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 Background: Septic shock is a pathologic condition caused by endotoxin-producing bacteria, and often associated with se-
vere pulmonary hypertension. Inflammation is a major systemic response to endotoxin; however, it is unknown 
whether endotoxin has a direct impact on pulmonary arteries that contributes to pathogenesis of pulmonary 
hypertension.

 Material/Methods: Rat pulmonary arteries and primary pulmonary arterial smooth muscle cells (PASMCs) were cultured in vitro 
and treated with lipopolysaccharide (LPS) and blockers of transient receptor potential canonical (TRPC) chan-
nels. Neointimal growth and arterial stenosis were observed on cryosections of cultured pulmonary arteries. 
Proliferation of PASMCs was examined by a WST-1 (water-soluble tetrazolium salt) assay. Expression of TRPC 
genes in pulmonary arteries and PASMCs were detected and quantified by real-time polymerase chain reac-
tion and Western blotting.

 Results: LPS significantly induced neointimal growth and stenosis of pulmonary arteries and promoted proliferation of 
PASMCs. TRPC channel blockers 2-aminoethoxydiphenyl borate and SKF-96365 inhibited LPS-induced remod-
eling of pulmonary arteries and PASMC proliferation. Expression of TRPC1/3/4/6 was detected in pulmonary 
arteries and PASMCs. LPS treatment dramatically increased the expression of TRPC3 and TRPC4 at both mes-
senger RNA and protein levels.

 Conclusions: LPS stimulates stenosis of pulmonary arteries through enhancement of TRPC-mediated Ca2+ entry into PASMCs, 
which is caused by upregulation of TRPC3 and TRPC4 channels.
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Background

Septic shock is characterized by vascular dysfunction, coagula-
tion disorder, multiple organ failure, and finally death. Bacterial 
infection and consequent endotoxin (lipopolysaccharide [LPS]) 
exposure is the original cause of sepsis [1], and the severe in-
flammatory response to LPS is considered an important me-
diator of septic shock [2]. Vascular dysfunction, including sys-
temic hypotension and pulmonary artery hypertension (PAH), 
is a life-threatening condition in septic shock [3,4]. LPS-induced 
inflammation has been found to affect vascular endotheli-
al function of pulmonary hypertension [5]. However, it is un-
known whether LPS has a direct impact on the structure and 
function of pulmonary arteries.

Transient receptor potential canonical (TRPC) channels are a 
class of nonselective Ca2+-permeable channels consisting of 7 
members (TRPC1-7). TRPC2 is different from the other mem-
bers because it is a pseudogene in humans [6]. TRPC channels 
are activated by stimulation of G protein-coupled receptors 
(GPCRs), such as endothelin [7], angiotensin [8], and muscarin-
ic acetylcholine receptors [9], and thus are called receptor-op-
erated channels (ROCs). Studies on TRPC4-knockout rats and 
TRPC1/6-knockout mice have shown that deficiency of these 
channels suppressed the development of PAH [10–12]. TRPC 
channels are essential for many Ca2+-dependent functions of 
pulmonary arterial smooth muscle cells (PASMCs) [13], such 
as cell proliferation [14] and contraction [15]. In this study, we 
investigated the involvement of TRPC channels in LPS-induced 
pathophysiologic changes in pulmonary arteries and PASMCs. 
To exclude the impact of immunologic response to LPS, we 
used in vitro culture models to observe the direct effect of LPS 
on pulmonary arteries and PASMCs.

Material and Methods

Drugs and reagents

General salts, collagenase I, papain, LPS, SKF-96365, and 
2-aminoethoxydiphenyl borate (2-APB) were purchased from 
Sigma-Aldrich (USA).

