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Abstract: Healthy brain functioning in mammals requires a continuous fine-tuning of gene expres-
sion. Accumulating evidence over the last three decades demonstrates that epigenetic mechanisms
and dynamic changes in chromatin organization are critical components during the control of gene
transcription in neural cells. Recent genome-wide analyses show that the regulation of brain genes
requires the contribution of both promoter and long-distance enhancer elements, which must func-
tionally interact with upregulated gene expression in response to physiological cues. Hence, a deep
comprehension of the mechanisms mediating these enhancer–promoter interactions (EPIs) is critical
if we are to understand the processes associated with learning, memory and recall. Moreover, the
onset and progression of several neurodegenerative diseases and neurological alterations are found to
be strongly associated with changes in the components that support and/or modulate the dynamics
of these EPIs. Here, we overview relevant discoveries in the field supporting the role of the chro-
matin organization and of specific epigenetic mechanisms during the control of gene transcription
in neural cells from healthy mice subjected to the fear conditioning paradigm, a relevant model to
study memory ensemble. Additionally, special consideration is dedicated to revising recent results
generated by investigators working with animal models and human postmortem brain tissue to
address how changes in the epigenome and chromatin architecture contribute to transcriptional
dysregulation in Alzheimer’s disease, a widely studied neurodegenerative disease. We also discuss
recent developments of potential new therapeutic strategies involving epigenetic editing and small
chromatin-modifying molecules (or epidrugs).

Keywords: epigenetic regulation in brain; chromatin organization during cognition; mechanisms of
synaptic plasticity; epigenetic editing in neurodegenerative diseases

1. Introduction

Brain function in mammals requires tight control of gene expression in all neural
cells. Moreover, processes mediating learning and memory involve the establishment of
cell engrams that support efficient neuron connectivity, which is strongly based on the
ability of these cells to express proper gene profiles. Accumulating evidence during the last
four decades demonstrates that epigenetic mechanisms modulating dynamic changes in
chromatin organization are critical components during the regulation of gene transcription
in response to physiological cues (for reviews see [1,2]). Moreover, aberrant epigenetic
mechanisms are associated with pathological brain processes, including neurodegenerative
disorders such as Alzheimer’s disease (AD) (for reviews see [1,3]). Recent genome-wide
studies using postmortem non-diseased human brains also support the intriguing possi-
bility that AD risk variants located in enhancer regions may change gene expression by
altering the interaction between promoters and enhancers [4,5]. Together, these findings
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support the raising concept that the onset and/or progression of several brain-related
pathologies may be directly associated with a reduced ability of neural cells to establish
and sustain a chromatin configuration that efficiently permits the required gene expression
profile. More importantly, the data point to a number of genes and regulatory pathways in
brain cells that may be used as potential new therapeutic targets and diagnostic tools.

Here, we overview recent relevant results in the field supporting the role of the
chromatin organization and specific epigenetic mechanisms during the control of gene
transcription in neural cells. Special consideration is dedicated to reviewing data generated
by investigators using the fear-conditioning paradigm to study learning and memory, as
well as animal models specifically developed to address basic molecular mechanisms in
Alzheimer’s disease.

2. Mechanisms of Epigenetic Control in Mammals

In eukaryotic cells, the genome is organized through a complex structure of proteins
and DNA named chromatin. This organization is a key component during the regulation of
gene expression as the cells can modify the level of compaction of chromatin and hence alter
the access of the transcriptional machinery to specific genomic sequences. The fundamental
unit of chromatin is the nucleosome, which includes a DNA segment of approximately
147 bp in length that is wrapped around an octamer of histone proteins (two each of
histones H2A, H2B, H3 and H4) [6,7]. The N-terminal sequence of these histone proteins
(histone tales) protrudes outside the limits of the nucleosome particle and provides a
surface for recognition by, and for subsequent interaction with, proteins that regulate
transcription [8–10]. Moreover, residues (e.g., lysine residues) within these histone tails
can be targets for enzyme-mediated post-translational modifications, hence, altering the
chemical environment of particular regions of the chromatin fiber and potentially affecting
gene expression in cells [9]. Importantly, genomic DNA can be also enzymatically modified,
affecting also the degree of compaction of chromatin, and hence, contributing to regulating
transcription [11,12].

Nuclear proteins that regulate chromatin organization and transcription are critical
players during cell responsiveness to external physiological cues. Among them, we find
the large group of enzymes that can catalyze a wide number of “histone post-translational
modifications” (HPTMs), a set of marks that together constitute a principal “epigenetic”
mechanism [9,10,13]. HPTMs can function as docking sites on the chromatin surface that
can be recognized by specific nuclear proteins (“epigenetic readers”) that contain comple-
mentary high-affinity domains (e.g., chromo-domains interact with methylated histone
lysine residues or bromo-domains that recognize acetylated histone lysine residues) [10,14].
In addition, a significant number of nuclear protein complexes that are capable of mediating
deposition (“epigenetic writers”) or elimination (“epigenetic erasers”) of HPTMs in eu-
karyotic cells (see Figure 1) include core subunits that are evolutionarily conserved [15–17].
Together, these findings provide strong support to the idea that the contribution of these
nuclear complexes to gene expression control is conserved across the species.

Acetylation of histone lysine residues was one of the first reported HPTMs in eukary-
otic cells [18]. Enzyme-mediated transferring of an acetyl group from the cellular substrate
acetyl CoA to a histone protein neutralizes the positive charge of the acceptor lysine residue
and can decrease the affinity between acetylated histones and the negatively charged DNA
within the nucleosome particle. This in turn may result in de-compaction of chromatin
fibers that favors transcriptional activity [9]. The enzymes that mediate this acetylation
reaction, that were initially discovered through genetic-based screen analyses, are known
as Histone Acetyltransferases (HATs) and have been shown to be critical regulatory compo-
nents of nuclear complexes that promote transcription [19,20]. Among them we can find the
transcription coactivators P300 (E1A Associated protein P300) and CBP (CREB (Cyclic AMP
Response Element Binding Protein binding) Binding Protein), GCN5 (General Control Non-
Depressible 5), PCAF (P300/CBP Associated Factor) and TIP60 (TAT Interacting Protein 60),
that are recruited to target promoters and enhancer sequences by transcription factors to
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produce high-chromatin acetylation [20,21]. Histone acetylation is a highly dynamic mark
on the chromatin as it can be rapidly removed by the activity of a large family of specialized
proteins containing histone deacetylase activity (HDACs) [19]. These HDACs are also
recruited to regulatory regions of the genome (Figure 1) by sequence-specific transcription
factors that, in this case, function as transcriptional repressors.
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Figure 1. Epigenetic changes during transcriptional activation in mammalian cells. The diagram
depicts epigenetic marks associated with transcriptional activation or repression of a gene promoter.
Repression-associated epigenetic marks are shown in red (poorly acetylated H4K12 and H3K14,
H3K4me1, H3K9me3, H3K27me3 and 5mCpG (for methylated DNA)) and active transcription marks
are shown in green (H4K12Ac, H3K4me3, H3K9Ac, H3K14Ac, H3K27Ac, and CpG (for unmethylated
DNA)). Enzymes that can mediate deposition (“writers”) and elimination (“erasers”) of these marks
are also indicated. The transcriptional start site (TSS) of the gene in active (green) and repressed (red)
conditions is also shown. Gray cylinders represent nucleosomes positioned over the promoter region
of the active (relaxed disposition) and repressed (compacted disposition) gene.

