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Abstract

Our auditory system constantly keeps track of our environment, informing us about our 

surroundings and warning us of potential threats. The auditory looming bias is an early perceptual 

phenomenon, reflecting higher alertness of listeners to approaching auditory objects, rather than 

to receding ones. Experimentally, this sensation has been elicited by using both intensity-varying 

stimuli, as well as spectrally varying stimuli with constant intensity. Following the intensity-based 

approach, recent research delving into the cortical mechanisms underlying the looming bias argues 

for top-down signaling from the prefrontal cortex to the auditory cortex in order to prioritize 

approaching over receding sonic motion. We here test the generalizability of that finding to 

spectrally induced looms by re-analyzing previously published data. Our results indicate the 

promoted top-down projection but at time points slightly preceding the motion onset and thus 

considered to reflect a bias driven by anticipation. At time points following the motion onset, our 

findings show a bottom-up bias along the dorsal auditory pathway directed toward the prefrontal 

cortex.
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Introduction

Likely for the sake of hazard prevention, looming sounds are perceived as more salient to 

listeners than receding ones, in a rather fast, probably automatic evaluation process; this 

effect is termed the "auditory looming bias". As such it manifests in various forms, across 

species and ages: rodent studies demonstrate higher cortical activity (Deneux, Kempf, Daret, 
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Ponsot, & Bathellier, 2016) while primates show increased attention (Ghazanfar, Neuhoff, 

& Logothetis, 2002) toward looming signals. In humans, evidence of an automatic process 

has been found through stimuli imperceptibly rising in intensity, which lead to increased 

visual cortex activation (Romei, Murray, Cappe, & Thut, 2009). The auditory looming bias 

has shown its presence in loudness changes (Neuhoff, 1998; Seifritz et al., 2002), through 

alertness to perceived speed (Neuhoff, 2016) and relative distance (Neuhoff, Planisek, & 

Seifritz, 2009) of objects, as well as overall faster reaction times (Bidelman & Myers, 2020). 

In line with an evolutionary explanation (Neuhoff, 2001), the looming bias emerges stronger 

in physically weak or vulnerable people (Neuhoff, Long, & Worthington, 2012), as well 

as under mentally challenging conditions (increased cognitive load; McGuire, Gillath, & 

Vitevitch, 2016). Interestingly, behavioral indications for prioritizing auditory looms were 

demonstrated even in newborns as well as infants of 4 months of age, who most presumably 

are not yet aware of the hazardous nature of approaching objects (Morrongiello, Hewitt, & 

Gotowiec, 1991; Orioli, Bremner, & Farroni, 2018).

Although the precise cortical mechanisms behind this looming bias are not yet clearly 

understood, parts of the hypothesized networks have been extensively studied. Inferior 

parietal areas of the cortex (inferior parietal lobule; IPL) have been found crucial for spatial 

hearing in general (Majdak, Baumgartner, & Jenny, 2020; van der Heijden, Rauschecker, de 

Gelder, & Formisano, 2019) and sound motion processing in particular (Warren, Zielinski, 

Green, Rauschecker, & Griffiths, 2002). Functional magnetic resonance imaging (fMRI) 

investigations have specifically highlighted the involvement of the amygdala, temporal 

plane, superior temporal sulcus and intraparietal sulcus in the auditory looming circuit as 

well prefrontal cortex (PFC), primary auditory cortex (PAC) and IPL in the preferential 

processing of looming sounds (Bach et al., 2008; Seifritz et al., 2002).

As apparent from those previous findings, there are distributed networks involved in the 

processing of looming sounds but studies based on fMRI have not revealed the timing of 

underlying processes because of limited temporal resolution. The high temporal resolution 

of magneto- or electroencephalography (M/EEG) allows for unraveling such network 

dynamics through connectivity analyses. Specifically, functional connectivity quantifies 

how different brain areas communicate with each other to perform a given task (Stam & 

van Straaten, 2012). Recent connectivity analyses argue that top-down directional causal 

influence from PFC to PAC enhances processing of looming versus receding sounds 

(Bidelman & Myers, 2020).

