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ABSTRACT
Introduction: Global emergence of coronavirus disease-19 (COVID-19) has clearly shown variable 
severity, mortality, and frequency between and within populations worldwide. These striking differ-
ences have made many biological variables attractive for future investigations. One of these variables, 
vitamin D, has been implicated in COVID-19 with rapidly growing scientific evidence.
Areas covered: The review intended to systematically explore the sources, and immunomodulatory 
role of vitamin D in COVID-19. Search engines and data sources including Google Scholar, PubMed, 
NCBI, Scopus, and Web of Science were used for data collection. The search terms used were Vitamin D, 
COVID-19, immune system, and antiviral mechanism. Overall, 232 sources of information were collected 
and 188 were included in this review.
Expert opinion: Interaction of vitamin D and vitamin D receptor (VDR) triggers the cellular events to 
modulate the immune system by regulation of many genes. Vitamin D operates as a double-edged 
sword against COVID-19. First, in macrophages, it promotes the production of antimicrobial and 
antiviral proteins like β-defensin 2 and cathelicidin, and these proteins inhibit the replication of viral 
particles and promote the clearance of virus from the cells by autophagy. Second, it suppresses 
cytokine storm and inflammatory processes in COVID-19.
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1. Introduction

Vitamin D is mainly found in two forms, one is cholecalciferol 
(vitamin D3) and the other is known as ergocalciferol (vitamin 
D2) [1]. These two forms are either photosynthesized by the 
human skin cells on exposure to UV radiation or obtained 
from nutritional sources including red meat, egg yolks, and 
fatty fish. Ultraviolet radiation has many hazardous effects, 
according to estimates, UV exposure has been linked to mel-
anoma and non-melanoma cancers that affect more than 
1.7 million people annually [2,3]. However, the exposure to 
adequate UV radiation is essential for the synthesis of vitamin 
D [4]. A 20–30 minute daily sunlight exposure is sufficient for 
an adequate synthesis of vitamin D3 in humans; in this con-
text, even physical outdoor activities can help producing suffi-
cient amounts of vitamin D without posing an additional risk 
for skin cancer [5]. Dietary intake and exposure to UV radiation 
at 280 nm to 320 nm contribute to the total body require-
ments of vitamin D. Several factors including the skin pigmen-
tation, solar angle, energy of photons in the incidence light, 
time of day, application of sunscreens, body concentration of 
7-dehydrocholesterol (7-DHC) are important regulatory factors 
for the photosynthesis of vitamin D [6–8]. Newly synthesized 
vitamin D is activated to 1,25-Dihydroxyvitamin D that 

subsequently interacts with vitamin D receptors (VDRs) 
where it regulates the expression of many downstream 
genes. Vitamin D increases calcium absorption in the gut 
and promotes bone mineralization; it does not decrease 
mineral deposition [9]. Binding of 1,25-Dihydroxyvitamin D3 
to the receptor in the intestinal nuclei provokes the transport 
of calcium and improves the transcription of genes that code 
for calcium and phosphorus transport proteins. Hence, vitamin 
D plays an important role in the calcium-phosphorous home-
ostasis and bone metabolism [10]. The vitamin has also been 
reported to have some role in the management of depression 
and anxiety [11]. Vitamin D plays an established role in boost-
ing the immune system, proper functioning of skeletal mus-
cles, and prevention against diabetes and cancer [12–16]. 
COVID-19 pandemic has appeared as a threat to human health 
and life that has affected the world population recently [17]. It 
has been recently reported that vitamin D deficiency plays an 
important role in increasing the risk of SARS-CoV-2 infection 
and COVID-19 severity [18–22]. Vitamin D deficiency has been 
reported as a significant factor in the transmission and com-
plications of COVID-19 [23,24]. The present review article was 
aimed at the brief introduction of vitamin D and its role in the 
immune physiology in general and against COVID-19 in 
particular.

