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A B S T R A C T   

The profound effects of child maltreatment on brain functioning have been documented. Yet, little is known 
about whether distinct maltreatment experiences are differentially related to underlying neural processes of risky 
decision making: valuation and control. Using conditional growth curve modeling, we compared a cumulative 
approach versus a dimensional approach (relative effects of abuse and neglect) to examine the link between child 
maltreatment and brain development. The sample included 167 adolescents (13–14 years at Time 1, 53 % male), 
assessed annually four times. Risk processing was assessed by blood-oxygen-level-dependent responses (BOLD) 
during a lottery choice task, and cognitive control by BOLD responses during the Multi-Source Interference Task. 
Cumulative maltreatment effects on insula and dorsolateral anterior cingulate cortex (dACC) activation during 
risk processing were not significant. However, neglect (but not abuse) was associated with slower developmental 
increases in insula and dACC activation. In contrast, cumulative maltreatment effects on fronto-parietal acti-
vation during cognitive control were significant, and abuse (but not neglect) was associated with steeper 
developmental decreases in fronto-parietal activation. The results suggest neglect effects on detrimental neu-
rodevelopment of the valuation system and abuse effects on accelerated neurodevelopment of the control system, 
highlighting differential effects of distinct neglect versus abuse adverse experiences on neurodevelopment.   

Adolescence is characterized by an increase in risk taking behaviors. 
Current neuroscience work views risk taking in adolescence to be 
derived in part from distinct developmental trajectories of two neural 
systems (Casey et al., 2008): one underlying the assessment of value and 
risk associated with appetitive/aversive stimuli (i.e., the valuation sys-
tem), and a second system exerting control over the pursuit or avoidance 
of risky options (i.e., the control system). Prior neuroimaging research 
has linked maltreatment and brain functioning underlying risky decision 
making by showing that maltreated individuals exhibit blunted 
reward-related brain activation (Hanson et al., 2015) and impaired 
regulation-related brain activation (Lim et al., 2015). However, the 
ways in which different maltreatment experiences (abuse and neglect) 
may be related to the development of two underlying neural processes of 
risky decision making (the valuation and the control systems) during 

adolescence is not clearly understood. 
There are two predominant perspectives in the neuroscience litera-

ture that address how childhood adversity affects the developing brain. 
One perspective rooted in stress physiology emphasizes the similarities 
of childhood adversity effects, arguing that because disruptions in 
physiological stress responses are the main consequence of various 
adverse experiences (e.g., poverty, parental deprivation, or exposure to 
violence), they converge in their effects and thus can be grouped 
together as “childhood adversity” (Sapolsky, 2017; Smith and Pollak, 
2020). This cumulative approach emphasizes the high prevalence of 
co-occurring adversity types and focuses more on the number of adverse 
life events influencing development than the nature of these events 
(Hughes et al., 2017; Smith and Pollak, 2020). In contrast, another 
perspective rooted in developmental psychopathology proposes a 
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dimensional approach to measuring childhood adversity, arguing that 
threat and deprivation are two central dimensions of childhood adver-
sity whose influences on neurobiological development are substantially 
distinct (McLaughlin and Sheridan, 2016; Sheridan and McLaughlin, 
2014). Considering childhood maltreatment through the lens of viola-
tions in the expectable environment (Nelson and Gabard-Durnam, 
2020), child maltreatment reflects experiences that are expected but 
do not occur (i.e., neglect), or that do occur but are atypical in some way 
(i.e., abuse). Consistent with the conceptualization of threat and depri-
vation according to the dimensional approach (McLaughlin and Sher-
idan, 2016; Sheridan and McLaughlin, 2014), abuse refers to acts of 
commission involving harm, or threat of harm, whereas neglect refers to 
acts of omission involving deprivation (Rogosch & Cicchetti, 1994). The 
main goal of the current study was to address these two competing 
perspectives by examining cumulative maltreatment experiences versus 
differentiated measurement of abuse and neglect experiences related to 
brain development. 

Extant neuroscience work presents structural and functional brain 
sequelae of caregiving adversity, such as abuse and neglect. The neural 
processes affected in individuals with a history of childhood maltreat-
ment are predominantly in fronto-limbic networks (including the medial 
prefrontal cortex, orbitofrontal cortex, anterior cingulate cortex, hip-
pocampus, and amygdala). For the effects of child maltreatment on the 
control system, a few functional neuroimaging studies using inhibitory 
control tasks indicate that youths who experienced neglectful and/or 
abusive care demonstrate heightened activation in the dorsomedial 
frontal regions which have been linked to inhibitory control and con-
flict/error processing (Bruce et al., 2013; Lim et al., 2015; Mueller et al., 
2010). First, maltreated foster pre-adolescents (90 % experienced 
physical neglect and 55 % physical abuse) showed higher activation in 
the anterior cingulate cortex and middle frontal gyrus compared to their 
nonmaltreated counterparts (Bruce et al., 2013). Second, physically 
abused adolescents showed higher activation in the anterior cingulate 
cortex as well as bilateral pre-supplementary and supplementary motor 
area, compared to nonmaltreated adolescents (Lim et al., 2015). Third, 
neglected adolescents exhibited higher activation in the inferior frontal 
cortex and striatum compared to nonmaltreated adolescents (Mueller 
et al., 2010). Finally, Blair et al. (2019) examined how abuse and neglect 
were associated with brain activation during an emotion-based inhibi-
tory control task and found that abuse (but not neglect) was differen-
tially related to brain regions that were involved response control versus 
emotional processing. Specifically, greater abuse was related to lower 
activation in the brain regions involved in response control and motor 
responding (such as the inferior parietal lobule and postcentral gyrus) 
but higher activation in the brain regions involved in responding to or 
representing affective information (such as the rostromedial frontal 
cortex, middle temporal gyrus, and superior temporal gyrus) among 
adolescents. 