Genetic studies in model systems also permitted the identification of nuclear protein
complexes that control gene transcription by modifying the profile of methylated lysine
residues in histones associated with chromatin. Among them are the Polycomb Group (PcG)
and the Trithorax Group (TrxG) complexes, which can mediate inhibition and activation
of transcription, respectively [22]. One signature property of the evolutionarily conserved
PcG complexes PRC1 and PRC2 (Polycomb Repressive Complex 1 and 2, respectively)
is to mediate the formation of repressed chromatin. In mammals, PRC2 is included as
a principal subunit of the highly conserved protein Enhancer of Zeste Homolog 2 or 1
(EZH2/EZH1) [16,23]. EZH2 is the main catalytic component of PRC2 and mediates tri-
methylation of the lysine 27 residue of histone H3 (H3K27me3), a modification that is
associated with transcriptionally silent chromatin (Figure 1) [10,16].

Mammalian TrxG complexes, including COMPASS (Complex of Proteins Associated
with SET1A/B) and the Mixed Lineage Leukemia (MLL1 to 5)-containing COMPASS-like
complexes, have been identified over the last two decades [13]. The TrxG-mediated enzy-
matic activity involves mono-, di- and tri-methylation of the lysine 4 residue of histone H3
(H3K4me1, H3K4me2 and H3K4me3, respectively). H3K4me3 is often found enriched at
transcriptionally active chromatin (euchromatin), mainly around the transcription start sites
(TSSs) of gene promoters (Figure 1). Moreover, H3K4me3 can be recognized by the RNA
polymerase II complex, hence, facilitating transcriptional activity at H3K4me3-marked gene
promoters [24]. Importantly, the histone-methyltransferase complex MLL3/4-COMPASS-
like can include additional enzymatic activities (e.g., UTX/KDM6A (Ubiquitously Tetra-
tricopeptide Repeat X Chromosome/Lysine Demethylase 6A)) mediating the removal
of histone marks like H3K27me3 [16]. Hence, binding of MLL3/4-COMPASS-like to a
genomic region can additionally produce a reduced enrichment of H3K27me3, an epige-



Int. J. Mol. Sci. 2022, 23, 12081 4 of 23

netic signature associated with decreased transcription [10,16]. SET1-COMPASS mediates
the global genomic deposition of H3K4me3 in most mammalian cells, and therefore, its
function is often associated with the transcriptional activation of a large number of genes
(Figure 1). MLL2-COMPASS-like has been shown to be responsible for H3K4me3 deposition
at promoters (Figure 1) of the homeobox genes during embryogenesis [25]. Interestingly,
MLL3/4-COMPASS-like complexes can catalyze the deposition of H3K4me1 at enhancers in
mammalian cells, and thus, have been recognized as an epigenetic landmark to identify pu-
tative distal regulatory enhancer sequences [26,27]. Results from several groups, however,
also indicate that MLL3/4 complexes can mediate the maintenance of the H3K4me1 mark at
proximal promoter regions of repressed, but poised for expression, genes (Figure 1) [28–33].
Together, these studies imply that different COMPASS and COMPASS-like complexes can
be recruited to target promoter sequences in a coordinate manner to first maintain a gene
silent, but poised for transcription, and subsequently, to activate its expression.

Chromatin domains with decreased enrichment of the H3K4me3 or H3K27me3 marks
can also be produced and maintained in cells through the function of a selective group of en-
zymes with lysine demethylase activity [15,17,34]. In particular, demethylation of H3K4me3
in mammals is mediated by members of the JARID1/KDM5 (Jumonji AT Rich Interactive
Domain 1/KDM5) family (JARID1/KDM5A, B and C, see Figure 1) [35], which transform
H3K4me3 and H3K4me2 to H3K4me1 [36–38]. On the other hand, histone demethylases
UTX/KDM6A and JMJD3/KDM6B (Jumonji Domain-Containing Protein D3/KDM6B)
can catalyze the removal of methyl groups from H3K27me3-enriched chromatin domains
(Figure 1), and therefore, counteract the silencing activity of PRC2 [39–43]. Together, these
results support the critical role of these H3K4me3 and H3K27me3 demethylases during the
control of gene activity.

Histone methylation in chromatin also occurs at H3K9 (H3K9me1, H3K9me2 and
H3K9me3), which has been found strongly associated with the formation of highly com-
pact and transcriptionally repressed heterochromatin [44,45]. Methyltransferases (KMTs)
depositing this modification (“H3K9me writers”) include SUV39H1/KMT1A (Suppressor
of Variegation 3–9 Homolog 1/KMT1A), SUV39H2/KMT1B and SETDB1/ESET/KMT1E
(Su(var) 3–9 and Enhancer of Zeste Domain Bifurcated 1/ERG-Associated SET Domain/KMT1E),
which can mediate mono-, di- and tri-methylation (Figure 1). Alternatively, the enzymes
G9A/EHMT2/KMT1C (G9A/Euchromatic Histone Methyltransferase 1/KMT1C) and
GLP/EHMT1/KMT1D (G9A Related Protein/EHMT1/KMT1D), can modify this H3K9
residue but only generating H3K9me1 and H3K9me2 as final products [44,45]. The H3K9
methyl-transferase activity is counteracted by H3K9 demethylases, which can remove
these repressive marks (“H3K9me1/2/3 erasers”) [46]. Among them, are LSD1/KDM1
(Lysine-Specific Demethylase 1/KDM1A); JMJD1A/KDM3A; JMJD1C/KDM3C, which can
eliminate H3K9me1 or H3K9me2; JMJD2A/KDM4A; JMJD2B/KDM4B; JMJD2C/KDM4C; and
JMJD2D/KDM4D, which can erase the H3K9me1, H3K9me2 and H3K9me3 marks (Figure 1).