CONTACT Imran Kazmi kazmiimran2005@gmail.com; ikazmi@kau.edu.sa Department of Biochemistry, Faculty of Science, King Abdulaziz University, 
Jeddah 21589, Saudi Arabia; Sadaf Jamal Gilani SJGlani@pnu.edu.sa Department of Basic Health Sciences, Preparatory Year, Princess Nourah Bint 
Abdulrahman University, Riyadh 11671, Saudi Arabia

EXPERT REVIEW OF ANTI-INFECTIVE THERAPY                                                                                                                 
https://doi.org/10.1080/14787210.2021.1941871

© 2021 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/14787210.2021.1941871&domain=pdf&date_stamp=2021-07-14


1.1. Methodology

The present review study was conducted at the digital libraries 
of King Abdulaziz University, Jeddah, and Princess Nourah Bint 
Abdulrahman University, Riyadh, Saudi Arabia. There was no 
need for ethical approval or permission as no animal or human 
subjects were directly included. The associated literature 
about the sources, synthesis, activation of vitamin D, and its 
physiological role in the strengthening of immune system was 
collected. On the basis of information available in the recent 
literature, a mechanism of action against SARS-Co-V2 infection 
was proposed. All the data were collected from online data 
banks including PubMed, Google Scholars, Yahoo, Web of 
Science, and other available online sources. For data collec-
tion, terms like vitamin D, vitamin D synthesis, vitamin 
D metabolism, and human immune system and association 
of COVID-19 and vitamin D and SARS-CoV-2 infection and 
vitamin D were used. A huge amount of recent data were 
collected from online search engines, and data comprising 
peer reviewed research articles published in the reputed jour-
nals and webpages of international pharmaceutical companies 
were included in the further analysis. The data from websites, 
unpublished articles, and published articles in the non-peer 
reviewed journals were excluded. The final included data were 
combined, analyzed, and evaluated. Overall, 232 information 
sources (published articles, books, and websites) were com-
bined, and 188 were included in the present study. Following 
PRISMA (Preferred Reporting Items for Systematic Reviews and 
Meta-Analysis) flowchart describes the study sequence and 
details:

PRISMA flow diagram for new systematic reviews, which 
included searches of databases *Consider, if feasible to do so, 
reports the number of records identified from each database 
or register searched (rather than the total number across all 
databases/registers). **If automation tools were used, indicate 
how many records were excluded by a human and how many 
were excluded by automation tools [25].

2. Sources, synthesis, and metabolism of 
vitamin D
Vitamin D exists in two major forms, cholecalciferol (vitamin 
D3) and Ergocalciferol (vitamin D2). Vitamin D2 is obtained 
from the nutritional sources including fungi (mushrooms & 
yeasts), meat, egg yolks, fatty fish, and some dairy products 
like yogurt [26]. Vitamin D3 is synthesized endogenously or 
obtained from diet. By the action of UVB (Ultraviolet radiation 
B) at 280 nm to 320 nm, 7-dehydrocholesterol is converted to 
vitamin D3 [27,28] (Figure 1).

Apparently, the photosynthesis of vitamin D is an enzyme- 
independent process, but the level of 7-dehydrocholesterol – 
the parent compound of vitamin D, is dependent on the 7- 
dehydrocholesterol reductase (DHCR7). Lower activity of 
enzyme results in the higher concentration of 7-dehydrocho-
lesterol and an increased synthesis of vitamin D [28]. The 
concentration of 7-dehydrocholesterol is high in the cells of 
upper epidermis known as keratinocytes, where the synthesis 
of vitamin D takes place [29]. Up to 80% of the dark melanin 
layer is found in the basal epidermis layer and has no signifi-
cant impact on vitamin D synthesis [30,31]. Hence, the dark- 
skinned population of Eastern African mostly has higher 
plasma levels of vitamin D as compared to rest of the world 
[32]. In general, the daily requirement of vitamin D for an 
average person is up to 600 IU/day, and the requirement 
increases in the old individuals above 70 years. The average 
serum levels greater than 20 ng/mL are normally provided by 
exposure to sunlight [4]. Geographic location-based Vitamin 
D deficiency has been reported among populations with 
mixed ancestry such as 37.3% people with age 60 to 
65 years in Mexico (<32° N), 12.1% in greater Toronto (43° N) 
and 45% in the Netherlands (52° N) [33–35]. Age-dependent 
variation in the plasma vitamin D levels has been reported, 
but there is no evidence of significant difference among male 
and female populations. All kinds of populations living at 
greater than 35° latitude are at increased risk of vitamin 
D deficiency due to reduced exposure to sunlight [36]. In 
addition to limited sun exposure, several other risk factors 
for vitamin D deficiency include low intake in diet, decreased 
epidermal levels of 7-dehydrocholesterol, thin epidermis, 
decreased appetite, overweight/obesity, decreased physical 
activity, decreased renal synthesis of 1,25(OH)2D and its 
increased catabolism [37–42]. Despite its proven potential in 
the vitamin D synthesis, exposure to sunlight during mid-day 
is not recommended by many international health authorities 
including the American Cancer Society and World Health 
Organization [43,44], as the synthesis of vitamin and progres-
sion of skin cancer is not dissociable impacts of UV light. 
Vitamin D3 and D2 are inactive forms, and they are activated 
in the liver and kidneys to calcidiol, 25(OH)D [45,46]. The 
activated form that enters the blood stream has a half-life of 
about 15 days [47]. In the blood stream, 25-Hydroxyvitamin 
D is carried to kidneys where it is further hydroxylated to 1,25- 
dihydroxyvitamin D (calcitriol) (Figure 1). From kidneys, the 
finally activated form of vitamin D is transported by vitamin 
D-binding proteins (DBP) to the organs that have vitamin 