That study as well as almost all previous ones examined auditory looming bias using 

intensity-based distance simulations (Bach, Furl, Barnes, & Dolan, 2015; Bach, Neuhoff, 

Perrig, & Seifritz, 2009; Bach et al., 2008; Bidelman & Myers, 2020; Deneux et al., 2016; 

Ghazanfar et al., 2002; Morrongiello et al., 1991; Neuhoff, 1998, 2016; Neuhoff et al., 2009; 

Orioli et al., 2018; Romei et al., 2009; Seifritz et al., 2002). Intensity-based stimuli are 

constructed by rising, falling or constant intensity. As intuitively understood, when a sound 

source approaches, its intensity increases. Varying the intensity of a presented sound is, 

therefore, a simple and effective way to simulate motion along the distance dimension. Yet 

when examining the neural substrate of auditory mechanisms, increases in sound intensity 

are potential confounders of the observed changes: listeners' judgments of auditory sweep 
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duration as well as response sensitivity have been found to be influenced by stimulus 

intensity level (Herrmann, Augereau, & Johnsrude, 2020; Teghtsoonian, Teghtsoonian, & 

Canévet, 2005).

To avoid this confound, a previous work has implemented stimuli that maintained their 

overall intensity while eliciting a looming percept by manipulating spatial spectral cues 

of the sound instead (Baumgartner et al., 2017). Spectral cues are naturally induced via 

acoustic filtering of incoming sounds by features of the human morphology. Specifically, the 

shape of the human pinna causes those cues to be more pronounced in the high frequencies. 

They are essential for the externalized perception of sound sources (Best, Baumgartner, 

Lavandier, Majdak, & Kopčo, 2020) and thus, spectral cue manipulation can create the 

percept of a sound source moving along the distance dimension (Figure 1). Using such 

stimuli allowed to demonstrate significantly increased EEG activity within the 120–200 ms 

interval after looming onset.

In the present work, we performed a connectivity re-analysis on those previously collected 

EEG data (Baumgartner, 2017), aiming to identify auditory cognitive subsystems that 

underlie the auditory looming bias. Our aim was to investigate the potential modulation 

between PFC and the primary auditory cortex (PAC), following a looming stimulus 

presentation. We specifically looked into whether the top-down connectivity, as suggested 

by recent research (Bidelman & Myers, 2020), is generalizable across different auditory 

spatial cues (intensity or spectral shape changes). In addition, we explored the potential 

involvement of other cortical regions but in particular sensory association cortices (parietal 

areas) in promoting the looming bias.

Materials and Methods

Subjects

For the present study, we used the publicly available data (Baumgartner, 2017) from 

a former study (Baumgartner et al., 2017). The data set contains EEG recordings and 

behavioral data from a total of 15 listeners (age 20–29 y, M = 24, SD = 3.7; 10 females). 

As the available sample size is rather small for connectivity analyses, we ran post-hoc power 

analyses based on our effect sizes and an alpha of 0.05 for all findings and included the 

values in all reported results. Audiometric thresholds for frequencies in the range 0.5–8 kHz 

revealed no hearing loss greater than 20 dB relative to the normal-hearing population for any 

of the participants.

Stimuli

As described in full detail in Baumgartner et al. (2017), stimuli consisted of two 

consecutively presented 600 ms long Gaussian white noises with a bandwidth limited to 

the range 1–16 kHz. In order to manipulate the perception of the sound source's spatial 

position on the horizontal plane the stimuli were filtered with the individual listener-specific 

head-related transfer functions (HRTFs). The spectral contrast factor C was varied among 

three values, C = {0, 0.5, 1}, while the overall sound intensity remained unchanged. C = 

1 represents the original spectral profile (measured 1.5 m from the listener's head), while 
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C = 0 corresponds to a flat spectral profile creating an internal percept within the listener's 

head. C = 0.5 simulates a position between the aforementioned two (Figure 1). Looming 

trials consisted of switches from C = 1 to C = 0.5 (half step; predictable), from C = 0.5 

to C = 0 (half step; unpredictable) and from C = 1 to C = 0 (full step; predictable), while 

receding trials switched from C = 0 to C = 0.5 (half step; predictable), from C = 0.5 to C = 

1 (half step; unpredictable) and from C = 0 to C = 1 (full step; predictable). All stimuli were 

presented binaurally via tubephones (ER-2, Etymotic Research) without an inter-stimulus 

interval (ISI) between the spectral changes, thus eliciting the perception of motion of a 

single sound object.