Chromatin organization and transcriptional activity also regulated by ATP-dependent
remodelers [47–49]. These are multi-subunit complexes (e.g., SWI/SNF (SWItch/Sucrose
Non-Fermentable)) that include a catalytic subunit (e.g., Brg1 (Brahma Related Gene 1)
in the mammalian SWI/SNF) that mediates the binding and hydrolysis of ATP (ATPase
activity) [50,51]. These remodelers alter chromatin structure by mobilizing nucleosomes
in cis or by transferring histone octamers in an ATP-dependent manner (Figure 1). This
nucleosome mobilization and/or transferring modifies the level of exposure of regulatory
DNA motifs, thereby facilitating or preventing their recognition by cognate factors [52].
Whereas SWI/SNF can be specifically recruited to gene promoters by tissue-specific tran-
scription factors [53–55], several reports also indicate that the targeting of SWI/SNF-related
complexes can be modulated by HPTMs, including histone lysine acetylation and histone
arginine methylation [56,57]. This regulation is due to the presence of bromo- and chromo-
domains in subunits of SWI/SNF that can interact with these modified histone residues on
the chromatin fiber [58].
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Genomic DNA can be methylated on cytosines that are mostly followed by guanosines
(CpG dinucleotides) but also by other nucleotides. The DNA methyltransferases (DN-
MTs) that mediate this modification belong to a well-conserved family of proteins that
include both maintenance (DNMT1) and de novo (DNMT3A and DNMT3B) activities
(Figure 1) [11,12]. A large body of evidence indicates that methylated CpG is associated
with highly compact chromatin and reduced transcriptional activity [11,12]. DNA demethy-
lation in mammalian cells involves the conversion from 5-methyl-CpG (5mCpG) to un-
methylated CpG (Figure 1), via an intermediate transformation to 5-hydroxymethyl-CpG
(5hmCpG) by the activity of the Ten Eleven Transformation (TET) family of dioxyge-
nases [12,59,60]. Importantly, TET proteins (TET1, 2 and 3, Figure 1) form regulatory
complexes with ATP-dependent chromatin remodelers like SWI/SNF as well as with his-
tone methyltransferases and histone demethylases [61–63]. In recent years, accumulating
evidence shows that non-CpG C-methylation can occur (at significantly lower rates than
5mCpG) along the genome of mammalian cells [64,65].

Several reports indicate that gene regulation in mammalian cells often requires syner-
gistic cooperation between at least two independent epigenetic mechanisms [66,67]. This
mechanistic partnership is based on the ability of proteins that “write” and “read” different
epigenetic marks to form complexes at target sequences [45,46]. This further indicates
that in the eukaryotic nucleus, different epigenetic mechanisms leading to chromatin re-
modeling and transcriptional control are functioning in a coordinated and complementary
manner, hence, supporting an effective modulation of gene expression in response to
physiological cues.

3. Signaling Pathways Leading to the Induction of Activity-Dependent
Gene-Regulation Programs during Learning and Memory Processes

In animals, memory formation and recall are essential for survival and for their adap-
tations to a complex and often dynamically changing environment. In humans, memory
is also crucial for mental health and to define who we are, as eloquently stated by Dr.
Eric Kandel: “Memory is the glue that holds our mental life together”. During memory
formation, experiences prompt the activation of a selected and sparse population of neu-
rons (engram cells) that undergo persistent physical and/or chemical changes allowing
long-lasting memory. Over the past decades, important progress has been made in elu-
cidating signaling mechanisms by which neuronal transmission leads to the induction
of activity-dependent gene-regulation programs during learning [68]. A well-studied
signaling mechanism during memory acquisition involves calcium influx through the
predominantly synaptic-localized NMDA (N-methyl-D-aspartate) receptors (NMDARs).
They trigger the activation of calcium-dependent signaling proteins that, hence, activate
the extracellular signal-regulated kinase (ERK)-dependent pathway, leading to phosphory-
lation and nuclear localization of the transcription regulator CREB [69,70]. A particularly
effective activation of the ERK-CREB signaling axis is initiated at immature synapses by
the opening of the NR2B (also referred to as GluN2B or GluRε2)-containing ionotropic
NMDAR channels. This allows a sustained calcium influx and an immediate activation
of the calcium-sensitive signaling proteins CaMKII (Ca2+/calmodulin-dependent kinase
II) and Ras-GRF1 (Ras protein-specific guanine nucleotide releasing factor 1) that directly
interact with the C-terminal tail of the NR2B subunit (see Figure 1) [71–77]. Activated
CREB act as a transcription factor and recruits the coactivator CBP, or its highly homolo-
gous transcriptional co-activator P300, to target genes. CBP/P300-mediated acetylation
of histone H3K27ac then facilitates the recruitment of the RNA polymerase II-containing
complex to mediate the transcription of hundreds of target genes [9,78–80]. Transcrip-
tomic analyses indicate that the formation and consolidation of memory, including fear
memory (see below), does not rely on a single event but on a dynamic process requiring
several waves of transcription activation of both immediate early genes (IEGs: i.e., Fos,
Arc) and late-response genes, including plasticity-related genes (PRGs) [81–84]. Critical
PRG encoded proteins include specific subunits of NMDARs (i.e., NR2A, also referred to
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as GluN2A or GluRε1) and AMPARs (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic
acid, i.e., GluR1, also referred to as GluA1 or GluR-A), as well as the scaffold protein
PSD-95 (postsynaptic density protein 95, encoded by Dlg4 (discs large homolog 4)) that
holds these glutamate receptors (as well as many additional proteins) at the postsynaptic
membrane of mature synapses. This complex postsynaptic organization enables a precise
temporal synaptic transmission required for memory formation and consolidation (see
Figure 2) [72,85].
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Figure 2. Proposed model of how the NMDAR-ERK-CREB-signaling pathway leads to activation of
the PRG PSD-95 through epigenetic mechanisms. In immature neurons, NR2B-NMDARs (important
for neuronal plasticity) are enriched at the synapse via the interaction with the scaffold protein
SAP102 (synapse-associated protein 102). Calcium influx through synaptic NR2B-NMDARs immedi-
ately activates CaMKII and RasGRF1 (coupled directly to the C-terminal tail of the NR2B subunit),
which in turn induce the activation of ERK, MAPK and CREB (CREB-P). Activated CREB-P act as a
transcription factor and recruits CBP, P300 and GCN5 to the PSD-95 gene promoter. Subsequently,
these HATs promote the acetylation of K residues in the histone H3 tail (H3K9/14/27ac) to induce
gene transcription (depicted under the PSD-95 gene). The produced PSD-95 proteins will be centrally
inserted into the synapses and hold NR2A-NMDARs, displacing the previously synaptic SAP102-
bound NR2B-rich receptors laterally to the extra-synaptic membrane. The synaptic NR2A-NMDARs
are critical for neuronal refinement as well as for learning and memory.