Neointimal growth assay of pulmonary arteries

Male Sprague Dawley rats weighing 150 to 200 g were used 
in experiments, in accordance with the local guidelines for 
the care and use of laboratory animals and approved by the 
Local Committee of Animal Use. The animals were anesthe-
tized with intraperitoneal injection of pentobarbital sodium (50 
mg/kg). Pulmonary arteries with diameters approximately 0.5 
mm were dissected out from both lungs, cut into segments 
about 2 mm long, and soaked in HEPES-buffered physiologic 

salt solution (HBSS) containing NaCl 130 mM, KCl 5 mM, MgCl2 
1.2 mM, CaCl2 1.5 mM, HEPES 10 mM, and glucose 10 mM, 
with pH adjusted to 7.4 with 5 M NaOH. The arterial segments 
were placed in 35-mm culture dishes with Dulbecco’s modi-
fied eagle medium (DMEM)/F-12 medium containing 20% fe-
tal bovine serum (FBS; HyClone, USA), 100 units/mL penicillin, 
and 100 mg/mL streptomycin. The medium was changed ev-
ery 3 days without touching the vessels. After 27 days of cul-
ture the arterial segments were embedded in Cryomatrix resin 
(Thermo Scientific, UK). Frozen sections with 20 μm thickness 
were made in a cryostat and observed under 10x magnifica-
tion. The images were captured by a digital camera and mea-
sured with NIS-Elements software (Nikon, Japan).

Isolation and proliferation assay of PASMCs

PASMCs were isolated as previously reported with a minor mod-
ification [16]. Briefly, rats were sacrificed and pulmonary arter-
ies were isolated in ice-cold HBSS. After cleaning the adventitia 
and intima, the pulmonary artery was minced and digested at 
37°C for 15 to 17 min in reduced-Ca2+ HBSS (20 µM Ca2+) con-
taining collagenase (type I, 2 mg/mL), papain (1.5 mg/mL), bo-
vine serum albumin (2 mg/mL), and DTT (1 mM). Single smooth 
muscle cells were dispersed by gentle trituration in cold re-
duced-Ca2+ HBSS, and then transferred into DMEM/F-12 medium 
containing 10% FBS, 100 units/mL penicillin, and 100 mg/mL 
streptomycin. PASMCs at passage 2 were seeded into 96-well 
plates for cell proliferation assay with WST-1 reagent (Roche, 
USA) according to the manufacturer’s instruction.

Real-time PCR

Total RNA was extracted from cultured pulmonary arteries 
and PASMCs using the TRIzol reagent method according to 
the manufacturer’s instructions (Invitrogen, USA). Oligo(dT)-
primed first-strand cDNA synthesis was performed using avi-
an myeloblastosis virus reverse transcriptase (Promega, USA) 
with 2 μg RNA as template in a total volume of 20 μL. The 
cDNA was diluted 30 times and then used for real-time PCR 
with Taq DNA polymerase (Promega, USA) and SYBR Green 
(Fluka, Germany). The primer sequences are listed in Table 1. 
b-actin was used as the internal control.

Western blotting

Tissues or cells were homogenized and lysed in radioimmuno-
precipitation assay buffer (Beyotime, Jiangsu, China), and then 
proteins were separated on 10% sodium dodecyl sulfate poly-
acrylamide gel electrophoresis (SDS-PAGE) gel before trans-
ferring onto nitrocellulose membrane. The blot was incubat-
ed with primary antibody (rabbit polyclonal anti-TRPC3 from 
Sangon, Shanghai, China, and anti-TRPC4 from Alomone Labs, 
Jerusalem, Israel) overnight at 4°C, washed with Tris-buffered 
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Gene Primer sequences (5’-3’) Annealing temperature (°C) Product size (bp)