Procedure

The experimental paradigm consisted of a motion direction discrimination task (Figure 2). 

By varying factor C, looming (C1 > C2), receding (C1 < C2) or static C1 = C2 stimuli 

were created among external (C = 1), intermediate (C = 0.5) and internal (C = 0) positions. 

Listeners were asked to judge the motion direction in all cases (looming, receding and static) 

while feedback was provided to them after short blocks of 21 trials, only regarding the hit 

rate of the static trials. The subjects listened to 840 randomized trials in total, of which 14% 

were static (no change in spectral contrast).

The event of interest for the present study is the onset of spectral contrast change, denoted 

as stimulus switch and time stamped at t = 0 in Figure 2. The overall duration of the sound 

comprises 1200 ms, followed by an open response period.

Recordings & Analysis

EEG recordings were collected using a 32-channel scalp EEG with active electrodes 

(ActiveTwo BioSemi) at a sampling rate of 512 Hz. One vertical and two horizontal 

electrodes were placed around the eyes for measuring blinks and saccades. External 

reference electrodes were positioned at the mastoids and ear lobes.

The data was filtered (1–30 Hz) and re-referenced to the average. Independent component 

analysis (ICA) was applied for artifact removal. The data were then epoched in 3 second 

long segments, with a 1 second interval before sound switch and 2 after it, and a 200 ms 

baseline before each stimulus onset. As the available epoch length hindered analysis of very 

low frequencies, and in addition, high frequencies are not stable and reliable enough for 

phase dependent functional connectivity measures (van Diessen et al., 2015), we had to 

constrain analysis to the 1–30 Hz band. To estimate the volume conduction of cortical source 

activity, we numerically simulated a forward model using the boundary element method 

(BEM) as implemented in OpenMEEG (Gramfort, Papadopoulo, Olivi, & Clerc, 2010), with 

default MNI brain anatomy. To estimate source activity, we used the sLORETA inverse 

solution (Pascual-Marqui, 2002). In this algorithm, the voxels of the cortical volume are 

approximated by elementary dipoles. The current density normalization is done based on the 

noise covariance, calculated from the baseline interval, and the theoretical data covariance. 

In contrast to the actual data covariance, the theoretical covariance is extracted by the 

minimum norm solution of the forward model. The signals at 15.002 cortical surface points 

were reconstructed and then averaged for 62 cortical regions according to the parcellation 

Ignatiadis et al. Page 4

Audit Percept Cogn. Author manuscript; available in PMC 2022 April 27.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



scheme of Desikan-Killiany. Cortical regions were selected from each hemisphere for 

further analysis (region of interest – ROI), contralateral to the stimulus presentation site, 

as conscious hearing is processed contralateral to incoming sound direction (Nieuwenhuys, 

1984). As motivated above we initially focused our analyses on the regions of PFC, PAC 

and IPL. As no connections between those regions indicated significant biases toward looms 

during the timing (120–200 ms) indicated by the previous event-related potential (ERP) 

study (Baumgartner et al., 2017), we subsequently performed a whole-brain analysis focused 

on that time range.

Regarding the connectivity analysis, we aimed for consistency with previous work 

(Bidelman & Myers, 2020) and applied the directed functional connectivity measure of 

phase transfer entropy (PTE; Lobier, Siebenhühner, Palva, and Palva 2014). PTE is an 

information theoretic measure that quantifies directed effects between time series. This 

measure operates based on the phase of the signal, thus being devoid of ambiguities the 

amplitude information can introduce.

Following a standard approach in time-frequency analysis, we applied the normalized PTE 

metric (dPTE) on the trial averages as well as on single trials. To obtain temporally resolved 

connectivity estimates, PTE was evaluated on a rectangular sliding window of 250 ms 

duration. Based on prior reports (Vicente, Wibral, Lindner, & Pipa, 2011) and our own 

experiences with using measures of PTE, this window length seemed to be a good trade-off 

between temporal resolution and the reliability of PTE estimates (Lobier et al., 2014). Using 

a shorter window length than that would not provide enough data to reliably estimate PTE. 