Despite the advances in engram research, the precise spatial-temporal location of mem-
ory and the molecular mechanisms that govern the transcriptional waves in engram cells
remain poorly understood. Two recent elegant studies using genome-wide mapping strate-
gies have begun to elucidate how changes in the epigenome [86] and in the three-dimension
(3D) chromatin architecture [84] regulate transcription changes of IEGs and PRGs in engram
cells. We will briefly explain several methods and assays used in these studies. Wild-type
or TRAP (targeted recombination in active populations) mice (see below) were subjected to
a contextual fear memory paradigm. An advantage of this contextual fear conditioning
(CFC) is that a single trial enables a study in the hippocampus temporally distinct phases
of memory formation, consolidation and retrieval. These phases include a basal state
(also called naive; 0 h post-CFC and before acquisition), an early memory state (denoting
short-term memory and early memory formation; typically, 1–2 h post-CFC), an intermedi-
ate memory state (denoting short-live long-term memory; typically, 1 d post-CFC), a late
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memory state (denoting long-term memory; typically, 3–7 d post-CFC) and a reactivated
memory state (denoting recall; 3–7 d post-CFC + reactivating fear memory) [81,84]. In all
these studies, an ideal control is used to subject animals only to the context (CTX), without
applying a foot shock. Next, hippocampal or cortical tissue (i.e., to address long-term
memory storage; see [87]) are obtained across different phases of CFC and subsequently
analyzed to identify relevant changes within the transcriptomic profile by high-throughput
RNA sequencing (RNA-seq), in the epigenomic landscape (e.g., by Chromatin immuno-
precipitation coupled with high-throughput sequencing (ChIP-seq and Methylated DNA
immunoprecipitation and sequencing (MeDIP-seq)), in chromatin accessibility (e.g., by
the Assay for Transposase-Accessible Chromatin and sequencing (ATAC-seq)) and in the
chromatin 3D organization using Chromatin-Conformation-Capture-based approaches
(e.g., Hi-C). ChIP-seq data can also be used to identify putative active promoters (enriched
in H3K4me3, H3K9ac, H3K27ac, H3K79me3), primed enhancers (enriched in H3K4me1),
active enhancers (enriched in H3K27ac and H3K4me1) together with transcriptionally
repressed genomic regions (enriched in H3K9me3, H3K27me3 and 5mCpG). Bonn and
colleagues [86] begun to unravel a role for epigenetic mechanisms mediated by HPTMs and
DNA methylation during short-term memory formation in hippocampal tissue (1 h-CFC)
and long-term memory maintenance in cortical tissue (4 weeks-CFC). To separate NeuN+

(neuronal nuclear protein) neuron populations from NeuN− cells (mostly glial cells) they
used fluorescence-activated cell sorting (FACS). It was found that most changes in HPTMs
occur during short-term memory formation and that, with the exception of H3K79me3,
these differences in HPTMs enrichment correlated little with changes in gene expression. By
contrast, a strong spatial-temporal correlation between associative memory with a differen-
tial DNA methylation profile was detected, including changes that were almost exclusively
restricted to hippocampal neurons at 1 h-CFC and to cortical neurons at 4 weeks-CFC.
Epigenetic changes also occurred in NeuN- cells, suggesting a functional role for glial cells
in epigenetic-mediated learning. These findings indicate that DNA methylation serves as a
prominent mnemonic substrate for long–term fear memory maintenance in cortical cells.
The alterations in HTPMs detected during short-term memory formation suggest that these
epigenome changes play a role in neural cell population priming, sensitizing neurons and
non-neuronal cells for future activity.

In a recent study, Tsai and collaborators [84] used TRAP mice in which activated
neurons expressing the IEG Arc are permanently fluorescence-labeled (eYFP or dVenus)
in an inducible and controlled manner (e.g., [88]). This enabled the research team to
specifically isolate the sparse hippocampal engram neurons. Following CFC experiments,
the FACS-sorted hippocampal engram neurons were subjected to genome-wide mapping
strategies (RNA-seq, ATAC-seq and promoter capture HiC (pc-HiC)) to address how
the epigenome and the 3D genome architecture regulate gene transcription during early
memory formation (1.5 h post-CFC), consolidation (5 d post-CFC) and recall (reactivation
at 5 d-CFC). The process of identifying putative promoter and enhancer regions included
ChIP-seq data from previous studies [86,89]. The data revealed that during different phases
of the engram ensemble, dynamic changes in gene expression, 3D genome architecture and
chromatin accessibility occur. Notable is the finding that the delayed transcriptional wave
during late memory consolidation and recall correlates with a spatial reorganization of
large chromatin segments that support increases in the enhancer-promoter interaction (EPI)
frequency. Based on the pc-HiC data, it was proposed that engram neurons can use a subset
of de novo EPIs to upregulate gene expression during recall. This finding was specifically
confirmed by 3C-qPCR analyses for the genes Grik3 (glutamate kainate 3 receptor) and
Eif3d (eukaryotic translation initiation factor 3 subunit D), further showing that reactivated
engram neurons display an increase in the interaction frequency between the promoters
of these genes and their de novo long-distance enhancer. It was also found that memory
acquisition leads to marked increases in chromatin accessibility at enhancers. However,
this increased genome accessibility was not accompanied by significant transcriptional
changes. One potential explanation for this rather surprising result is that the protein-
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coding transcript population analyzed in these studies [84] was very limited if compared
to that of previous transcriptomic analyses in hippocampal engram neurons [83]. Thus,
Marco et al. [84] performed their analyses in mostly nuclear RNA (nRNA) samples (as
eYFP+NeuN+ nuclei were selected), hence, missing cytoplasmic mRNAs. Taken together,
these studies indicate that it has become possible to identify specific engram cells using
a combination of genome-wide mapping strategies in mouse models subjected to fear
conditioning. These results show that it is critical to unravelling how the changes in
the epigenome and the 3D chromatin architecture can underly physiological processes
associated with learning and memory.

The above-discussed data, together with studies describing mechanisms associated
with specific critical genes (e.g., PRG PSD-95) in hippocampal function [90,91], support a
general model for engram formation, consolidation and recall (see a schematic represen-
tation in Figure 3). In this proposed model, there is a sequential and coordinated gene
promoter activation that occurs along with processes of enhancer priming and subsequent
enhancer activation. This activation of enhancers and promoters then mediates functional
EPIs in hippocampal engram neurons during early and intermediate memory phases that
may subsequently support a delayed transcriptional wave of PRGs during the late stages
of fear memory consolidation and recall.
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Figure 3. Proposed model of how temporal and spatial changes in the epigenome and the 3D
chromatin architecture regulate the transcription of PRGs critical for neuroplasticity and memory.
The epigenetic status of PRG promoters and enhancers along with the formation EPIs by chromatin
looping are depicted across sequential stages of fear memory ensemble in hippocampal engram
neurons. In the naive animal condition (i.e., basal state), basal gene expression of PRGs such
as PSD-95 is mediated by a limited activation of the promoter (P) (enrichment in H3K4me3 and
limited enrichment of H3K27ac, H3K9ac and H3K14ac). During short-term memory (i.e., early
memory state), enhancers (E) are primed (H3K4me1), to subsequently interact through DNA looping
with their target promoters. During short-lived long-term memory (i.e., intermediate memory
state)—as a result of the activation of the NMDAR-ERK-CREB-signaling pathway that mediates
P300/CBP recruitment (see Figure 2)—H3K27ac becomes significantly enriched, leading to both
enhancer activation (H3K4me1+H3K27ac) and increased promoter activity. Hence, there is an initial
establishment of low-frequency EPIs, paralleled by an increased transcription of the PRG (depicted
under the PSD-95 gene). High-promoter and enhancer activation (reflected by high enrichment of the
H3K27ac mark) during long-term memory (i.e., late-memory state) accompanies robust expression of
the PRG. During recall, the delayed transcription surge of PRGs is principally mediated by a de novo
EPI (depicted as enhancer 2, E2).
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4. Alterations in the Epigenome and 3D Chromatin Architecture Disrupt Signaling
Pathways in Neurons and Microglia Cells in AD