Turning to functional neuroimaging studies examining maltreatment 
and the valuation system, findings indicate that maltreatment is asso-
ciated with a blunted neural response to reward cues in the orbito- 
striatal network. Specifically, adolescents with emotional neglect 
showed blunted development of ventral striatum activity related to 
reward expectancy over two years (Hanson et al., 2015), and this finding 
is consistent with another study demonstrating that young adults with 
childhood maltreatment exhibited blunted anticipatory reward activity 
in the left basal ganglia relative to young adults without maltreatment 
experience (Dillon et al., 2009). Similarly, adolescents primarily with 
neglect and emotional abuse showed blunted striatum activation related 
to expected value representation for both approach and avoidance trials, 
compared to nonmaltreated adolescents (Gerin et al., 2017). Unex-
pectedly, Gerin and colleagues (2017) found that maltreated adolescents 
showed greater activation in the putamen during expected value rep-
resentation while avoiding possible punishment (avoidance trials). This 
result suggests altered brain activation during reinforcement learning 
among maltreated youths; that is, for those whose environments are 

laden with threat-related cues, avoiding probable punishment may be 
particularly rewarding. 

Although prior research has focused on maltreatment effects on 
reward processing, choosing high-risk yet high-reward options may be 
explained not only by the neural processes reacting to the value of the 
reward but also by the neural processes evaluating the risk associated 
with the rewarding options. Indeed, value-based decision-making 
research has shown that risky choices are driven by neural computations 
associated with the likelihood of receiving rewards as well as the value 
of rewards (d’Acremont and Bossaerts, 2008; Mohr et al., 2010). How-
ever, it is not known how maltreatment experiences may be related to 
neural processing of risk valuation. The current investigation integrates 
the two lines of developmental neuroscience research—adversity effects 
of the valuation system and adversity effects of the control system-
—while focusing on risk processing in the valuation system in order to 
better understand how developmental trajectories of the two primary 
neural systems related to risk taking may be differentially affected by 
experiences of maltreatment. 

Although different subtypes of child maltreatment tend to co-occur, 
experiences of different subtypes appear to be distinct enough to 
differentially influence neurodevelopment. To date, no prospective 
longitudinal study has examined how abuse and neglect may be differ-
entially related to developmental trajectories of brain functioning 
throughout adolescence. Following the dimensional model of childhood 
adversity (McLaughlin and Sheridan, 2016; Sheridan and McLaughlin, 
2014), the current longitudinal study elucidates the effect of child 
maltreatment on neurodevelopment by evaluating differential contri-
butions of two core dimensions underlying maltreatment: threat (i.e., 
abuse) and deprivation (i.e., neglect). We further tested whether there 
are cumulative effects of maltreatment, regardless of dimensions, based 
on the view that varied types of early adversity converge in producing 
similar problems later on (e.g., Sapolsky, 2017; Smith and Pollak, 2020). 
We used conditional latent growth curve modeling to examine dimen-
sional versus cumulative effects of child maltreatment on developmental 
trajectories of the valuation and the control systems in adolescence. 

1. Method 

1.1. Participants 

The sample included 167 adolescents (53 % males) from a south-
eastern state in the United States, who participated in annual assess-
ments across four years, with a subset participating in a fifth follow-up 
year. Adolescents were 13–14 years of age at Time 1 (M = 14.07, SD =
0.54 for Time 1, M = 15.05, SD = 0.54 for Time 2, M = 16.07, SD = 0.56 
for Time 3, and M = 17.01, SD = 0.55 for Time 4). About 78 % of ad-
olescents identified as White, 14 % Black or African-American, 6% as 
more than one race, 1% as American Indian or Alaska Native, and 1% 
Asian. Median annual family income was in the $35,000-$50,000 range, 
with varying levels of family economic status (50 % “poor/near poor” 
and 50 % “non-poor” according to income-to-needs ratio). Among the 
primary caregivers (137 mothers, 21 fathers, and 9 others), 34 % had a 
high school degree or less, 24 % some college education, 24 % bachelor’s 
degree, and 18 % graduate degree. Inclusion criteria included being age 
13–14 at Time 1 with vision corrected to be able to see the computer 
display clearly. Exclusion criteria were claustrophobia, history of head 
injury resulting in loss of consciousness for >10 min, orthodontia 
impairing image acquisition, severe psychopathology (e.g., psychosis), 
and other contraindications to magnetic resonance imaging (MRI). 

At Time 1, 157 adolescents participated. At Time 2, 10 adolescents 
were added (to offset annual attrition) for a final sample of 167 (150 at 
Time 2, 147 at Time 3, and 150 at Time 4). Across all four years, 24 
adolescents did not participate at all four time points for reasons 
including: ineligibility for tasks (n = 2), declined participation (n = 17), 
and lost contact (n = 5) during the follow-up assessments. At Time 5, 
126 adolescents (52 % males; 80 % White, Mage =18.39, SD = 0.67) 
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participated in a follow-up study where they retrospectively reported on 
childhood maltreatment. Rate of participation was not significantly 
predicted by income, sex, race or study variables (ps> .18). 

1.2. Procedures 

Data included in the present study were collected as part of a larger 
project. Adolescent participants and their primary caregivers were 
recruited via email announcements, flyers, and snowball sampling 
(word-of-mouth). Data collection was administered at university offices 
where participants completed self-report questionnaires, behavioral and 
neuroimaging tasks, and were interviewed by trained research assis-
tants. The study duration was on average five hours long and partici-
pants were compensated monetarily for their time. All procedures were 
approved by the institutional review board of the university and written 
informed consent or assent was received from all participants. 