Article highlights

● Vitamin D is synthesized by the human skin cells under UVB radiation 
and activated in the liver and kidneys.

● Vitamin D deficiency has been positively linked with increased 
chances of infection, severity, and mortality by respiratory infections 
including COVID-19.

● VRD-Vitamin D interaction results in the regulation of many genes 
associated with immune system and promotes the innate and adap-
tive immune response against respiratory infections.

● It enhances the production of antibacterial and antiviral proteins 
including beta-defensins and cathelicidin to inhibit the cellular 
entry and subsequent proliferation of virus particles.

● In the macrophages, vitamin D promotes autophagy and clearance of 
virus particles by upregulation of calcium/nitric oxide, immunomo-
dulatory proteins, and downregulation of mTOR pathway.

● Future studies on anti-inflammatory and antiproliferative mechan-
isms involving vitamin D an development and application of appro-
priate animal models are recommended to combat COVID-19 or any 
upcoming similar pandemic.
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D receptors (VDRs). The plasma level of calcitriol remains up to 
75 pmol/L to 200 pmol/L in the healthy individuals [48].

3. Vitamin D, genes, and immune system

Human immune system responds to external invaders and 
infections by a complex mechanism comprising many soluble, 
mobile signaling molecules such as cytokines, chemokines, 
and multiple types of cells [49–53]. Vitamin D contributes to 
regulating the immune response, which was first demon-
strated by the presence of VDR in almost all cells of the 

immune system. Both the innate and adaptive immune 
systems operate against bacterial and viral infections, espe-
cially to the chronic inflammatory conditions by the influence 
of vitamin D [49,54,55]. Vitamin D implements its genomic 
impact by using VDRs. Calcitriol interacts with VDRs and 
results in the downstream regulation of vitamin D response 
elements, genes coding for cathelicidin, and the active form of 
vitamin D has a suppressive effect on PTH synthesis. Calcitriol 
activates a number of signaling systems such as the discharge 
of Ca2+ from intracellular stores, Ca2+ influx; modulation of 
phospholipase C, adenylate cyclase, and protein kinases 

Figure 1. A schematic representation of photosynthesis and activation of vitamin D in the human body.

Table 1. Some examples of genes regulated by vitamin D – VDR interaction. It should be noted that the genes extensively reported in the literature have been 
included in the table.