AD is the most prevalent neurodegenerative disease in the elderly population with a
global burden of approximately 50 million people and no disease-modifying treatments
available [92]. AD is characterized by pathological hallmarks, including amyloid-β plaques
and tau-neurofibrillary tangles, synaptic and neuronal loss, and progressive cognitive
decline. Numerous findings support the amyloid cascade hypothesis for AD, which
postulates that an imbalance between production and clearance of Aβ42 and related Aβ
peptides underlies the pathological and behavioral changes observed in AD patients [93].
Mechanistically, pathologic Aβ has been shown to induce synaptic failure and excitotoxicity
in neurons by interacting with cell surface receptors (including NMDARs and AMPARs),
scaffold proteins and intracellular signaling molecules, in addition to activating microglia
and astrocytes [94]. Initial insights into the pathogenesis of AD came from genetic studies
of familial autosomal dominant AD cases that identified full penetrant single-pathogenic
mutations in genes regulating the production of the Aβ peptide, including the amyloid
precursor protein gene (APP) as well as in those genes encoding the γ-secretase subunits,
presenilin 1 and 2 (PSEN1, PSEN2). However, only a minority of the AD cases carry
a pathogenic mutation in these early-onset AD genes, with the vast majority of clinical
AD cases (~95%) being of late-onset and mostly sporadic or showing modest familial
clustering. Among them are the APOE polymorphic alleles, considered, as of today, the
major genetic risk factor for developing sporadic AD (i.e., carrying e4). Hence, there is a
necessity to explore alternative molecular mechanisms leading to the onset and progression
of AD. One approach has been to assess whether there are epigenetic alterations in the
coding regions and flanking promoters of genes directly implicated in AD pathogenesis
(i.e., APP) and in plasticity and cognition (i.e., GluR1-2). We then take an overview of
recent evidence that describes how epigenome alterations occurring at distantly located
enhancers can disrupt their ability to functionally interact with target gene promoters. As
it becomes evident from several reports (e.g., [4,95]), it is also necessary to consider, in
this analysis, the contribution of different subpopulations of neural cells. This is because
specific cell populations obtained from AD patients and from experimental models indicate
that epigenetic alterations in regulatory regions and dysfunctional EPIs are not restricted to
the neuron populations (i.e., affecting synaptic plasticity genes) but are also found in other
cell types in the CNS, particularly in microglia cells (i.e., affecting immune-related genes).

4.1. Epigenetic Alterations in Gene Loci Associated with AD Pathogenesis

To understand genetic and non-genetic associations with the onset and progression
of AD, a number of researchers have analyzed, over the last two decades, the genomes
of twins that are discordant for AD. One large study (11,884 twins, including 392 twin
pairs in which 1 or both members had AD) indicated that ~42% of the AD patients lacked
heritability [96]. In addition, immunostaining assays against the DNA methylation marker
5-methylcytosine in postmortem brain tissues from a rare pair of monozygotic twins
discordant for AD demonstrated that cortical neurons, astrocytes and microglia displayed
strongly reduced DNA methylation in the AD twin relative to the neurologically normal,
non-demented twin [97]. The fact that the AD twin had extensive contact with pesticides in
his work, strongly suggested that these epigenetic changes may have occurred in response
to environmental effects. Recent reports also show that air pollution-exposed healthy
urbanites (20–40 years old) and mice display reduced enrichment of repressive epigenetic
marks (H3K9me2/3) along with hyperphosphorylated tau and amyloid-β plaques [98].
Hence, evidence is emerging that negative environmental factors—including environmental
pollutants, infectious agents, diet and psychosocial elements—can impair brain chromatin
and increase the risk of developing AD in young individuals [99–101].

These and other studies have led to the question of whether epigenetic alterations at
promoters of AD-associated genes can lead to late-onset AD. Over a decade of epigenome-
wide studies focusing on the DNA methylation status at causal and risk genes for AD have
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provided insights into this important question. Particularly interesting are results related
to the methylation status of the APP gene promoter that was found to include several
methylated CpGs in control subjects that are lost in AD patients. Thus, DNA methylation
studies at specific gene locus in postmortem brains (mixed-cell populations) [102,103] or
analyzed by epigenome-wide association studies (EWAS) on sorted neuronal and non-
neuronal (mostly glia) nuclei [95], revealed that reduced CpG methylation on the APP gene
promoter in both neurons and glial cells in sporadic cases of AD accompanies increased
APP gene expression (see Figure 4A). This result is in agreement with other studies showing
that duplication of the wild-type APP gene causes AD due to an overexpression of APP
that in turn results in the generation of excessive Aβ [104–106].
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Figure 4. Local alterations in the epigenome and 3D chromatin architecture contribute to transcrip-
tional dysregulation in AD. Schematic illustrations of examples of epigenetic (A–C) and chromatin
remodeling (D) changes discovered in the brain of AD animal models and postmortem brain tissue
of AD patients, compared to healthy controls. The chromatin-modifying enzymes are also depicted;
those that have been demonstrated to contribute to the implicated epigenetic mechanisms are shown
in bright format, while those potentially involved, are shown in shadow format. (A) CpG methylation
(red circles) of the APP gene promoter in brain samples from (A1) healthy and (A2) sporadic cases of
AD is depicted; unmethylated CpG (green circles) in AD is paralleled with increased APP mRNA
levels. (B) H3K14ac associated with the promoter of the plasticity gene NR2A in brain samples from
(B1) healthy and (B2,B3) AD mice is shown; the loss of this active mark (B2) and/or the enrich-
ment in the repressive mark H3K9me2/3 (B3) correlates with reduced NR2A mRNA levels in AD.
(C) H3K9me2/3 associated with the promoter of the normally heterochromatic and silenced gene
Ago/PIWI1 in brain samples from (C1) healthy and (C2) AD mice is depicted; the loss of this repressive
mark correlates with the induction of Ago/PIWI1 mRNA levels in AD mice and AD patients. (D) The
BIN1 gene promoter and its long-distance enhancer element in microglia derived from brain samples
from (D1) healthy and (D2) AD mice, are shown; loss of this EPI in AD correlates with reduced
expression of BIN1 mRNA. The location of the AD risk variant rs6733839 is also depicted in the
enhancer sequence. For more details, see text.