1.3. Measures 

1.3.1. Maltreatment 
Maltreatment was measured using the Maltreatment and Abuse 

Chronology of Exposure scale (MACE; Teicher and Parigger, 2015), 
which evaluates the severity of exposure to different types of maltreat-
ment during each year of childhood (ages 1–18). Adolescents were asked 
to retrospectively indicate at which ages they experienced the events, 
described across 52 items. Abuse was represented by the subscales of 
physical abuse (6 items), sexual abuse (7 items), verbal abuse (4 items), 
and non-verbal abuse (6 items). Neglect was represented by the 

subscales of physical neglect (5 items) and emotional neglect (5 items). 
Sample items include, “Intentionally pushed, grabbed, shoved, slapped, 
pinched, punched or kicked you” (physical abuse) and “were there to 
take care of you and protect you (physical neglect, reverse coded)”. The 
current analyses used retrospective reports of maltreatment from ages 
0–17, committed by caregiver figures (parents, stepparents, or other 
adults living in the house) with the exception of sexual abuse for which 
perpetrators included caregiver figures, adults not living in the house, 
and peers (see Supplementary Table S1 for frequency of maltreatment by 
subtype and age of exposure). Subscale scores were scaled using an al-
gorithm provided by Teicher and Parigger (2015). Higher scores indi-
cate higher maltreatment. Previous research has demonstrated good to 
excellent test-retest reliability for all the maltreatment subtypes used in 
the current study (Teicher and Parigger, 2015). We created a composite 
of abuse by summing the subscale scores of physical abuse, sexual abuse, 
verbal abuse, and non-verbal abuse, and a composite of neglect by 
summing the subscale scores of physical neglect and emotional neglect. 

1.3.2. Risk processing 
At each time point, adolescents engaged in a modified economic 

lottery choice task (Holt and Laury, 2002) while their 
blood-oxygen-level-dependent (BOLD) responses were recorded. On 
each trial, adolescents were asked to choose between two gambles, 
where one gamble was always riskier (higher coefficient of variation; 
CV) than the other (see Fig. 1A-B). The CV was computed by dividing the 
standard deviation of a gamble by the expected value (i.e., 
probability-weighted outcome) of that gamble. For each gamble, there 
was a high and low monetary outcome, each associated with a specific 

Fig. 1. Schematic Display of the Lottery Choice 
Task and Blood-Oxygen-Level-Dependent Re-
sponses to Risk (Coefficient of Variation). 
Note. (A) In the lottery choice task, adolescents 
were asked to choose between pairs of uncer-
tain gambles. For each gamble, there was a high 
and low monetary outcome, each associated 
with a specific probability. The associations 
between outcomes and probabilities are repre-
sented with corresponding colors (orange or 
blue). (B) Each trial consisted of a decision 
phase, a fixation phase, an outcome phase, and 
an inter-trial-interval (ITI). (C) During the de-
cision phase increased activation was found in 
the insula (INS) and dorsal anterior cingulate 
cortex (dACC) during riskier gambles as was 
indicated by the coefficient of variation (CV). 
Figure adapted from Asscheman et al. (2020).   
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probability that varied across a total of 72 trials (approximately 25 min 
to complete). To incentivize performance, participants were compen-
sated based on their winnings from four randomly selected trials. 

1.3.3. Cognitive control 
At each time point adolescents completed a multi-source interference 

task (MSIT; Bush, et al., 2003) while their BOLD responses were recor-
ded. In each trial adolescents were presented with three digits and were 
tasked with reporting the identity of the different digit (not like the other 
two) by pressing a button. In neutral trials, the target’s identity matched 
the digit’s presented location, but in interference trials, the target’s 
identity was not congruent with the digit’s presented location (see 
Fig. 2A). Consistent with previous research (Bush et al., 2003), we 
calculated mean response times for each condition. We found a signifi-
cant positive effect of MSIT interference on response time for correct 
responses, such that response time was higher for interference trials 
compared to neutral trials [t(153) = 69.58 at Time 1, t(148) = 69.41 at 
Time 2, t(142) = 63.30 at Time 3, and t(142) = 59.87 at Time 4, all ps <
.001]. 

1.4. fMRI data acquisition and analysis 

MRI data were acquired on a 3 T Siemens Tim Trio scanner with a 
standard 12-channel head matrix coil. Structural images were acquired 
using a high-resolution magnetization prepared rapid acquisition 
gradient echo sequence with the following parameters: repetition time 
(TR) =1200 ms, echo time (TE) =2.66 ms, field of view (FoV) = 245 ×
245 mm, and 192 slices with the spatial resolution of 1 × 1 × 1 mm. 
Echo-planar images were collected using the following parameters: slice 
thickness = 4 mm, 34 axial slices, FoV = 220 × 220 mm, TR = 2 s, TE 
=30 ms, flip angel = 90 degrees, voxel size = 3.4 × 3.4 × 4 mm, 64 × 64 
grid, and slices were hyperangulated at 30 degrees from anterior- 
posterior commissure. Imaging data were preprocessed and analyzed 
using SPM8 (Wellcome Trust Neuroimaging Center). First, functional 
scans were corrected for rigid head motion using a six-parameter rigid 
body transformation. After realignment, the mean functional image was 

co-registered to the anatomical image, normalized to MNI template, and 
smoothed using a 6 mm full-width-half-maximum Gaussian filter. Six 
rigid body realignment parameters were included to account for the 
effect of in-scanner motion, and low-frequency signal was removed 
using a high-pass filter with cutoff of 0.006 Hz (168 s per SPM). Six rigid 
body realignment parameters were included to account for the effect of 
in-scanner motion, and low-frequency signal was removed using a high- 
pass filter with cutoff of 0.00781 Hz (128 s which was the default for 
SPM) for risk processing data, and 0.006 Hz (168 s) for cognitive control 
data to better capture the expected signal (see Henson, 2007, pp 
200–203). 

1.4.1. Neural risk processing 
For each individual, a general linear model (GLM) was constructed 

including decision and outcome events of the task modeled with a 
duration of four and two seconds, respectively. To assess neural risk 
processing, a parametric regressor of decision phase activation repre-
senting the risk level (i.e., CV) for chosen gambles was entered into the 
model. The CV is a scale-free metric and has been shown to be superior 
in explaining choice behavior compared to other economic measures of 
risk (i.e., standard deviation or variance) because outcomes are coded by 
the relative risk as opposed to the absolute outcome (Weber et al., 2004). 
Additionally, the individual level GLM included a parametric regressor 
indicating whether participants received high or low monetary out-
comes during the outcome phase, one regressor for the button press, and 
six motion regressors. These regressors were included to characterize the 
error term in the neural model. At the group level of the GLM, whole 
brain analysis was conducted to determine how CV for chosen gambles 
modulated BOLD responses during the decision phase. All statistical 
inferences were made at a cluster-corrected threshold of p < .05 with a 
Family-Wise Error (FWE) correction, with an initial cluster-forming 
uncorrected threshold of p < .001. 