Sr. No. Name of gene Regulatory impact Reference

1 FGF23 gene Upregulation [60,61]
2 Klotho gene Upregulation [62–64]
3 CYP27B1(1α-hydroxylase) Downregulation [65,66]
4 CYP24 (24-hydroxylase) Upregulation [66]
5 PHEX gene (Phosphate Regulating Endopeptidase Homolog X-Linked) Downregulation [67,68]
6 DMP1 (dentin matrix protein 1) Downregulation [68–70]
7 VDR (vitamin D receptor) Upregulation [71,72]
8 CYP3A4 (25-hydroxylase) Upregulation [63–75]
9 UCP2 (uncoupling protein 2) Upregulation [76,77]
10 ILT3 (immunoglobulin-like transcript 3) Upregulation [78,79]
11 TSLP (Thymic stromal lymphopoietin) Upregulation [80,81]
12 TLR (Toll-like receptor) Downregulation [82]
13 TLR10 (Toll-like receptor 10) Upregulation [83]
14 TNF-α (tumor necrosis factor-α) Upregulation [84,85]
15 NF-κB (nuclear factor kappa B) Downregulation [86,87]
16 Cathelicidin Upregulation [88,89]
17 Beclin-1 Upregulation [90,91]
18 Defensin Upregulation [92–94]
19 CaBP-D9k (Calbindin-D9k) Upregulation [95]
20 RANKL (Receptor activator of nuclear factor kappa-Β ligand) Upregulation [96,97]
21 SFRP2 (Secreted Frizzled Related Protein 2) Downregulation [98]
22 DKK1 (Dickkopf WNT signaling pathway inhibitor 1) Downregulation [98]
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C [56]. It has been demonstrated that the vitamin D/VDR 
signaling results in the chromatin modeling and significant 
epigenome modification in the monocytes during perturba-
tion, consequently reducing the release of cytokines and mod-
ulation of innate immune response [57]. VDRs are the 
receptors found in almost all the cardiovascular and digestive 
systems where they operate to regulate transcription and 
expression of about 100 genes, directly and indirectly influen-
cing 3% of human genome [58,59]. Some of the important 
genes regulated by or associated with vitamin D via VDRs 
have been tabulated (Table 1).

Vitamin D regulates the expression of at least 11 genes 
involved in the bone homeostasis. Genes associated with ion 
channels phosphatases or kinases, intestinal calcium absorp-
tion, and bone resorption systems are important examples 
[99,100]. Cathelicidins represent a group of proteins associated 
with anti-microbial activity, and the synthesis of these proteins 
is activated by vitamin D. For example, a cathelicidin propep-
tide hCAP18 is cleaved to an active antimicrobial peptide LL- 
37 to counter microbial invasions [101]. Most of the cathelici-
dins are found in the neutrophil granules and released at the 
infection sites. However, some other types of immune cells 
such as NK cells, monocytes, and B cells can also produce 
antimicrobial hCAP18 protein [102]. The activated protein 
enters the blood stream and is transported to epithelia of 
digestive tract, cornea, the conjunctiva, skin, and urinary 
tract [103,104]. In the absence or severe deficiency of active 
vitamin D, the ability of immune cells to induce cathelicidin is 
impaired significantly [105]. Immune and bone systems are 
linked at multiple levels and give rise to the concept of 
osteoimmunity. Bone marrow is basically the origin of all 
immune cells including B, T, neutrophils, and macrophages 
[106]. Hence, the low levels of deficiency of vitamin D have 
been associated with immune suppression and initiation of 
many diseases. As, for example, the reduced exposure to sun-
light during winters (leading to reduced synthesis of vitamin 
D) has been positively correlated with the onset of type 1 
diabetes mellitus (T1DM) [107]. Application of vitamin 
D supplements, cod oil, and other forms of dietary intake of 
vitamin can significantly reduce the chances of T1DM [108]. 
The use of vitamin D (≥2000 IU/d) in the first year of life can 
reduce the risk of T1DM up to 80%. On the other hand, the 
kids with chances of rickets have 3 times increased chances of 
T1DM. The vitamin also reduces the chances of T1DM by 
supporting the immune system [109]. In the preclinical studies 
on mice, vitamin D has been found to have inverse relation 
with insulin secretion and glucose intolerance. It regulated the 
glucose homeostasis. The mice with nonfunctional VDRs have 
shown a decreased level of insulin mRNA levels [110]. The 
changes in insulin concentrations may be mediated by cal-
cium levels in the pancreatic beta cells [111]. Studies have 
shown that the deficiency of vitamin D can increase the 
chances of cardiovascular diseases [112]. The individuals with 
insufficient plasma levels of vitamin D have higher incidence 
of peripheral arterial disease, stroke, myocardial infarction, and 
extended coronary artery calcification [113,114]. VDR activa-
tion reduces the risk of various types of cancers via p53 and 
p21 activation, it also promotes the apoptosis and cell 

differentiation mechanisms [115,116]. The deficiency of vita-
min D has also been associated with many other chronic 
diseases including asthma [117], inflammatory bowel disease 
[118], chronic obstructive pulmonary disease (COPD) [119], 
multiple sclerosis (MS), rheumatoid arthritis (RA), and systemic 
lupus erythematosus (SLE) [120].