It has been also important to determine that there is a correlation between the DNA
methylation profile and the Braak stages (after correcting for age and gender), where
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the APP gene promoter is progressively hypomethylated during later stages of AD [95].
These data suggest that progressive loss of DNA methylation at the APP gene promoter,
and hence, an epigenetically mediated activation of the APP gene, plays a critical role
in driving late-onset AD. Previous methylome profiling studies, however, on purified
neural cell populations [95] as well as in hundreds of bulk brain tissue samples [107–109]
of AD patients, did not bring conclusive evidence to support epigenetic dysregulation
in the gene body and/or the promoter regions of other key AD genes involved in the
formation of neurofibrillary tangles (GSK3B, MAPT) and regulating the production of
Aβ peptide (BACE1, PSEN1, PSEN2). Intriguingly, these studies concluded that changes
in DNA methylation are occurring at genes associated with other important processes
including inflammation, neurotransmitter homeostasis and transport (e.g., MCF2L, ANK1,
HOX3A, MAP2, LRRC8B, STK32C, S100B, KIF26A) [95,109]. Some of these changes in
DNA methylation have been found to be restricted to either neurons (i.e., HOX3A) or glia
(i.e., ANK1), underscoring the complex interplay between a neuronal versus glial epigenetic
burden in the AD brain. Future careful examination of the relationship between DNA
methylation and gene expression level in AD-related samples will continue to be necessary
as several controversial results remain unclarified in the field (e.g., [110,111]).

Studies focusing on HPTMs also support the role of an aberrant epigenetic regulation
in AD. Thus, a recent comprehensive multi-omics analysis—integrating transcriptomic,
proteomic and epigenomic analyses of postmortem human brains from AD patients (and
comparing to brains of old and young control subjects)—revealed global gains in the
active marks H3K27ac and H3K9ac [112]. Moreover, by correlating ChIP-seq and RNA-seq
analyses the authors further showed that these marks are associated with transcription-,
chromatin- and disease-related pathways [112].

Using the CK-p25 mouse model (overexpressing p25 (a truncated version of p35)
that aberrantly activates cyclin-dependent kinase 5 (Cdk5)), compelling studies by the
Tsai laboratory have provided mechanistic insights about the epigenetic dysregulation
of histone acetylation that contributes to impaired synaptic plasticity, neurodegeneration
and cognitive decline in AD [113–118]. In both AD patients and AD mouse models,
aberrant synaptic plasticity is associated with a reduction in the expression of genes (mRNA
and protein) implicated in learning and memory and synaptic plasticity. This reduced
transcription is accompanied by several local epigenetic changes at the promoters of these
genes, for example, due to diminished epigenetic activation by CBP/P300 HATs or due to an
epigenetic gene suppression mediated by promoter-bound HDACs. Thus, immunostaining
assays revealed increased global nuclear levels of HDAC2 in neurons of brain samples from
postmortem human sporadic AD patients and several AD mouse models, including CK-
p25, 5xFAD (expressing human APP and PSEN1 transgenes with a total of five AD-linked
mutations) [115] and AβPPswe/PS-1 (also termed APP/PSEN1, expressing a chimeric
mutant mouse/human APP and a mutant human PS1) [119]. As HDAC2 has been shown
to interact with the promoter region of many genes involved in memory and synaptic
plasticity (Arc, Bdnf, GluR1, NR2A, CaMKII, PSD-95) [114], it was also determined if HDAC2
enrichment is significantly higher at these gene promoters in CK-p25 mice brain [115]. ChIP
assays showed increased binding of HDAC2 to genes with critical roles in learning and
memory (i.e., Arc, Bdnf ) and synaptic plasticity (i.e., GluR1, GluR2, NR2A and NR2B).
These studies also confirmed that decreased levels of active histone acetylation marks (e.g.,
H3K14ac, H4K12ac) accompanied this reduced gene expression profile in CK-p25 mice
(see Figure 4B1,2). These results suggest that in AD, HDAC2 (and likely other HDAC
family members) is capable of erasing histone acetylation at these actively transcribed
genes. Since histone acetylation-mediated epigenetic control is highly dynamic, it was
also determined that a knock-down of HDAC2 [115] or treatment with diverse HDAC
inhibitors targeting HDAC2 [113,116,117] rescues pathologic cognitive deficits in AD mice,
promoting neuroplasticity-related gene expression, reinstating morphological alterations
and synaptic plasticity and restoring memory deficits. Together, these results indicate that
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transcriptional repression of neuroplasticity genes associated with decreased histone H3
and H4 acetylation may significantly contribute to AD pathology and cognitive impairment.

These results have strongly advocated for the development of effective therapeutic
strategies using selective HDAC2 (or to other HDACs) inhibitors that restore an active pro-
moter epigenetic state (H3/H4 acetylation) of critical neuroplasticity genes. Thus, several
studies have shown the beneficial effects of a wide variety of HDAC (i.e., HDAC1, HDAC4
and HDAC6) inhibitors on learning and memory, by not only reactivating plasticity but also
by modulating Tau function and oxidative DNA repair in AD [116,117,120–123]. Moreover,
during the last decade, small chromatin-modifying molecules, known as epidrugs, have
been generated. Recent studies include epigenetic screens of selective small molecule
libraries seeking to identify molecules that modulate the activity of histone-modifying
enzymes, or alternatively, that can target critical domains (e.g., bromodomains and chro-
modomains) present in epigenetic readers [124]. These screens have been carried out in
experimental models of frontotemporal dementia (FTD) (i.e., expressing hexanucleotide
repeat expansion in the C9ORF72 gene), the second most common dementia after AD [125]
that exhibit alterations in the repressive marks H3K9me3, H3K9me27 and DNA methy-
lation in neurons and astrocytes [126–129]. In some of these studies, treatment with a
specific class of epidrugs (i.e., JQ1 and PFI-1, both members of the bromodomain and
extra-terminal domain (BET) inhibitor family) was shown to restore gene transcription in
mouse and human iPSC-derived neurons, and moreover, to ameliorate cognitive deficits in
FTD mice [130,131]. However, in a comparable JQ1 treatment it was shown that this BET
inhibitor can inhibit non-spatial learning in wild-type mice [132], indicating that additional
studies that precisely determine the genomic regions affected by JQ1 treatment are required.