The step size was selected at 10 ms. Demonstrated in the abscissa of the corresponding plots 

is the center of said sliding time window (Figure 6(a,b,c)). Values for the looming bias were 

calculated as the difference between the looming and the receding conditions (collapsed over 

the different step sizes of spectral contrast manipulation if not stated otherwise) in directed 

connectivity between each pair of cortical regions considered. Inter-individual differences 

were out of the scope of this study because given the available data set it would not be 

possible to dissociate between differences in source localization accuracy based on template 

brain anatomy, and actual processing differences in the individuals' brain. We implemented 

the analysis pipeline in EEGLAB (Delorme & Makeig, 2004 for preprocessing) and 

Brainstorm (Tadel, Baillet, Mosher, Pantazis, & Leahy, 2011, for postprocessing).

Significance of the looming bias values was deemed based on cluster-based permutation 

tests of looming versus receding contrasts (Maris & Oostenveld, 2007): multi-subject time-

series of dPTE differences between conditions (looming and receding) were permuted 2000 

times, with a double-tailed t-statistic threshold of 0.95. Clusters were considered if ranging 

over at least 3 time windows (250 ± 15 ms). Effect sizes were calculated based on Cohen's d 

(Cohen, 1988).

Results

Behavioral Effects

In order to investigate the contribution of the different spectral-change conditions, full steps 

(from C = 0 to C = 1 or vice versa) and half steps (from C = 0 to C = 0.5 and C = 0.5 to 
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C = 1, and vice versa), we re-analyzed the behavioral data from Baumgartner et al. (2017). 

Figure 3 shows the distribution of individual looming biases. For the accuracies, we ran a 

linear mixed-effect logistic regression model with spectral change (full steps; half steps) and 

direction of movement (looming; receding) as fixed effects and subject as random intercept 

and slope. The response times were analyzed with a general linear model with the same 

fixed and random effects. The results showed both significant main effects for direction and 

spectral change. For direction, subjects performed better (z = −2.34, p =.019) and faster (t = 

2.97, p =.009) in looming (83.9%; 1.09 s) than receding trials (75.0%; 1.13 s). For spectral 

change, they performed better (z = −5.41, p <.001) and faster (t = 4.75, p <.001) for full 

(83.4%; 1.09 s) than half steps (77.4%; 1.12 s). Also, the interaction was significant (z = 

4.24, p <.001): looming bias was larger for full than half steps (t = −3.01, p =.003).

Source Activity

We extracted the time series of our primary ROIs, that is, PAC, PFC, and IPL, for both the 

looming and the receding trials. The source activity obtained for PAC shows a stereotypical 

pattern of positive and negative deflections (Figure 4), indicating good localization accuracy 

despite the 32-channel EEG setup.

To further explore other regions, we looked for significant differences in source activity over 

the whole brain while focusing on the time window between 120 and 200 ms, deemed vital 

in Baumgartner et al. (2017). Such differences are mostly localized in temporal, parietal and 

frontal regions (Figure 5). There, we found differences emerging in PAC on the temporal 

lobe, precentral gyrus (PreCG) on the parietal lobe, and postcentral gyrus (PostCG), superior 

frontal gyrus (SFG), pars triangularis (PTR), and pars opercularis (POP) on the frontal lobe.

Connectivity

We tested the dPTE connectivity between PFC and PAC based on both source signals 

averaged across trials as well as single-trial source signals. Across all time instances, 

connectivity was directed top-down from PFC to PAC, as indicated by positive dPTE 

values obtained from the single-trial analysis in Figure 6(a). A short time window slightly 

preceding the time of stimulus switch showed a rather weak but statistically significant 

connectivity increase in favor of looming sounds (gray shaded area; abscissa denotes the 

center of the sliding window; d = 0.55, β = 50.4%). This bias in PFC to PAC connectivity 

did not persist in individual analysis of predictable versus unpredictable conditions. Also, no 

significant instances of a looming bias were found in our analysis based on trial averages.