1.4.2. Neural cognitive control 
Preprocessed MRI data were analyzed by first entering them into a 

first-level analysis General Linear Model (GLM) in SPM8, in which 

Fig. 2. Schematic Display of the Multi-Source 
Interference Task (MSIT) and Activation Maps 
Showing Significant Activation for the 
Interference-Neutral Contrast. 
Note. A) In the multi-source interference task 
(MSIT), adolescents were asked to identify the 
digit that differed from two other concurrently 
presented digits, ignoring its position in the 
sequence. B) Map showing a significant nega-
tive linear relationship between the time points 
and the interference effect on BOLD using the 
Sandwich Estimator Toolbox. Displayed using 
voxel-wise false discovery rate corrected 
threshold of p < .05 and gray matter mask.   
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interference and neutral blocks were modeled using boxcars convolved 
with the canonical haemodynamic response function (HRF) with six 
motion regressors. Additionally, framewise displacement (FD) was 
calculated from the realignment parameters, with rotational displace-
ment converted to millimeters using the surface of a sphere of radius 50 
mm (Power et al., 2012; Siegel et al., 2014). Volumes with FD > 0.9 mm 
were censored by adding a volume-specific regressor for each scrubbed 
volume in the GLM. This frame censoring approach was used because it 
appeared to be particularly beneficial to analyzing the repeated mea-
sures data simultaneously. For each GLM, an interference greater than 
neutral contrast map was generated by subtracting the neutral beta map 
from the positive beta map. These contrast maps were entered into four 
second-level GLMs in SPM8, one for each time point, using root mean 
frame displacement as a regressor non-interest. To better understand 
how activation changed across time points we further entered the 
first-level contrast maps into a longitudinal group-level model using the 
Sandwich Estimator Toolbox version 2.1.0 (Guillaume et al., 2014) 
using root mean frame displacement as a regressor non-interest to 
address age-related changes to within-scanner motion (Satterthwaite 
et al., 2012). A significant effect of MSIT interference on BOLD signal 
was observed at each time point, in line with previously reported effects 
of the MSIT (see Fig. 2B, Kim-Spoon et al., 2019). Furthermore, we 
observed significant changes in the interference effect on BOLD re-
sponses across four time points (see Fig. 2B), as reported by Kim-Spoon 
et al. (2019). Regions of interest were defined around peaks of time 
point related change in BOLD responses using cluster-derived masks 
with a cluster defining voxel-wise false discovery rate corrected (FDR) 
threshold of p < 1e-5 and a gray matter mask. 

1.5. Data analytic plan 

Models were tested using Structural Equation Modeling (SEM) in 
Mplus statistical software version 8 (Muthén & Muthén, 1998-2018). 
Model fit was assessed by χ2 value, degrees of freedom, corresponding 
p-value, Root Mean Square Error of Approximation (RMSEA), and 
Confirmatory Fit Index (CFI). RMSEA values less than .08 and CFI values 
greater than .90 were considered an acceptable fit (Bentler, 1990; 
Browne and Cudeck, 1993). Little’s MCAR test indicated that the 
missing data pattern for all study variables resembled a Completely at 
Random pattern (χ2 = 329.91, df = 356, p = .836). Therefore, full in-
formation maximum likelihood (FIML) estimation procedure was used 
to address missing data given its superiority to those obtained with 
listwise deletion or other ad hoc methods (Schafer & Graham, 2002). 

For testing patterns of neurodevelopment, we first tested univariate 
growth curve models of risk processing and cognitive control. Linear and 
nonlinear models were tested to fit the baseline model for the observed 
data patterns across the four time points. The first latent factor was the 
intercept, with all factor loadings fixed to one. To keep temporal pre-
cedence in the prediction of neurodevelopment from maltreatment ex-
periences, we set the intercept of the neural outcomes to Time 4. The 
second latent factor was the slope, indicating growth of the function and 
change over time. The two growth factors were allowed to covary. 
Nested model comparisons were used to determine the shape of the 
trajectories. The χ2 difference test was used to compare these nested 
models and the most parsimonious model with acceptable fits was 
chosen as the best-fitting model. In the no growth model, non-significant 
change in slope was assumed. In the linear growth model, a linear 
pattern of change was assumed with factor loadings fixed to -3, -2, -1, 
and 0 from Time 1 through Time 4. The latent basis growth model 
allowed the data to estimate the shape of growth by fixing the first and 
last time points (to -1 and 0, respectively) and freely estimating the 
second and third time points. Finally, conditional growth curve 
modeling was used to test the effects of maltreatment on neuro-
development. We compared a dimensional model including abuse and 
neglect with a cumulative model including only a single composite 
representing cumulative maltreatment. Regression paths were estimated 

from maltreatment predictors to the growth factors of risk processing 
and cognitive control. 

2. Results 

Prior to analysis, statistical outliers (n = 26 across all neural vari-
ables and all time points) were Winsorized to the next value that was not 
an outlier (i.e., within 3.29 SD), resulting in all variables with acceptable 
skewness and kurtosis (< 3 and < 10, respectively). Table 1 depicts 
descriptive statistics and correlations for all study variables. Multivar-
iate GLM analyses testing demographic covariates indicated that sex (p 
= .299), race (p = .553), and family income (p = .167) were not sig-
nificant predictors of the study variables (six maltreatment subtypes, 
four risk processing variables, and four cognitive control variables). 
Because these variables were not significant predictors, they were not 
included in the main analyses. 