Another successful and potentially therapeutical approach has been to selectively
modify chromatin by using epigenome editing tools, that hence, modulate the expression
of a specific target gene in a precise manner [133–135]. The scaffolding protein PSD-95,
encoded by the gene DLG4, was shown to be an ideal target for this type of approach
as it is a critical protein for synaptic plasticity, dendritic spine stabilization and learning
and memory (see above). Additionally, PSD-95 expression has been found reduced in
sporadic AD patients [136] and in AD mouse models [91,137]. Epigenetic editing of the
Dlg4/PSD95 gene promoter led to a local epigenetic reprogramming and increased PSD-95
expression, impacting various plasticity-associated processes, and importantly, restoring
memory deficits in the AD mice model AβPPswe/PS-1 [91] (for more details on this topic
see Scheme 1).
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Scheme 1. Epigenetic editing at target genes as a novel therapeutic strategy. In AD, the expression of
PSD-95 is significantly reduced [137,139]. To restore endogenous PSD-95 gene expression in AD, an
epigenetic editing tool was designed where a specific zinc finger DNA-binding domain targeting
the Dlg4/PSD95 gene promoter was fused to the epigenetic activating effector domain VP64 [91].
Transduction of this epi-editor induced local epigenetic reprogramming, increased PSD-95 mRNA and
protein levels, and impacted various plasticity-associated processes, including synaptic transmission
and dendritic spine density. Notably, viral-mediated delivery of the epi-editor to hippocampal
neurons prevented (pre-symptomatic treatment) and even restored (symptomatic treatment) memory
deficits in the AD mice model AβPPswe/PS-1. Given that the target sequence identified at the PSD-95
gene promoter is 100% identical among mice, rats and humans, these findings establish epigenetic
editing as a potential therapy to treat AD and other human neurological disorders displaying PSD-95
haploinsufficiency and/or dysfunction, including Huntington´s disease (HD), amyotrophic lateral
sclerosis (ALS), intellectual disability, schizophrenia and autism spectrum disorders [85,137–143].

Epigenetic gene regulation can also be mediated by histone methylation. Thus, several
studies have focused on the role of the repressive marks H3K9me2 and H3K9me3 that
significantly contribute to regulating euchromatin and heterochromatin formation and
maintenance in the nucleus. Enrichment of H3K9me2 and H3K9me3 can result in the re-
pression of gene transcription in both euchromatic and facultative heterochromatic regions.
These marks can also contribute to maintaining genome stability (by silencing repetitive
DNA elements and transposons) and protecting DNA from damage [9,44,144–146]. Recent
studies have documented altered H3K9me2 and H3K9me3 levels in the brains of patients
and experimental models of AD. Intriguingly, in some studies, H3K9me2/3 expression in
the nuclei was found to decrease [147,148], whereas in other studies these modifications
were shown to be increased [149,150]. Several reasons may explain these seemingly oppo-
site results, including differences in human and mouse brain regions and in the cell types
that were examined. In addition, there appear to be significant differences in the methods
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used for human (postmortem) sample preparation and in the approaches followed to detect
H3K9me2. Finally, it is also important to consider that in most cases only limited informa-
tion (if any information at all) is available about these AD patients, including their genetic
background, clinical development, and the presence of specific pathological hallmarks.
Together, these uncertainties increase the difficulty of precisely comparing the different
analyses carried out in the field and generating strong conclusions from the results.

A recent study [150] reports elevated H3K9me2 levels in the prefrontal cortex of post-
mortem human AD patient samples (H3K9me2 detected by western blot) and of 5xFAD
mice (H3K9me2 detected by western blot and immunostaining). Moreover, ChIP assays on
5xFAD brain samples further confirmed that an increased enrichment of H3K9me2 occurs at
the promoters of genes coding for AMPAR (GluR2/GluA2) and NMDAR (NR2B/GluN2B)
subunits, concomitantly with decreased expression (detected at mRNA and protein levels)
and function of these receptors (measured by electrophysiology) (see Figure 4B3). Addi-
tionally, it was found that the H3K9 di-methyltransferase EHMT1 (or G9a-like protein,
GLP) is upregulated in the prefrontal cortex of the 5xFAD mice. Notably, treatment with
the EHMT1/2 (G9a/GLP) inhibitor BIX01294 restored transcription, protein expression
and function of AMPARs and NMDARs, and importantly, rescued memory deficits in
this AD mouse model [150]. These findings indicate that an EHMT1-mediated increase
in histone H3K9 methylation can significantly contribute to transcriptional repression of
critical neuroplasticity genes, and hence, to the pathology and cognitive decline in AD.
The study also suggests that treatment with specific epidrugs may function as an effective
therapeutic strategy to ameliorate, and potentially reverse, memory decline in AD. This
conclusion is supported by a parallel study where treatment with the EHMT1/2 inhibitor
UNC0642 was capable of restoring cognition parameters in animal models, together with
reducing the expression of inflammatory markers and increasing the levels of neurotrophic
factors [151].

In another study, Feany and collaborators [147], analyzing FACS-purified neurons of
hippocampal tissue obtained from AD patients, also detected a strong reduction of global
H3K9me2 levels. Interestingly, they found that the expression of euchromatic genes re-
mained largely unchanged between brain samples from control and AD subjects. Moreover,
it was determined that this depletion of H3K9me2 in AD affects the expression of genes that
are mostly located at genomic regions silenced by heterochromatin in normal hippocampal
cells. Notably, widespread transcriptional increases in non-coding genes (including piwi
transcripts; see below) that are normally silenced in controls, were detected in AD patient
brain samples. This heterochromatin loss and aberrant gene expression were found to be
conserved among mouse and Drosophila tauopathy models [147]. Thus, ChIP-seq assays in
tau transgenic flies revealed a strong loss of H3K9me2 enrichment at genes like Ago3 (which
is homologous to the human gene PIWIL1), concomitant with upregulated gene transcrip-
tion (see Figure 4C). In a posterior study, Frost and colleagues [152] demonstrated that
decondensation of constitutive heterochromatin occurs concomitant with transcriptional
activation of transposable elements in the brains of postmortem human AD patient samples
as well as in brain cells of fly models. Mechanistically, the authors proposed an interesting
model where tau-induced heterochromatin de-condensation facilitates active transcription
of transposable elements and that tau-induced depletion of piwi and piwi-interacting RNAs
(piRNAs) enables the transcripts from the transposable elements to remain elevated. How a
pathologic tau precisely causes a global loss of heterochromatin-dependent silencing is still
not understood. A strong role of DNA damage, induced by excessive oxidative stress, has
been postulated [147,153]. Similarly, it has been proposed that the loss of the physiological
role of endogenous tau, which directly binds and regulates H3K9me3-rich pericentromeric
heterochromatin integrity in neurons, is an important component [148,154].

4.2. Epigenetic Changes Impact Promoter–Enhancer Interactions in AD

As discussed above, the vast majority of AD cases cannot be explained by pathogenic
mutations occurring in AD protein-coding genes. In the last 10 years, next-generation se-
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quencing (NGS) and genome-wide association studies (GWAS) have led to the identification
of numerous low penetrance predisposing genetic mutations and single nucleotide polymor-
phisms (SNPs) at more than 40 susceptibility loci associated with late-onset AD [92,155,156].
Identification of AD-associated variants in a specific-coding gene has only been established
for a few loci (e.g., APP, TREM2, TREML2, PLCG2, UNC5C, ADAM10, AKAP9). Intriguingly,
cell type-specific gene expression profiling and analysis of related biological processes show
that several of these genetic variants are selectively expressed in microglia and involved in
immune responses and lipid metabolism (e.g., TREM2, TREML2, PLCG2) [155,157].