We further investigated the neural circuitry involving the IPL. With respect to PFC, the 

dPTE analysis of single-trial source activity revealed top-down directed connectivity from 

PFC to IPL in response to the looming stimulus (Figure 6(b)). Contrary to that, the receding 

stimuli elicited responses in the opposite direction (IPL to PFC). Instances of significant 

differences in the connections between the regions of IPL and PFC were found well during 

the time window of stimulus switch (d = 1.22, β = 99.2%). Individual analysis of predictable 

versus unpredictable conditions revealed significantly enhanced connectivity between the 

regions of IPL and PAC only for the predictable (d = 0.91, β = 90.7%) but not the 

unpredictable case. The significant instances appear at the same time interval as they do 
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for the pooled conditions. No significant differences were found in the case of the averaged 

source signal analysis.

In connection to PAC, positive dPTE values in Figure 6(c) indicate connectivity generally 

directed from IPL to PAC. For looming sounds, we found a short instance of increased 

IPL to PAC directed connectivity after stimulus switch (d = 0.79, β = 81.4%). Again, no 

significant differences were observed when analyzing averaged source signals.

For all the other ROIs whose activity differed significantly in the time interval from 

120 to 200 ms, single-trial analyses revealed significant instances of the looming bias in 

connections targeting SFG from PAC (d = 0.95, β = 92.6%), PostCG (d = 0.67, β = 67.5%) 

and PreCG (d = 0.84, β = 85.3%), as well as in the connection from SFG to POP (d = 1.06, 

β = 96.9%). The timings and strengths of those connections are summarized in Figure 7 

together with the results obtained for PAC, PFC, and IPL.

Discussion

We here explored the connectivity between temporal, parietal and frontal ROIs, based 

on previously collected data used to show that auditory looming bias can be elicited 

with constant-intensity, spectrally varying sounds (Baumgartner et al., 2017). We found 

that those constant-intensity looms bias cortico-cortical connectivity among different areas 

considered: Connectivity among the PAC, IPL and the PFC seems to take place around 

stimulus presentation, while interplay between the SFG and the regions of the PAC, PostCG, 

PreCG and POP happens at a later time consistent with previous ERP biases (120–200 ms; 

Baumgartner et al., 2017). Our results indicate early top-down and later bottom-up coupling 

induced in favor of looming sound motion.

Congruent to a recent study that promoted a top-down fronto-temporal modulation favoring 

the processing of looming sounds (Bidelman & Myers, 2020), our findings support the 

hypothesized top-down cortical connectivity between PFC and PAC. Top-down connectivity 

of smaller amplitude is found for the receding stimuli as well, in the same direction (PFC 

to PAC). However, power calculations assign a power of only 50.4% to this emergence 

and the timing of the connection between the areas of PFC and PAC (Figure 6(a)) seems 

to be rather preceding the motion onset, than persisting through it. We believe that this 

effect might be connected to predictive action or expectation on the side of the subjects, 

regarding the upcoming stimuli, rather than evoked by them. Concordantly, the bias in PFC 

to PAC connectivity did not persist in individual analysis of predictable versus unpredictable 

conditions.

By comparing predictable moving trials with static trials (which break the prediction of 

changes to occur), it would be possible to marginalize the components that may stem 

from the ability to identify the sounds or anything else that is intrinsic to the first 

sound. Unfortunately, the original study (Baumgartner et al., 2017) was not designed for a 

comparison between static and moving trials. The static trials were only introduced as catch-

trials in order to measure participants' attention. For the moving trials, every combination of 

spectral contrast changes (looming, receding, full step, half step) was presented 120 times. 
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Even though there were 120 static trials, the design held only 40 trials per spectral contrast 

(C = 0, C = 0.5, C = 1), which is too few for connectivity comparisons. In an ongoing 

follow-up study with high-density EEG and individualized brain anatomies, we chose a 

design with a balanced number of static and moving trials to allow such comparisons.