2.1. Neural activation during risk processing 

Results indicated that the bilateral insula and dorsal anterior 
cingulate cortex (dACC) belonged to the largest regions, with the 
greatest t-values, among the regions activated in response to the 
differing levels of risk. Additionally, they were the most consistently 
activated brain regions across all four waves of our longitudinal as-
sessments. In contrast, activation in the ventral striatum, orbitofrontal 
cortex, and lateral prefrontal cortex was not consistent across assess-
ments. Accordingly, the main analyses focused on the bilateral insula 
and dACC. On each assessment, the CV of the chosen gamble was 
significantly associated with BOLD responses in the insula and dACC, 
such that choosing riskier gambles was related to higher BOLD responses 
in the insula and dACC (Fig. 1C). This finding is consistent with the 
robust literature implicating the insular cortex and dACC as key regions 
involved in risk processing (see meta-analysis by Mohr et al., 2010; Platt 
and Huettel, 2008; Schonberg et al., 2011). Eigenvariate values were 
extracted for the left and the right insula and dACC using a 6 mm sphere 
around the peak voxel coordinates of each region (for coordinates see 
Supplementary Tables S2− 5). We created a neural risk processing 
composite by averaging the scores of the eigenvariate values for bilateral 
insula and dACC, with higher scores indicating higher BOLD responses. 
Because confirmatory factor analysis models with two indicators have to 
impose equality constraints on the two factor loadings, thus equal 
weighting (see Little, Lindengerger, and Nesselroade, 1999), confirma-
tory factor analyses testing measurement models were not needed. 
Correlations between bilateral insula and dACC were .90 at Time 1, .82 
at Time 2, .71 at Time 3, and .76 at Time 4 (all ps < .001). 

2.2. Neural activation during cognitive control 

At each time point, the GLM indicated a significant interference ef-
fect on BOLD responses (see Fig. 2B), as reported in Kim-Spoon et al. 
(2019). Our longitudinal model showed significant changes in the 
interference effect on BOLD responses in cognitive control regions 
identified by the MSIT across four time points (Kim-Spoon et al., 2019). 
The SwE derived map of time-related changes in BOLD was used to 
identify nine clusters of interest for an ROI analysis, including bilateral 
insula, bilateral middle frontal gyrus (MFG), left pre-supplementary 
motor area (pSMA), left rostral anterior cingulate cortex (rACC), left 
inferior parietal lobule (IPL), right precuneus, and left middle occipital 
gyrus (see Fig. 2C; for coordinates for peak regions within each time 
point, see Supplementary Tables S2− 5). From each time-point, the first 
eigenvariate values in the interference minus neutral contrast was ob-
tained, after adjusting for an F-contrast of the effect of interest. 

Based on a series of confirmatory factor analyses of neural activation 
during cognitive control (see Kim-Spoon et al., 2020 for details), we 
calculated a neural cognitive control composite by averaging across 
seven indicators (left and right insula, left and right MFG, left pSMA, left 
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IPL, and right precuneus) that significantly loaded on the same latent 
factor. We labeled the composite ‘fronto-parietal’ activation because 
those seven ROIs are located in the fronto-parietal network that is 
involved in cognitive control (Dosenbach et al., 2008; Sebastian et al., 
2013). 

2.3. Univariate growth curve modeling of Insula-dACC activation during 
risk processing and fronto-parietal activation during cognitive control 

Three separate models were fit to determine the shape of the tra-
jectories of insula-dACC activation during risk processing and fronto- 
parietal activation during cognitive control, respectively (see Table 2). 
In order to determine the most parsimonious model, we tested the 
univariate growth curve models two ways: with residuals free to vary 
and with residuals fixed to be equal across time. 

In the risk processing models, we used the composite of bilateral 
insula and dACC activation. The univariate growth curve models with 
residuals constrained to be equal across time produced poor model fit. 
Freeing residuals to vary across time produced acceptable model fit. The 
latent basis growth model provided the best fit to the data compared to 
the no growth and linear growth models (see Table 2). In these models, a 
small, non-significant negative residual variance (σ2 < -0.001) was fixed 
to zero. The means of the intercept (M = 0.84, SE = .09, p < .001) and 
slope (M = 0.80, SE = .09, p < .001) were positive and significant, 
indicating significant increases over time. The variance of the intercept 
(σ2 = 0.49, SE = .12, p < .001) and slope (σ2 = 0.46, SE = .11, p < .001) 
were also significant, indicating significant individual differences in 
levels and change in risk processing. The intercept and slope factors 
covaried with each other (cov = .47, SE = .12, p < .001). 

In the cognitive control models, we used the fronto-parietal activa-
tion composite. The univariate growth curve models with residuals 
constrained to be equal across time produced acceptable model fit and 
also were more parsimonious than the models with freed residuals. 
These models included correlations between residuals at adjacent time 
points. As shown in Table 2, the latent basis growth model provided the 
best fit. The mean of the slope was significant (M = -0.21, SE = .02, p <

.001), whereas the variance was not significant (σ2 = .01, SE = .01, p =

.442). Thus, the result suggested significant decreases over time with 
non-significant individual differences in change rates. The mean of the 
intercept was significantly different from zero (M = 0.26, SE = .02, p <
.001) and there were significant individual differences in levels (σ2 =

0.01, SE = .00, p = .041). The intercept and slope factors did not covary 
with each other (cov = -.00, SE = .01, p = .595). 

2.4. Maltreatment predicting neurodevelopment during adolescence 

To examine how maltreatment experiences are related to adolescent 
brain development involved in risk processing and cognitive control, we 
tested two models: The cumulative maltreatment model using a single 
composite of maltreatment, and the dimensional model using two 
composites of abuse and neglect. In these models, we ran the analyses 
both with N = 167 (entire sample) and N = 126 (participants who had 
data on maltreatment), and the results were highly consistent. There-
fore, we reported the findings using N = 167. 