TRPC1
GGATTATTGGGATGATTTGGT
GTGAGCCACCACTTTGAGG

55 143

TRPC3
ACATCACCGTTATTGACTACCC
GCACTCAGACCACATCATCC

55 113

TRPC4
ACCATCGTGGAGTGGATGA
TGTCGCCAGATACAAGGAGT

55 147

TRPC5
CAACTGTCGTGGAATGGATG
CCAGGTAGAGGGAGTTCATTG

55 144

TRPC6
TCCGAATCTCAGCCGTTT
ATGGTCTGCTGCCGTAAAC

55 129

TRPC7
CGCCTACCTGTCCCTATCC
CACGCCCACCACAAAGTC

55 148

b-actin
TGAACCCTAAGGCCAACC
AGAGGCATACAGGGACAACA

55 107

Table 1. PCR primers for rat genes studied.
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Figure 1.  Effects of lipopolysaccharide (LPS) and transient receptor potential canonical (TRPC) blockers on neointima formation of rat 
pulmonary arteries and proliferation of pulmonary arterial smooth muscle cells (PASMCs). (A) Frozen sections of pulmonary 
arteries after culturing for 27 days without/with LPS (10 μg/mL), 2-aminoethoxydiphenyl borate (2-APB; 100 µM), and SKF-
96365 (100 µM). Scale bar: 0.1 mm. (B) Ratio between the areas of neointima and media and percentage of decreased 
luminal area (stenosis) in the arterial sections. ** P<0.01 vs. control group; ## P<0.01; ### P<0.001 vs. LPS group; n=5 in each 
group. (C) Result of WST assay on PASMCs. 2-APB and SKF-96365 at 100 µM were used. ** P<0.01; *** P<0.001 vs. LPS 0 
control; ### P<0.001 vs. corresponding columns in the control group; n=8 in each column.
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saline and Tween 20, and then incubated with horseradish per-
oxidase−conjugated secondary antibody (goat anti-rabbit IgG, 
Sangon, Shanghai, China). Rabbit anti-GAPDH (anti-glyceralde-
hyde 3-phosphate dehydrogenase; Santa Cruz Biotech, USA) 
was used as an internal standard for protein quantification. 
Visualization was carried out using enhanced chemilumines-
cence detection reagents (Engreen, Beijing, China). Images were 
captured by a gel documentation system and the band densi-
ty was analyzed using Quantity One (Bio-Rad, Hercules, USA).

Statistics

All values are expressed as plus or minus standard error of the 
mean. Unpaired t test was used to assess the statistical dif-
ference between the 2 groups, and a 1-way analysis of vari-
ance was used in comparison of more than 2 groups. P<0.05 
was considered significant.

Results

LPS promoted neointimal growth of pulmonary arteries 
and proliferation of PASMCs

After 27 days of culture, irregular thickening of the intima of 
the pulmonary arterial segments was observed (Figure 1A). 
The neointimal area of LPS-treated arteries (0.068±0.009 mm2) 
was significantly larger (P<0.001) than that in the control 
group (0.025±0.008 mm2), whereas the treatment with 2 TRPC 
channel blockers – 2-APB (0.024±0.012 mm2) and SKF-96365 
(0.025±0.011 mm2) – inhibited the neointimal growth induced 
by LPS (P<0.001 for both). Consistent with these observations, 
the ratio between the neointimal and medial areas also showed 
dramatic increase in the LPS group, while 2-APB and SKF-96365 
abolished the effect of LPS (Figure 1B). Luminal area in the ar-
teries was reduced by LPS by 58%, which is much higher than 
in the control (14%), 2-APB (19%), and SKF-96365 (15%) groups 
(Figure 1B). Because the neointimal formation of blood vessels 
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Figure 2.  Lipopolysaccharide (LPS) upregulated the expression of transient receptor potential canonical 3 (TRPC3) and 4 (TRPC4) 
channels in rat pulmonary arteries and proliferation of pulmonary arterial smooth muscle cells (PASMCs). The expression 
levels of TRPC1/3/4/6 messenger RNA (mRNA) in cultured pulmonary arteries (A) and PASMCs (B) are shown. b-actin was 
used for normalization of mRNA. (C) Protein expression levels of TRPC3 and TRPC4. GAPDH was used as an internal control. 
* P<0.05; ** P<0.01; *** P<0.001; n=6 (mRNA) and n=3 (protein) in each group.