4. Proposed mechanism of vitamin D action against 
SARS-COV-2

In addition to its role as a mediator of immune system, pro-
moter of antimicrobial activity, vitamin D, represents 
a potential candidate against viral infections [121]. 
Application of vitamin D increases the production of catheli-
cidins that have shown potential antiviral properties in addi-
tion to antimicrobial impact [122–124]. In the airy pathways of 
human respiratory system, vitamin D triggers the production 
of IkBα (nuclear factor of kappa light polypeptide gene enhan-
cer in B-cells inhibitor, alpha) that serves as an inhibitor of NF- 
kB (nuclear factor kappa light-chain enhancer of activated 
B cells), resulting in the reduced expression of virus induced 
inflammatory genes [125]. Therefore, vitamin D has been 
found to be effective against influenza [126] and human 
immunodeficiency viruses (HIV) [127]. The antiviral activity of 
vitamin D has become an important topic of discussion with 
reference to the worldwide struggle and fight against COVID- 
19 (Coronavirus Disease 19). The action of vitamin D against 
SARS-CoV-2 may involve the mechanism similar to its reported 
antimicrobial and antiviral activities in the previous studies. 
These mechanisms include production of cathelicidin and 
defensins to inhibit the viral entry into the cells and its replica-
tion [128] and induction of autophagy represented by the 
expression of autophagy marker LC3 (light chain 3) [129– 
131]. Mechanistic target of rapamycin (mTOR) pathway that 
inhibits autophagy is negatively regulated by vitamin D [132], 
and vitamin D also promotes the enzymes involved in autop-
hagy including PI3KC3 and Beclin 1 by upregulating the Ca 
(intracellular calcium and NO (nitric oxide) levels [133–135]. 
The autophagy-associated impact of vitamin D is closely linked 
with apoptosis, and both processes promote the antiviral 
response [136]. Recent in silico studies have reported the 
involvement of TLRs and TLR4 in particular in the recognition 
and induction of immune response to SARS-CoV-2. TLR4 
receptor having the strongest TLR-Spike protein interaction 
has been reported to play a vital role in the SARS-CoV-2 
induced inflammatory events in COVID-19. Hydrogen and 
hydrophobic interactions are involved in the TLR4-Spike inter-
action [137]. Based on the above information, a proposed 
mechanism of vitamin D action against COVID-19 is described 
(Figure 2). In the case of hypertensive patients, a heat shock 
protein of 60 kDa molecular weight (HSP60) is produced post- 
SARS-CoV-2 infection and triggers the inflammatory response 
by induction of proinflammatory cytokines via cardiac toll-like 
receptor pathways. This makes the heart vulnerable and 
enhances thrombosis in the case of acute respiratory condi-
tion during COVID-19, which results in unbearable burden to 
the heart, leading to multiorgan failure and mortality. Hence, 
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HSP60 can be an attractive target in the management of 
COVID-19 [138] (Jakovac, 2020).

5. Vitamin D in COVID-19 – preventive and 
treatment potential

Studies indicating a positive correlation of vitamin 
D deficiency with the incidence of acute respiratory infections 
(ARI) naturally raised a question if vitamin D can prevent 
COVID-19? [139]. Many studies have suggested that adequate 
vitamin D levels play a vital role in preventing COVID-19 
infection and in avoiding mortality, in the case of infection 
[140]. According to reports, the deficiency of vitamin D can 
enhance the chances of COVID-19 infection [141]. According 
to recent findings, the countries with less availability of UVB, 
consequently an overall vitamin D deficiency, have signifi-
cantly high rate of COVID-19 infection [142]. Up to 4.4% 
increase in mortality rate by COVID-19 has been found in the 
geographic areas with each degree difference from North of 
28° latitude, suggesting an indirect role of UVB and vitamin 
D in the protection against COVID-19 [143]. COVID-19 is 
a disease commonly characterized by acute respiratory dis-
ease, pneumonia, myocarditis, cytokine storms, and inflamma-
tion. Main defense system against COVID-19 infection depends 
on T regulatory lymphocytes (Tregs), and these are effective 
immunosuppressive cells with a critical role in the homeostasis 
of immune response. It has been assumed that the Tregs are 
responsible for SARS-CoV-2-specific immune tolerance by sup-
pression of inflammation in the patients. Changes in the Tregs 
of COVID-19 patients with acute respiratory problems can 

provide targets against COVID-19. Regulatory effect of vitamin 
D in the activity of Tregs is well established [144–146].