2.4.1. Cumulative vs. Dimensional models of maltreatment predicting 
neurodevelopment of risk processing 

For the cumulative model in which the maltreatment composite 
predicted growth factors (intercept and slope) of insula-dACC activation 
during risk processing, the model fit was acceptable (χ2 = 3.19, df = 6, p 
= .784, RMSEA = 0.00, CFI = 1.00), but maltreatment did not signifi-
cantly predict the intercept (b = 0.00, SE = .01, p = .756; β = .03) or the 
slope (b = 0.00, SE = .01, p = .754; β = .04). Next, the dimensional 
model in which neglect and abuse simultaneously predicted growth 
factors of insula-dACC activation during risk processing yielded 
acceptable model fit (χ2 = 3.50, df = 8, p = .899, RMSEA = 0.00, CFI =
1.00). As seen in Fig. 3, the effects of neglect and abuse on the intercept 
and slope were approaching significance, and replication is warranted. 
Nevertheless, it is noteworthy that higher levels of neglect were related 
to lower levels of insula-dACC activation at Time 4 (b = -0.04, SE = .02, 
p = .061; β = -.22) and smaller increases in insula-dACC activation over 
time (b = -0.04, SE = .02, p = .061; β = -.23). The effects of abuse were in 

Table 1 
Descriptive Statistics and Bivariate Correlations of Maltreatment, Insula-dACC Activation during Risk Processing and Fronto-parietal Activation during Cognitive 
Control.   

1 2 3 4 5 6 7 8 9 10 M SD Min Max 

1. Maltreatment Composite –          10.21 9.66 0.00 46.00 
2. Abuse Composite .92* –         7.17 7.75 0.00 32.00 
3. Neglect Composite .63* .26* –        3.03 4.09 0.00 14.00 
4. Insula-dACC T1 .00 .00 .00 –       0.04 0.05 − 0.08 0.21 
5. Insula-dACC T2 .02 .07 − .09 .35* –      0.61 0.77 − 1.25 3.44 
6. Insula-dACC T3 .06 .14 − .12 .28* .35* –     0.57 0.76 − 1.33 3.36 
7. Insula-dACC T4 − .01 .04 − .10 .29* .40* .45* –    0.83 1.15 − 3.07 4.87 
8. Fronto-parietal T1 .06 .04 .07 − .04 .11 .09 .08 –   0.47 0.25 − 0.19 1.09 
9. Fronto-parietal T2 − .06 − .08 .00 − .05 .07 .02 − .03 .31* –  0.33 0.20 − 0.18 0.83 
10. Fronto-parietal T3 − .29* − .29* − .15 − .19 − .06 − .02 − .06 .33* .27* – 0.27 0.23 − 0.30 0.92 
11. Fronto-parietal T4 .01 .01 .01 − .12 .20* .02 .02 .39* .29* .17 0.26 0.20 − 0.19 0.89 

Notes. dACC = dorsolateral anterior cingulate cortex; T1 = Time 1; T2 = Time 2; T3 = Time 3; T4 = Time 4. * p < .05. 

Table 2 
Model Fit for Univariate Growth Models of Insula-dACC Activation during Risk Processing and Fronto-parietal Activation during Cognitive Control.  

Model Label χ2 df p RMSEA CFI Comparison Δχ2 Δdf p(d) 

Insula-dACC Activation during Risk Processing  
1 No-growth model 224.71 9 .000 0.38 .00      
2 Linear growth model 30.41 6 .000 0.16 .63 1 vs 2 194.30 3 .000  
3 Latent basis growth model 2.73 4 .604 0.00 1.00 2 vs 3 27.68 2 .000 
Fronto-parietal Activation during Cognitive Control 
1. No growth model 97.93 8 .000 0.27 .00     
2. Linear growth model 20.36 5 .001 0.14 .61 1 vs 2 77.57 3 .000 
3. Latent basis growth model 4.15 3 .245 0.05 .97 2 vs 3 16.21 2 .000 

Notes. dACC = dorsolateral anterior cingulate cortex; RMSEA = root mean square error of approximation; CFI = comparative-fit index; Δχ2 = difference in likelihood 
ratio tests; Δdf = difference in df; p(d) = probability of the difference tests. The best-fitting models are in boldface. 
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the opposite direction (b = 0.02, SE = .01, p = .104; β = .19 for the 
intercept and b = 0.02, SE = .01, p = .100, β = .19 for the slope) and 
indicated that higher levels of abuse were related to higher levels of 
insula-dACC activation at Time 4 and larger increases in insula-dACC 
activation over time. 

2.4.2. Cumulative vs. Dimensional models of maltreatment predicting 
neurodevelopment of cognitive control 

The cumulative model in which the single composite of maltreat-
ment predicted growth factors of fronto-parietal activation during 
cognitive control yielded acceptable model fit (χ2 = 8.84, df = 5, p =
.116, RMSEA = 0.07, CFI = .92). Maltreatment significantly predicted 
the intercept (b = -0.00, SE = .00, p = .045; β = -.26) and slope (b =
-0.01, SE = .00, p = .047; β = -.41). The results indicated that higher 
levels of maltreatment were associated with lower levels of fronto- 
parietal activation at Time 4 and larger decreases in fronto-parietal 
activation over time. The dimensional model in which fronto-parietal 
activation growth factors were predicted by neglect and abuse sepa-
rately yielded acceptable model fit (χ2 = 9.18, df = 7, p = .240, RMSEA 
= 0.04, CFI = .95). As seen in Fig. 4, examination of parameter estimates 
revealed that abuse was responsible for the significant effects of cumu-
lative maltreatment both for the intercept (b = -0.00, SE = .00, p = .053, 
β = -.26) and slope (b = -0.01, SE = .00, p = .099, β = -.38) rather than 

neglect. Thus, the result indicated that higher levels of abuse were 
associated with steeper decreases in fronto-parietal activation over time. 
The effects of neglect were not significant for the intercept (b =- 0.00, SE 
= 0.00, p = .905, β = -.02) or for the slope (b = -0.00, SE = .01, p = .686, 
β = -.10). 