In the past few years, comprehensive genome- and epigenome-wide maps have been
created to find that many AD susceptibility loci lie in putative cell-type-specific enhancer
elements. Initial support to this novel concept came from a study comparing transcriptional
and chromatin states between hippocampal samples from the AD-like mouse model CK-p25
and humans, followed by a close examination of the enrichment of AD-related SNPs within
conserved enhancers [118]. Briefly, transcription and chromatin dynamics (measured by
ChIP-seq to identify putative primed/active promoters and enhancers; see above) were
examined across early (2 weeks) and late (6 weeks after p25 induction) stages of pathology
in CK-p25 mice. In agreement with previous studies, it was determined that during
the late stages of AD pathology genes involved in synaptic plasticity and learning were
down-regulated, concurrent with reductions in the activity of their assigned promoter and
enhancer regions [115]. In contrast, during the early stages of AD pathology, immune-
response genes were found upregulated, concomitant with increases in the activity of
their cognate-regulatory genomic regions. Researchers then mapped orthologous coding
and non-coding regions between mouse and human hippocampal samples, identifying
significant human-to-mouse conservation of epigenomic signatures and gene expression
profiles. Notable was the result indicating that AD-associated genetic variants (i.e., PICALM,
BIN1, NPP5D, CELF1/SPI1, PTK2B) were specifically enriched at enhancer orthologues
that displayed increased activity, implicating a role of immune-related processes in AD
predisposition [118]. These results in the CK-p25 mice also indicated that epigenetic changes
(without SNPs) in regulatory regions controlling immune processes and synaptic plasticity
can contribute to AD pathology.

In two recent studies, using postmortem non-diseased human brains, chromatin
interactions between enhancers and promoters were established by subjecting specific
cell-type populations to pc-HiC analysis [5], in combination with ATAC-seq and PLAC-
seq (proximity ligation-assisted ChIP that captures EPIs with active H3K4me3 bearing
promoters) [4]. Epigenomic annotations were used to identify putative primed/active
promoters and enhancers (as described above). As expected, chromatin loops were detected
between active promoters and distal regulatory regions in neurons, microglia, astrocytes
and oligodendrocytes [4,5]. By examining the genomic location of disease-associated
GWAS variants, it was determined that AD variants were only enriched in microglia
enhancers (i.e., BIN1, PICALM, SORL1, SPI1). This is a particularly intriguing result as
most polymorphisms associated with psychiatric and neurological disorders (e.g., autism,
schizophrenia, neuroticism) have been located in neuronal enhancers and promoters, with
few of the SNPs located in glial promoters (see also [158]). Integration of the genome-wide
studies further indicated that BIN1 is a microglia-specific enhancer as it interacts with the
BIN1 promoter and is specifically detected in microglia cells but not in neurons, astrocytes
or oligodendrocytes [4]. Importantly, this BIN1 microglia-specific enhancer also harbors
the AD risk variant rs6733839, which has the second highest AD-risk score after APOE. To
determine whether this microglia-specific enhancer is functional, a CRISPR/Cas9-mediated
deletion of a 363-bp region harboring rs6733839 in human iPSC lines was performed, and
these cells were then differentiated to microglia, astrocytes and neurons. Interestingly, the
edition of this regulatory region leads to a microglia-specific reduction in BIN1 mRNA
and protein expression [4]. Although the study did not demonstrate the functionality of
the specific SNP (e.g., editing by CRISPR), the data support the intriguing possibility that
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AD risk variants located in enhancer regions could change gene expression by altering the
interaction between enhancer-promoter (Figure 4D).

5. Concluding Remarks

During the last decades, several signaling pathways have been shown to induce
activity-dependent gene programs in learning and memory processes. More recently, basic
mechanisms operating during the spatial-temporal location of memory and governing
the transcription waves in engram cells have been defined. Critical in these advances
has been the integration of transcriptomic and epigenomic analyses together with 3D
chromatin mapping in mouse models. Applying comparable multi-omics analyses in both
animal models and human postmortem brain tissue of patients, researchers in the field
have begun to reveal how global and local changes in the epigenome and 3D chromatin
architecture contribute to transcriptional dysregulation in AD and, very important, how
this impacts the onset and progression of the disease. These studies also underscore the
complex interplay between a neuronal versus glial epigenetic-dependent control of gene
expression in the AD brain. This appears to be also valid for other neurodegenerative
diseases, including amyotrophic lateral sclerosis (ALS), Huntington´s disease (HD) and
Parkinson´s disease (PD), as it has been shown that multiple global and local changes
in histone marks contribute to transcriptional dysregulation in these diseases (reviewed
in [1,3]. Nevertheless, in the case of these latter diseases, systematic multi-omics analyses
on animal models and patient samples remain insufficient. For a deep understanding of the
molecular mechanisms underlying pathology in these diverse neurodegenerative diseases,
it would be then critical to determine whether common epigenetic and chromatin-associated
mechanisms are dysregulated. This may provide an opportunity to develop more universal
therapeutic approaches to mitigate disease progression and symptoms that appear shared
by many of these diseases. Since multiple types of brain cells participate during the onset
and progression of the pathologic signs identified in these diseases, significant advances
may be reached by applying novel techniques like immunoGAM [159,160]. This technique
is an extension of the previous Genome Architecture Mapping (GAM) and allows a wide
3D mapping of the chromatin topology in specific brain cell types and brain tissue sections
from animal models. Likely in the future, this type of approach will permit these analyses
in postmortem tissue samples from patients.

Our increased understanding of the role of specific genes and regulatory pathways in
brain cells has led to the development of potential new therapeutic strategies. We envision
that in the future, epigenetic editing tools will be used to restore the expression of specific
genes that are fundamental for the maintenance of neuronal connectivity, plasticity and
memory. Moreover, it is reasonable to speculate that targeting fundamental plasticity
genes, such as PSD-95, might not only be beneficial for treating AD, but also other brain
disorders including HD and ALS, where the expression of this critical postsynaptic protein
is also reduced (see Scheme 1). While epigenetic editing constructs are good candidates for
developing new gene therapy strategies, the need for adequate viral delivery approaches
has hampered the progress in bringing (epi)genome therapies to clinical trials. However,
the recent massive use of adenoviruses for the delivery of SARS/CoV-2 genes to patients
as a vaccination strategy throughout the planet may rapidly change this aspect, given the
reduced negative collateral signs observed so far. Alternative, but complementary, studies
strongly advocate that specific epidrugs may function as an effective therapeutic strategy to
ameliorate, and potentially reverse, memory decline in AD and FTD. How these epidrugs
affect the epigenome landscape in diverse brain regions, however, remains a critical issue
in the field and still requires extensive additional preclinical research.
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