Vitamin D deficiency that mostly occurs among obese and 
diabetic individuals can enhance COVID-19 fatality [147–149]. 
To counter COVID-19 infection, a rapid increase in the active 
vitamin D levels with an initial dose of 10,000 IU/d, followed 
by 5000 IU/d, has been recommended by the research studies 
to achieve a final level of 40–60 ng/mL [150]. Acute respiratory 
distress syndrome (ARDS) is one of the most prominent con-
ditions of COVID-19 that leads to multiple organ damage. 
Inadequate levels of vitamin D have been associated with 
cardiovascular diseases (CVDs), diabetes, and hypertension, 
and these comorbidities significantly increase the severity of 
COVID-19 events [151]. Vitamin D has been, therefore, sug-
gested to prevent multiple organ failure comorbidity in 
COVID-19 [152], and a combination of vitamin D and remde-
sivir (a common antiviral medicine) has been recently recom-
mended for the treatment of disease [153]. SARS-COV-2 uses 
ACE2 (angiotensin converting enzyme II) receptor for intracel-
lular invasion and pathogenicity. SARS-CoV-2 infection and 
viral replication are associated with downregulation of ACE2 
and play a critical role in the pathogenesis of COVID-19 [154]. 
Recent findings have suggested that the application of vita-
min D can help in the management of COVID-19 by down-
regulation of the cytokine storm, RAS (rat sarcoma – a family 
of genes) pathway, and blood pressure and upregulating the 
ACE2 expression and immune regulatory system [155–157]. 
The enhanced expression of ACE2 has been positively linked 
with the production of angiotensin 1–7, molecules with anti-
fibrotic and anti-inflammatory activities. ACE2 has shown pro-
tective effects against ARDS (acute respiratory distress 

Figure 2. Antiviral role of vitamin D by autophagy. A possible macrophage responses to viral infection involves the induction of VDR and 1α-hydroxylase (CYP27B1). 
Vitamin D (25-OHD) interacts with the vitamin D binding protein (DBP), enters the cells, activated to 1, 25 (OH)2D, and binds the VDR. Vitamin D-VDR binding results 
in the expression of genes coding for cathelicidin and β-defensin 2 (indicated by arrows), upregulation of NO and Ca, inhibition of mTOR mechanism, all these 
processes promote autophagy (adopted and modified from the recent literature [128,132–134].
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syndrome), and angiotensin II has been reported as harmful 
moiety causing fibrosis and pulmonary edema. Hence, the 
upregulation of ACE2 gene expression by vitamin D is an 
important factor in reduced inflammatory response [158].

Vitamin D has an ability to enhance the production of type 
I interferons (INFs). These are potent antiviral molecules of 
immune system capable of suppressing the viral replication 
and rapid virus clearance without extra inflammatory 
response. Vitamin D also reduces the expression of antithrom-
bin gene. Hence, it can be particularly useful in the case of 
COVID-19 infection [159]. (Kralj and Jakovac, 2021). Currently, 
the unavailability of highly targeted procedures and medicine 
for the treatment of COVID-19 has left us with no choice other 
than the precautionary measures and improved immunity. 
Studies have shown that the individuals subjected to vitamin 
D supplements have less chances of COVID-19 [160], and an 
Italian study has reported low plasma level of vitamin 
D among PCR positive cases of SARS-CoV-2 [161]. The informa-
tion accumulated in this article can be used by the front-line 
fighters against COVID-19. Supplementation of vitamin D up 
to 10,000 IU has been considered as safe dose. However, the 
application of vitamin D can cause hypercalcemia among the 
individuals suffering from sarcoidosis and tuberculosis [162].