3. Discussion 

We examined whether two core dimensions of child mal-
treatment—abuse versus neglect—are differentially associated with 
neurodevelopmental trajectories of risk-related decision making 
throughout adolescence. Certain theoretical views posit that different 
forms of childhood adversity (such as poverty, insensitive caregiving, 
and violence exposure) are similar enough in their effects to combine 
them into one category (Sapolsky, 2017; Smith and Pollak, 2020) that 
nevertheless can bring forth many different types of psychiatric disor-
ders (Caspi et al., 2014). A competing view is that qualitatively distinct 
adverse experiences, such as threat and deprivation, are likely to have 
distinct sequelae in brain development (McLaughlin and Sheridan, 
2016). In the current study, we compared a cumulative model in which a 
single composite of maltreatment (i.e., combination of abuse and 
neglect) predicted growth trajectories of neural processes, and a 
dimensional model in which two separate composites of abuse and 

Fig. 3. Growth Curve Model of Insula-dACC 
Activation during Risk Processing Predicted by 
Neglect and Abuse. 
Notes. dACC = dorsolateral anterior cingulate 
cortex; EN = emotional neglect; PN = physical 
neglect; PA = physical abuse; SA = sexual 
abuse; VA = verbal abuse; and NVA = non- 
verbal abuse; T1 = Time 1; T2 = Time 2; T3 
= Time 3; T4 = Time 4. For clarity of presen-
tation, residuals are not shown. Unstandardized 
estimates (standard errors) are presented. “=” 
indicates fixed parameters. 
* p ≤ .05; † p ≤ .10.   

Fig. 4. Growth Curve Model of Fronto-parietal 
Activation during Cognitive Control Predicted 
by Neglect and Abuse. 
Notes. EN = emotional neglect; PN = physical 
neglect; PA = physical abuse; SA = sexual 
abuse; VA = verbal abuse; and NVA = non- 
verbal abuse; T1 = Time 1; T2 = Time 2; T3 
= Time 3; T4 = Time 4. For clarity of presen-
tation, residuals and correlations between re-
siduals are not shown. Unstandardized 
estimates (standard errors) are presented. “=” 
indicates fixed parameters. 
* p ≤ .05; † p ≤ .10.   
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neglect simultaneously predicted growth trajectories of neural pro-
cesses. Our data provided evidence that abuse and neglect may be 
differentially related to developmental changes in neural processes of 
risky decision making. Specifically, neglect was a more prominent pre-
dictor for developmental changes in insula-dACC activation during risk 
processing, whereas abuse was a more prominent predictor for devel-
opmental changes in fronto-parietal activation during cognitive control. 
Thus, the results supported the view that there are differential effects of 
deprivation (i.e., neglect) and threat (i.e., abuse) on neurobiological 
development (McLaughlin and Sheridan, 2016; Sheridan and 
McLaughlin, 2014). 

Our univariate growth curve modeling results showed that neural 
activation during risk processing in the insula and dACC increased from 
ages 13–17 years. Behaviorally, risk-preference on the lottery choice 
task decreased from ages 13–17 years in the current sample (Asscheman 
et al., 2020). Although longitudinal studies on the development of risk 
processing in the insula and dACC are lacking, prior cross-sectional 
research discovered that adults showed higher insula and dACC acti-
vation compared to adolescents and children during risky decisions 
(Paulsen et al., 2012). Our data further indicated that adolescents who 
experienced higher levels of neglect may exhibit slower increases in 
neural activation in the bilateral insula and dACC during risk processing 
(although this was marginally significant, so replication is warranted). 
The finding is consistent with prior research indicating that adolescents 
with higher childhood stress showed lower activation in the insula 
during the anticipation of potential losses, whereas adolescents with 
lower childhood stress showed greater insular activation when pre-
sented with cues signaling potential losses (Birn et al., 2017). These 
findings imply that early life stress, such as child neglect, negatively 
affects the development of risk-related neural processes that allow for 
avoidance of risk by attending to the magnitude of potential negative 
consequences. 

The association between neglect and insula-dACC activation during 
risk processing is in line with the theoretical perspective positing that 
disruptions in early learning account for pervasive consequences of 
neglect on neurodevelopment (McLaughlin et al., 2016). Our data sug-
gest that, for adolescents with more experiences of neglect, a lack of 
learning opportunities may contribute to neural insensitivity during the 
valuation of risk information. Neglect may constrain basic forms of 
learning which lay a foundation for risk valuation, because those basic 
learning processes depend on cognitive stimulation and social inputs 
provided through caregiver interactions (e.g., Sheridan et al., 2017). In 
addition, neglect may limit opportunities to learn cognitive skills related 
to risk evaluation via parental modeling. For example, prior research 
demonstrated a link between higher parental monitoring and greater 
risk sensitivity in the insular cortex (Lauharatanahirun et al., 2018). It is 
expected that adolescents with neglectful parents are less likely to 
engage in parent-child interactions where parents draw their adoles-
cent’s attention to potentially risky outcomes and model these learning 
processes as encoded by the insular cortex. 

In contrast to neglect, higher levels of abuse were associated with 
faster growth in neural activation during risk processing shown in the 
insula and dACC. Although this association between abuse and neural 
activation during risk processing was approaching statistical signifi-
cance and replication of the finding is warranted, we note that our 
finding of the positive association between abuse and faster growth in 
insula-dACC activation during risk processing supports the stress ac-
celeration hypothesis (Callaghan and Tottenham, 2016) which proposes 
that threat experience is related to accelerated brain maturation. Our 
finding is also in line with prior research demonstrating greater acti-
vation in the dACC during regulation of negative emotional stimuli 
among adolescents who experienced abuse (McLaughlin et al., 2015) 
and greater insular activation in response to emotional stimuli among 
pre-adolescents and early adolescents who experienced threat (i.e., 
physical and sexual abuse), compared to their counterparts without such 
adverse experiences (McCrory et al., 2011; McLaughlin et al., 2015). 