The fronto-parietal connectivity between PFC and IPL showed an interesting differentiation: 

looms evoked projections directed from PFC to IPL, while recedes evoked projections 

rather in the opposite direction (IPL to PFC; Figure 6(b)). PFC and IPL are part of the 

fronto-parietal network (FPN) supporting cognitive control and decision-making processes 

(Marek & Dosenbach, 2018; Vincent, Kahn, Snyder, Raichle, & Buckner, 2008). It is critical 

for our ability to coordinate behavior in a rapid, accurate, and flexible goal-driven manner, 

and it is anatomically positioned to integrate information from the dorsal attention and 

hippocampal-cortical memory systems (Singh-Curry & Husain, 2009; Vincent et al., 2008). 

IPL, in particular, plays an important role in maintaining attentive control on current task 

goals and accumulating evidence in a probability learning task, on the one hand, as well as 

responding to salient new information or alerting stimuli in the environment, on the other 

(Singh-Curry & Husain, 2009). Hence, the two directions of connectivity between PFC and 

IPL that we observed may potentially reflect those two roles. While looming sounds may 

trigger alerts projected from PFC to IPL, receding sounds may only reflect the maintenance 

of attentive control and accumulation of probabilistic evidence directed from IPL to PFC.

In addition to the IPL-PFC projection, we found post-switch connectivity directed from IPL 

to PAC to be enhanced for looming sounds (Figure 6(c)). The enhanced information flow 

from the IPL may mediate the function of enhanced object identification in the case of 

looming sounds (Singh-Curry & Husain, 2009) via the dorsal auditory pathway. Since the 

connectivity bias only persisted in predictable but not in unpredictable cases, predictability 

of the stimulus seems to play a role in enhancing feedback projections.

The observed involvement of parietal regions in the preferential processing of looming 

stimuli is consistent with previous fMRI results (Bach et al., 2008; Seifritz et al., 2002). 

Parietal regions include the association cortices that support auditory spatial processing as 

well as higher level object recognition and classification for further stimulus analysis, as part 

of the dorsal auditory network (Bizley & Cohen, 2013). Around the timing of interest (120–

200 ms), all significant connections are linked with SFG. Since it is a frontal area, this may 

be connected to enhanced attention orientation for the more salient stimulus (involving both 

feedback and feed-forward connections), consistent with the saliency of looming stimuli. 

The SFG is also involved in preparatory processes for response selection and execution (i.e., 

premotor cortex connectivity) as well as enhanced decision-making processes (Rushworth, 

Walton, Kennerley, & Bannerman, 2004), all functions essential for an automatic reaction 

to a threatening stimulus. Our results therefore extend the previous knowledge by indicating 

how those regions may be connected.

Significant results were only obtained on the basis of single-trial analyses. Since time-locked 

averaging removes desynchronized activity from the output signal, results of the trial 

averages are considered to reflect only synchronized activity, commonly evoked by bottom-

up projections. Conversely, analyses based on single trials may also contain correlates of 
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desynchronized activity, commonly induced by top-down projections (Makeig, Debener, 

Onton, & Delorme, 2004). The lack of effects in average-trial-based analyses might either be 

methodologically based (dPTE reflects mainly induced brain processes; Mäkinen, Tiitinen, 

& May, 2005) or neurally based (specific processing of looming sounds rather mediated by 

induced functional connections).

Although there are more established and frequently used methods to assess network 

connectivity (e.g., Dynamic Causal Modeling; DCM), we deliberately followed a functional 

connectivity approach: the current data were initially collected for an ERP study; 

as such, they pose limitations on source localization accuracy (32 electrodes; non-

individualized anatomies and electrode positions). For that reason, we chose to follow a 

functional connectivity approach, allowing us to draw modest conclusions regarding source 

correlations first, before moving toward stronger and better grounded conclusions through 

our ongoing follow-up study (high-density EEG; individualized electrode locations and MRI 

scans), where the data quality will allow for applying more state-of-the-art methodology. 

The choice of PTE as the connectivity measure largely relies on our target to test previous 

connectivity findings for complementary stimuli. In the process of its implementation we 

came across several questions regarding its application (time windows, trial configuration, 

delay estimates, etc.). We have investigated most of these aspects, but are still slightly 

reserved regarding our results. We believe there are more appropriate methods for drawing 

causal conclusions regarding connectivity, which we are aiming to employ in our upcoming 

studies.