6. Expert opinion

COVID-19 pandemic has seriously affected human health, econ-
omy and sociology worldwide. Serious efforts have been made, 
in terms of treatment therapies, vaccine development and 
understanding the viral pathophysiology. A number of 
approaches including antiviral medicines, herbal drugs have 
been successfully used for the management of disease [163– 
165]. Many minerals and vitamins have also been suggested by 
the health experts to improve immunity and manage COVID-19 
[166,167]. Currently, vitamin D is one of the most widely dis-
cussed compounds for the prevention, treatment and manage-
ment of COVID-19 [168]. Rapid spread, severity and mortality 
rates of COVID-19 in the Northern hemisphere, especially in the 
populations with vitamin D deficiency has made it more attrac-
tive for the researchers, physicians and general population 
[169,170]. Vitamin D has been well known for its physiological 
role in the calcium/phosphorous homeostasis, bone health, 
structure and physiology, and promotion of immune system. 
Most important cause of mortality by COVID-19 is due to 
respiratory failure. Prior to COVID-19, vitamin D has been 
reported to ameliorate the common repertory conditions 
[171] including tuberculosis [172], pneumonia [173], asthma 
[174], and influenza [175]. Recently, numerous investigations 
have highlighted the role of vitamin D in the prevention and 
treatment of COVID-19 [176–179]. These findings have sug-
gested a positive association of infection, severity and rate of 
mortality with the vitamin D deficiency [141], and suggest 
vitamin D supplementation to improve the efficacy of antiviral 
medicine. Broad spectrum trials are in progress to determine 
the exact quantitative effect of vitamin D in the management of 
COVID-19 and its ability to improve the effect of commonly 
used drugs. Vitamin D is an essential and non-hazardous bio-

molecule with well established role in the functioning of 
immune system. Hence, studies on the dose dependent impact, 
and combinations of vitamin D with relevant medicines can be 
safely continued in the near future. There are many studies 
illustrating the mechanism of action of vitamin D in boosting 
the fighting ability against viral and bacterial respiratory infec-
tions. The nutshell of these studies has advocated that vitamin 
D operates as an effective, double-edged sword against COVID- 
19. On one hand, the vitamin D-VDR interaction modulates the 
expression of up to 100 genes, many of those are associated 
with immune system, trigger the induction of antimicrobial and 
antiviral proteins like β-defensin 2 and cathelicidins. These 
proteins have been reported to inhibit the proliferation of 
viral particles [180,181]. Further, detailed effect of COVID-19 
infection, mechanism, vaccine development and therapy 
including vitamin D discussed in detail in our previous work 
[17,182–184]. Vitamin D, promotes the process of virus clear-
ance by autophagy through upregulation of Ca and NO levels 
and inhibition of mTOR pathway, the latter being a suppressor 
of autophagy. In case of SARS-CoV-2, ORF3a (open reading 
frame 3a) protein plays an inhibitory role to autophagy. 
Hence, this protein can be targeted to improve the viral clear-
ance by the cells. Pharmaceutical compounds acting as mod-
ulators and promoters of autophagy have been suggested to 
play a critical role in the virus clearance, vitamin D is one of the 
major candidates [185–187]. On the other hand, vitamin D has 
been found effective in reducing the ‘cytokine storm’ and 
inflammatory response by the cells during COVID-19. 
Emerging and remerging respiratory epidemics and pandemics 
have been a big challenge to the world population in the 
recent past. Epidemics of influenza (1985), SARS (2003), MERS 
(2012) and COVID-19 are the respiratory conditions caused by 
RNA viruses with similar yet specific genetic characteristics and 
mechanisms of infection pathophysiology. The health experts 
have sounded alarm about the probability of more robust and 
deadly episodes of RNA virus based epidemics in the near 
future. These serious threats have dragged the attention of 
biomedical researchers to focus in making the new develop-
ments and modernizing the existing arsenal against COVID-19 
like respiratory conditions. Hence, the recent studies on the 
prominent role of vitamin D in fighting against COVID-19 can 
be prolonged to future tactics to prevent and cure such viral 
diseases. There are many research questions to determine the 
direct or indirect, qualitative/quantitative effect of vitamin D on 
the cellular entery, replication, and pathophysiology of SARS- 
CoV-2 or other similar RNA viruses that can infect the human 
population in the near future. Development and selection of 
suitable experimental models for mechanistic studies will be 
prerequisite and it will need a parallel research area. Studies on 
the vitamin D based regulatory mechanisms for proinflamma-
tory cytokines and consequent suppression of inflammatory 
response may be required. These studies may not only provide 
better insights into the mechanistic control of SARS-CoV-2 but 
also help to overcome possible future RNA virus based pan-
demic in near future.
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