2682
Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System]  
[ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica]  
[Chemical Abstracts/CAS] [Index Copernicus]

Chen G.-L. et al.: 
LPS upregulates TRPC channels

© Med Sci Monit, 2016; 22: 2679-2684
ANIMAL STUDY

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)



is largely attributed to the proliferation of smooth muscle cells, 
we assessed whether LPS can stimulate the growth of isolat-
ed PASMCs using a WST-1 assay. As shown in Figure 1C, LPS 
at 1 and 10 μg/mL significantly promoted the proliferation of 
PASMCs after 24 h of incubation, which was potently inhibited 
by 2-APB and SKF-96365, suggesting the involvement of TRPC 
channels in LPS-triggered cellular processes.

LPS upregulated the expression of TRPC3 and TRPC4 in 
pulmonary arteries and PASMCs

We used real-time PCR to detect the expression of TRPC chan-
nels including TRPC1, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7 
in cultured pulmonary arteries and PASMCs. Among these genes, 
TRPC5 and TRPC7 were not detected. Quantitative real-time 
PCR results showed that LPS dramatically increased messenger 
RNA (mRNA) expression of TRPC3 and TRPC4 in pulmonary ar-
teries, whereas no change was observed for TRPC1 and TRPC6 
(Figure 2A). Similar results were found for TRPC genes expressed 
in PASMCs (Figure 2B). To confirm the upregulation of TRPC3 and 
TRPC4 by LPS, we analyzed the protein expression of TRPC3 and 
TRPC4 using Western blotting. In pulmonary arteries, LPS only sig-
nificantly increased the expression of TRPC4, while both TRPC3 
and TRPC4 were robustly upregulated in PASMCs (Figure 2C).

Discussion

Vascular smooth muscle cells undergo phenotypic modulation 
from a contractile phenotype to a proliferative phenotype dur-
ing cell culture [17,18]. Our study was conducted on cultured 
pulmonary arteries and freshly isolated PASMCs. This exper-
imental system avoided LPS-induced extensive immunologic 

interference in vivo and could show the direct effect of LPS on 
pulmonary arteries and PASMCs. It had been established that 
LPS-induced inflammation could increase neointimal forma-
tion in rabbit aorta and iliac artery after vascular injury [19]. 
However, it was unknown whether LPS had a direct action on 
the growth of vascular smooth muscle cells. Our results showed 
that LPS treatment promoted stenosis of pulmonary arteries 
and proliferation of PASMCs. These effects are abolished by 
blockers of TRPC channels, which are essential for the prolif-
eration of vascular myocytes [20]. We further demonstrated 
that the LPS-stimulated neointimal growth and proliferation of 
PASMCs should be attributed to increased expression of TRPC3 
and TRPC4 channels. Upregulation of TRPC channels could re-
sult in more Ca2+ flow into the cells upon activation of many 
GPCRs. The activities of Ca2+-dependent enzymes, such as cal-
cineurin, which controls the phosphorylative state of the nucle-
ar factor of activated T cell (NFAT) [21,22], were therefore en-
hanced. Dephosphorylated NFAT then enters the nucleus and 
induces the expression of massive genes related to cell prolif-
eration [23]. The expression of these genes promotes the cells 
to a proliferative state. When more PASMCs accumulate at the 
intima of the pulmonary artery, the internal arterial diameter 
becomes smaller and thus promotes pulmonary hypertension. 
This could be a novel pathologic mechanism of pulmonary ar-
terial hypertension in septic shock.

Conclusions

Our results show that TRPC channels in PASMCs are crucial 
for LPS-induced stenosis of pulmonary arteries. Application of 
TRPC blockers in animal models of septic shock-induced pul-
monary hypertension is suggested for further studies.
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