For the purpose of the present study we re-analyzed archived data, previously collected for 

a study designed to assess ERPs in channel space. Having used a 32-channel scalp EEG 

with no individualized anatomies and electrode positions, the source localization accuracy 

is restricted. As such, there might be a higher amount of noise introduced within each ROI. 

Especially in the case of the PAC, a very narrow region in the temporal lobe, the attributed 

results might actually be originating more broadly from neighboring areas on STG.

In conclusion, our results seem to confirm that top-down projections originating from 

frontal decision-making areas are biased in favor of looming sounds and target not only 

sensory areas in the temporal lobe, as demonstrated earlier (Bidelman & Myers, 2020), 

but also parietal areas associated with processing of spatial and emotional information 

(Engelen, Zhan, Sack, & de Gelder, 2018). Yet, these top-down directed biases occurred at 

time points slightly preceding or happening around motion onset and thus are considered 

to reflect anticipatory processes. At time points following the motion onset, biases were 

found in the exact opposite direction. In an ongoing follow-up study with optimized 

design, we are aiming to solve discrepancies in reaction time data on looming bias (see 

Bach et al., 2015, 2009, 2008), broaden our knowledge on spectrally evoked looms, and 

investigate predictability effects. With this high-density EEG study (featuring individual 

brain anatomies and electrode positions) we are aiming to better understand the networks 

underlying the looming bias, as well as how they are formed, developed and maintained.
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Figure 1. 
Magnitude responses of listener-specific stimuli as a result of spectral contrast factor C 

manipulation. Different factor values correspond to different simulated positions in space: 

C = 1 for an external position (red), C = 0 for a perceived location inside the listener's 

head (blue), C = 0.5 an intermediate of the two (green). [Adapted from Baumgartner et al. 

(2017)].
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Figure 2. 
The spectral contrast factor C was manipulated to create looming and receding sounds. 

Noise filtered with factor C1 was cross-faded to C2 with a temporal jitter of ±50 ms. 

Listeners were asked to report whether the sound was approaching, receding or static during 

the open response period. [Adapted from Baumgartner et al. (2017)].
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Figure 3. 
Violin and box plots depicting the median, interquartile range, and density of the looming 

bias of response times in ms (magenta, left x-axis) and accuracies in % (cyan, right 

x-axis) depending on the different step sizes of spectral contrast manipulation as well as 

predictability of the second stimulus on the y-axis.
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Figure 4. 
Group-average (N = 15) source strength responses in PAC elicited for trials with looming 

and receding stimuli. The PAC exhibits stereotypical auditory ERP dynamics (cluster-based 

permutation test).
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Figure 5. 
Brain maps highlighting the regions that show a significant emergence of the looming bias 

in the left and right hemisphere, averaged over the time window between 120 and 200 ms 

(Baumgartner et al., 2017). Differences are mostly localized in temporal, parietal and frontal 

regions.
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Figure 6. 
Group average connectivity values (dPTE, SEM, N = 15) between (a) PFC and PAC, (b) 

PFC and IPL and (c) IPL and PAC based on the individual single-trial source activities for 

looming and receding trials plotted against the center of the sliding time window (duration 

250 ms). Significant occurrences of the looming bias are apparent at times around as well 

as before the stimulus change (vertical colored bars, p < 0.05; colors of the bars correspond 

to regions in fig. 7). Positive dPTE values represent connectivity in the targeted direction, 

indicated by the plot title, while negative ones denote the opposite direction.
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Figure 7. 
Average dPTE connectivity values over the significant occurrences of the looming bias, 

calculated as the difference between dPTE for looming and dPTE for receding stimuli, based 

on the single-trial source activities and plotted against the center of the sliding time window 

(duration 250 ms). Additionally to the connections presented above (Figure 6(a,b,c)) 

significant connections are found from PAC, PostCG and PreCG to SFG. These additional 

significant occurrences of the looming bias are apparent at times corresponding to the timing 

of maximum looming bias occurrence (120–200 ms), as indicated by Baumgartner et al. 

(2017). Positive dPTE values resent connectivity in the direction mention as the legend of 

each bar (PAC to SFG, PreCG to SFG, PostCG to SFG, SFG to POP, PFC to PAC, PFC to 

IPL and IPL to PAC), negative values in the opposite direction.
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