
directions of motion were tested. The network responds correctly up to
8% noise on the retina. When the noise on the retina is above 18%, the
number of non-decisions begins to rise rapidly. However, even for 25%
noise on the retina, the number of incorrect decisions is less than 10%.
doi:10.1371/journal.pone.0036958.g010

A Neuromorphic Architecture with Burst-STDP

PLoS ONE | www.plosone.org 13 May 2012 | Volume 7 | Issue 5 | e36958



inhibition to mask both noise and distractor objects whenever

a target object (i.e. the T object) is present. Figure 12 shows the

exact same experimental setup with the same network, except the

output connections from the attention module have been severed.

From the results, we see that even for very low levels of noise,

the network seldom achieves greater than 75% correct responses.

This is mostly due to the nature of the task. When both a target

object and an avoidance object are present, the network should

preferentially respond to the target object first. However, as we see

here, without an attentional mechanism driving this preference,

the network is much more likely to make mistakes, responding to

the avoidance object instead. Comparing Figures 11 and 12, we

clearly see the benefit of attentional modulation even for the

simple tasks presented here.

Discussion

In this paper we have presented a detailed network architecture

of spiking neurons capable of both recognizing moving objects and

determining the correct motor control output for a particular

object. This hierarchical neural network was trained using

a learning paradigm built around burst-STDP, value gated

burst-STDP, and homeostatic renormalization. This biologically

inspired learning algorithm takes into account the observed fact

that spiking is expensive in terms of energy. Thus, bursts convey

only the most certain information and promote faster learning

rates than single-spike STDP. The combination of leaky integrate-

and-fire neurons, a biologically inspired network architecture, and

burst-STDP learning rule allowed our model to robustly perform

its recognition and motor decision tasks, even in the presence of

distracting objects and a noisy environment.

The main contribution of this work is a demonstration of how

a simple neural model with a limited set of parameters and binary

synapses can achieve robust performance at various tasks. It is

clear how neural networks of this design are primary candidates

for deployment on energy efficient neuromorphic hardware

designs in silicon. As such, we have demonstrated that the simple,

modular building blocks presented in this work can provide a proof

of concept of the feasibility of our approach. Future work will deal

with expanding the size and capabilities of the network, exploiting

its modular properties in order to make it easy to test the network

on simpler environments and then scale it with a reduced effort.

Previous works, for example [20,21,24], have shown that bio-

inspired architectures can approach the performance of both state

of the art image recognition computational techniques as well as

human beings in some tasks. Recently, it has however been shown

that biologically inspired models such as HMAX fail to out-

perform a V1-like model in the classification of reference image

collections, thus raising doubts on their capabilities to be employed

for uncontrolled natural images [22]. Nevertheless, we decided to

employ HMAX as a starting point for our bio-inspired architec-

ture for several reasons: HMAX is widespread not only in the

artificial vision field, but in the whole neuroscientific community;

its modular, scalable architecture is suitable for a hardware

implementation; implementations for both object recognition and

motion detection have been developed and allow to design

a homogeneous, replicable architecture.

In this work, we attempt to follow a completely bio-inspired

approached and therefore mimicked biological systems in terms of:

1) elementary units – we used actual artificial neurons with axons

and dendritic trees (see the Hardware constraints sections for

details on neuron design), rather than fitting neural activity with

approximate functions; 2) architecture–although highly simplified,

neuronal types and connectivity are based on actual brain

organization, such as the existence of simple and complex cells

and the hierarchical organization of cortical areas; 3) communi-

cation system–neurons use actual spikes for transferring in-

formation; 4) learning mechanisms–burst-STDP is directly derived

from neural systems. The results show that even this simple bio-

inspired system can successfully be employed to perform complex

tasks such as shape categorization, motion anticipation, attention

modulation, and decision making. Although the small size of our

network architecture limited the visual stimulus environment to

a 10610 grid of binary pixels containing simple letter shaped

objects, with less than 1000 neurons we were able to build simple

models of multiple brain areas responsible for several important

functions. We must here emphasize again that the goal of this work

was to show the potential offered by a neuromorphic, in silico

approach, and not to develop a novel computational model of the

Figure 11. Performance of the network with two simultaneous
objects presented and a varying level of noise. The results of the
graph were obtained by testing the network on both single objects
(50% of presentations) and two objects (50% of presentations) moving
across a noisy retina. Again, the network is capable of 100% correct
responses when retinal noise is below 8%. As the noise on the retina is
increased, both the number of non-decisions and the number of
incorrect responses increases.
doi:10.1371/journal.pone.0036958.g011

Figure 12. Performance of the network without attention
module. The graph shows the same experiment as presented in
Figure 11 after severing the outputs of the attention module. Even for
low levels of noise in the retina, the network seldom achieves greater
than 75% accuracy at the task. Furthermore, the number of incorrect
responses is significantly higher (even for low noise levels), since the
attention module no longer shows preference for the target object.
doi:10.1371/journal.pone.0036958.g012
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visual system. In fact, it would be quite difficult to compare our

network with state of the art ones, given all the hardware-derived

constraints we strictly adhered to.