Turning from risk processing to cognitive control, we found that the 
cumulative maltreatment composite (combining abuse and neglect 
subscales) was associated with steeper developmental decreases in 
fronto-parietal activation during cognitive control as well as lower levels 
of activation at Time 4. This finding clarifies prior cross-sectional find-
ings that document differences in brain activation during inhibitory 
control tasks between adolescents with versus without maltreatment 
experiences (Bruce et al., 2013) by demonstrating that such differences 
reflect stress acceleration in maltreated adolescents. Further, testing the 
relative effects of abuse and neglect revealed that the effects were driven 
by abuse. Fronto-parietal activation decreased as adolescents’ behav-
ioral cognitive control improved from ages 13–17 years in the current 
sample (Kim-Spoon et al., 2020). The observed decreases in 
fronto-parietal activation are consistent with prior research demon-
strating age-related decreases in brain activation during cognitive con-
trol, reflecting more efficient neural functioning with development 
(Crone and Steinbeis, 2017; Luna et al., 2010). The association between 
abuse and steeper decreases in fronto-parietal activation supports the 
stress acceleration hypothesis (Callaghan and Tottenham, 2016). Our 
finding extends previous findings from a cross-sectional neuroimaging 
study reporting that abuse, but not neglect, was related to lower acti-
vation in brain regions involved in response control among adolescents 
(Blair et al., 2019). Taken together, the findings of abuse on neural 
cognitive control are consistent with the prior finding demonstrating 
that early experiences of threat, but not deprivation, are associated with 
accelerated biological aging (Sumner et al., 2019). 

Comparing the dimensional model (examining abuse and neglect 
separately) to the cumulative model (abuse and neglect combined), our 
findings suggest that cumulative approaches may be accompanied by 
missed opportunities. First, although the effects of cumulative 
maltreatment on insula-dACC activation during risk processing were not 
significant, when considering abuse and neglect separately, detrimental 
effects of neglect on neurodevelopment of risk processing emerged. 
Second, we found opposing effects of abuse and neglect (albeit these 
effects were not statistically significant): neglect was negatively related, 
but abuse positively related, to greater insula-dACC activation during 
risk processing. These opposing effects may explain the non-significant 
effects of cumulative maltreatment on neural risk processing. In addi-
tion, by examining the relative effects of abuse and neglect, we obtained 
a more nuanced understanding of maltreatment experiences such that 
the observed effects of cumulative maltreatment on fronto-parietal 
activation during cognitive control were driven by abuse rather than 
neglect. Finally, it was abuse, but not neglect, that manifested stress 
acceleration effects on brain development related to both risk processing 
and cognitive control. 

As such, our findings support the dimensional approach, in which 
distinct underlying dimensions and sequelae of maltreatment are rep-
resented by threat versus deprivation (McLaughlin and Sheridan, 2016; 
Sheridan and McLaughlin, 2014). Consistent with our findings, Lambert 
et al. (2016) reported that cumulative risk scores obscure specificity in 
the associations of violence exposure (threat) and poverty (deprivation) 
when predicting cognitive control and emotional regulation. Given ev-
idence that maltreated youths experience multiple subtypes of abuse 
and neglect (Manly et al., 2001), and that abuse and neglect sometimes 
show opposite effects on brain structure (e.g., amygdala volume; Teicher 
and Samson, 2016), the current results underscore the importance of 
examining co-occurring forms of maltreatment simultaneously, but as 
separate variables, to evaluate whether they show distinct associations 
with neural and behavioral outcomes. 

The contributions of the current study should be considered in light 
of several limitations. First, although this study used prospective lon-
gitudinal data, because of its correlational nature the detected signifi-
cant effects should not be interpreted as causal in nature. Second, child 
maltreatment was assessed using retrospective self-reports on the 
MACE. Although we used the MACE with 18- to 19-year-olds whose ages 
were close enough to childhood to provide as reliable recall as possible, 
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retrospective self-reports could have been affected by recall bias. 
However, scientific studies and reviews indicate that the concern about 
unreliability of retrospective reports is rather exaggerated: there is no 
clear link between current psychiatric or mood status and less reliable or 
less valid recall of early experiences (Brewin et al., 1993). Furthermore, 
retrospective self-reports of maltreatment are verifiable (Chu et al., 
1999) and are related to poor health and behavior outcomes regardless 
of concordance with official records (Negriff et al., 2017). Finally, the 
current study focused on examining how maltreatment experiences were 
related to neural activation of the valuation and the control systems. 
Given the evidence that the interplay between the valuation and the 
control systems contributes to risky behaviors (e.g., Kim-Spoon et al., 
2017), investigating how between-system connectivity may be influ-
enced by maltreatment experiences is a fruitful direction for future 
research. 

These limitations notwithstanding, the current study had notable 
strengths. Our large community sample offered a more nuanced un-
derstanding of the maltreatment effects on brain development, 
compared to the majority of prior human neuroimaging research that 
compared relatively small numbers of healthy controls to maltreated 
individuals in clinical samples (which often have confounding psychi-
atric disorders such as post-traumatic stress disorder). Thus, our findings 
elucidate the effects of normative variability in adverse experiences on 
brain functioning underlying risky decision making. Additionally, our 
sample included adolescents from an Appalachian region of south-
western Virginia, which includes understudied rural communities that 
face unique challenges such as relative low income, geographical 
isolation, and limited prosocial recreational opportunities. Youths from 
these rural communities show relatively higher incidences of health risk 
behaviors (e.g., Moreland et al., 2013), providing implications for pre-
ventive intervention efforts. Methodologically, we used a novel 
approach to modeling individual differences in within-person changes in 
brain activation variables based on multivariate repeated measures of 
fMRI data. 

In closing, the current investigation advances the literature on the 
link between distinct forms of maltreatment and neurodevelopment 
underlying risk-related decision making (i.e., the valuation and the 
control systems). We evaluated how child maltreatment collectively—or 
abuse and neglect differentially—contribute to brain development 
during adolescence, using longitudinal data of child maltreatment 
spanning from age 1 through age 17 and brain functioning spanning 
from age 13 through age 17. Most importantly, this investigation rep-
resents the first evidence suggesting that, at the neurobiological level, 
distinct types of child adversity (abuse and neglect) are differentially 
related to adolescents’ developmental trajectories of insula-dACC acti-
vation during risk processing and fronto-parietal activation during 
cognitive control. Our findings highlight the effects that adversity can 
have on the brain and that can be distinguished when measuring qual-
itatively different experiences engendered by threat (e.g., abuse) versus 
deprivation (e.g., neglect) as well as different brain regions and func-
tions that are targeted by such experiences. 
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