The same hardware-driven constraints forced us to choose

between designing a network able to cope with a single, complex

problems, or able to perform multiple simpler tasks. We chose the

latter strategy, since we felt it could show the versatility of a fully

neuromorphic system. Although much work remains to be done,

being able to perform different tasks is fundamental for

applications in the field of robotics. As we will discuss in the

following paragraphs, expansions to the present network are

needed to increase its power to deal with more complex tasks and

environments, thus placing it a step closer to be deployed to a robot

operating in the real world.

Furthermore, this system also demonstrated the role of feedback

connections by showing preferential motor output for a particular

object deemed more important. Although very limited in

comparison with their extent in the brain, feedback connectivity

plays in fact a major role in our model, by allowing the attention

module to selectively inhibit neurons responding to the stimulus to

be ignored, and thus allow the motor output to respond to the

target only.

Considering the success of our hierarchical and modular design,

we consider several enhancements and expansions to our network

architecture. Similarly to the work of [20,24], this modular design

also allows us to extend our model in terms of scale and granularity

of processing in the shape categorization module. While the

current implementation of the shape categorization module

considers only a single processing scale and two edges of

orientation in the S1 layer (corresponding to V1 in the visual

cortex), adding additional S1 cells with preference for alternate

orientations or edge scales is a relatively simple task. Such

additions would also allow us to extend the size of the visual field

environment, learn more visual features, recognize more objects,

and ultimately perform even more complicated recognition tasks.

Further extensions would consider giving the system the ability to

learn rotational invariance for visual stimulus. This could in

principle be obtained by having the network learn to recognize the

same object at different degrees of rotation and then associating its

various representations at the classifier level via supervised

learning.

In this paper, we considered the hardware constraints imposed

by a digital neuromorphic hardware design [8,9]. However, it is

also important to point out that similar (though analog circuit)

designs already are utilizing fabrication techniques to develop

chips that consist of many cores [80]. Within a single fabricated

wafer, a network of up to 180,000 neurons can be configured [80].

The most critical step in scalability lies therefore not in

neuromorphic hardware resource availability, but in the possibility

to easily design and deploy a large-scale network architecture. This

could be done only with a modular architecture, to be designed

with tools such as a hardware description language. In our

implementation of an HMAX-like architecture we tried in fact to

maximize modularity–and therefore scalability. For example the

model could be expanded with the capability to recognize

segments in an additional direction (i.e. not only vertical or

horizontal) by adding a third set of layers (similar, for example, to

S1-hor, C1-hor-ex, C1-hor-inh, C1-hor-max), which would differ

from those already present only for they connectivity to the retina.

Furthermore, inter- and intra-layer connectivity is also modular–

since connectivity between two neurons only depends on their

relative positions –and can be easily expanded for large retinas.

Additional functionalities could be in principle implemented by

adding additional layers on top of those already present. We will

investigate more in detail these issues in future projects.

Beyond the shape categorization module, we also consider

integrating a color processing module in future extensions to our

neuromorphic system. The attentional system could also be

enhanced by a color processing module. For example, areas of

high contrast in the retina would likely be important, and the

attentional system could direct the shape categorization module to

specifically attend to such areas, as opposed to fully processing the

entire visual field. Such extensions would both reduce the

computational power required to robustly process visual in-

formation, as well as enhance the performance of the system

significantly.

The learning algorithm employed here is based on biological

plastic mechanisms. In related work [50], we were able to replicate

several experimental findings using an NMDA-receptor dependent

STDP algorithm with sleep-dependent renormalization. Burst-

STDP is the translation of such a biological mechanism for

networks of artificial spiking neurons, and here we proved its

effectiveness for general learning tasks. Thus, these simulations

provide a proof of principles on which burst-STDP is based: the

metabolic cost strictly regulates the production and timing of

spiking activity. Therefore, high firing rates must necessarily carry

high information and must affect synapses more than sparse firing

activity.

This paper has outlined the abilities of our network architecture,

and we consider that, strikingly, all these tasks were achieved with

a single elementary unit, the LIF neuron. While some layers were

specifically organized in terms of topography or hard-wired

connections, the entire system was built using a simplified model

neuron with a limited number of configurable parameters. The

modular architecture and configurable neuron model we have

described are suitable for inexpensive hardware implementations

as described in [8,9], especially considering that homeostatic

renormalization, which is key to the learning algorithm, naturally

converges synapses to binary solutions. Aside from the number of

neurons implemented (1000 in our network architecture, as

opposed to 256 on the neuromorphic chips from [8,9]), it is clear

how neural networks of this design are primary candidates for

deployment on energy efficient neuromorphic hardware designs in

silicon.

In future work, we will consider fundamental comparisons

between burst-STDP with homeostatic renormalization and other

biologically inspired learning rules. Such a comparison would be

quite useful, considering at least one neuromorphic chip exhibits

online plasticity [9] with the choice of one of four learning rules:

Hebbian, anti-Hebbian, STDP, and anti-STDP learning.
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