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Abstract: Drug-resistant pathogens have presented increasing challenges to the discovery 

and development of new antibacterial agents. The type III secretion system (T3SS), existing 

in bacterial chromosomes or plasmids, is one of the most complicated protein secretion 

systems. T3SSs of animal and plant pathogens possess many highly conserved main structural 

components comprised of about 20 proteins. Many Gram-negative bacteria carry T3SS as a 

major virulence determinant, and using the T3SS, the bacteria secrete and inject effector 

proteins into target host cells, triggering disease symptoms. Therefore, T3SS has emerged 

as an attractive target for antimicrobial therapeutics. In recent years, many T3SS-targeting 

small-molecule inhibitors have been discovered; these inhibitors prevent the bacteria  

from injecting effector proteins and from causing pathophysiology in host cells. Targeting 

the virulence of Gram-negative pathogens, rather than their survival, is an innovative and 

promising approach that may greatly reduce selection pressures on pathogens to develop 

drug-resistant mutations. This article summarizes recent progress in the search for promising 

small-molecule T3SS inhibitors that target the secretion and translocation of bacterial 

effector proteins. 
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1. Introduction 

Although antibiotic therapy is the most commonly-used strategy to control infectious pathogens, most 

antibiotics affect cellular processes of microorganisms and, therefore, kill them, which becomes a strong 

selective pressure to develop resistance against antibiotics [1]. In order to contain the risk of increasing 

antibiotic resistance, targeting bacterial virulence factors instead of bacterial survivability provides  

a novel alternative approach for the development of new antimicrobials, because virulence-specific 

therapeutics create less selection pressure for antibiotic-resistant mutations [2,3]. The discovery  

of bacterial secretion systems is an important milestone in studies on the mechanisms of bacterial 

pathogenesis. Most enterobacterial pathogens, such as animal pathogens Pseudomonas aeruginosa, 

Salmonella Typhimurium and Yersinia pestis, and plant pathogens Dickeya dadantii, Erwinia amylovora 

and Pseudomonas syringae, possess at least one type III secretion system (T3SS) as a major virulence 

determinant [4,5]. Through this protein secretion/injection system, pathogens translocate their virulence 

factors (effectors) directly into host cells, enabling infection by subverting cells’ defense mechanisms [6,7]. 

T3SS represents a particularly appealing target for antimicrobial agents, because the antimicrobial 

therapies using T3SS-specific inhibitors would affect the virulence rather than the viability of pathogens, 

creating low selective pressure for developing drug resistance [2,3]. 

2. The Components of T3SS 

As one of the most complicated currently known protein secretion systems, the T3SS is usually 

encoded by a 30–40-kbp gene and exists in the bacterial chromosome or plasmid in the form of a 

pathogenicity island [8]. T3SSs of animal or plant pathogens possess many highly conserved main 

structural components, which are comprised of more than 20 proteins. Various pathogenic T3SSs are 

very similar in their structures, and their syringe-like appearance in transmission electron microscope 

images has led them to be called needle complexes (NCs) [9]. The core of the T3SS injection device is 

a needle-shaped complex that consists of a multi-ring base and a needle protrusion. The two parts are 

connected by an external needle, which protrudes from the bacterial surface [10–12] (Figure 1). The 

multi-ring base is composed of a pair of inner and outer rings that span the bacterial inner membrane 

(IM) and outer membrane (OM), and the two rings are connected by a rod-shaped structure passing 

through the IM and OM [13,14]. Needle protrusions have a straight hollow cylindrical structure containing 

the narrow center channel (~28 Å in diameter), specialized in transporting secretory proteins. The center 

channel stretches from the bottom of the ring structure to the top of the needle tip [15]. 

Although the three-dimensional structure of the T3SS needle is currently unknown, due to its 

inherent non-crystallinity (for X-ray crystallography) and insolubility (for solution NMR analysis), a 

higher-resolution atomic model of the Salmonella needle has been reported by American and German 

researchers [16]. They used solid-state NMR, electron microscopy and Rosetta model techniques to 

reveal the key features of the Salmonella needle: (1) the needle is composed of PrgI protomers with an 

α-helical hairpin head structure; (2) the needle has an 80 Å outer diameter with a 25 Å lumen; (3) the 

80 residue subunits form a right-handed helical assembly with roughly 11 subunits per two turn; and 

(4) the N-terminus of PrgI is positioned on the surface of the needle, while the highly conserved 

C-terminus points towards the interior [16]. 
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Figure 1. Schematic diagram of the T3SS in which the needle apparatus is contacting the 

host cell. OM, outer membrane; IM, inner membrane. 

A key component of all T3SSs is the translocon, a proteinaceous channel (20–30 Å) that is inserted into 

the target membrane and that allows the passage of effectors into the host cell [12]. Another essential 

component of T3SS is a family of customized chaperones that specifically bind a ~100-amino acid 

domain at the N-terminus of the cognate secretion substrates [17]. Chaperones belong to three different 

classes: Class I chaperones recognize effectors; class II chaperones interact with translocators; and 

class III chaperones sequester the needle-forming proteins [18]. The chaperones of the translocon 

proteins are class II chaperones, and they are responsible for partitioning the intracellular pools of the 

translocon proteins in order to prevent their premature degradation [12]. Effector proteins travel in an 

unfolded or partially-folded conformation through the type III secretion channels, and the chaperones 

may keep the proteins in a secretion-competent conformation, probably by preventing them from 

folding. For example, Feldman et al. have confirmed that Yop effectors are never folded on their way 

to the Y. enterocolitica secretion system. Instead, SycE (the cognate chaperone of YopE) binds to the 

proteins and keeps the proteins in a partially-folded or unfolded conformation [19]. 

3. Action Mechanism of T3SS 

Highly conserved T3SS is a secretion system consisting of a variety of components, and the secretion 

follows a single-step, sec-independent model [18]. The secretory signal of T3SS secretory protein is 

not dependent on the signal peptide, but occurs through a 15–20-amino acid domain at the N-terminus 

of the secretory protein. The secreted proteins are not cleaved in the cytoplasm, but are transported to 

the cell surface from the cytoplasm [15]. The T3SS injection device forms a temporary structure when 

bacteria interact with the host cell. The injection device is activated for assembly under physiological 

conditions [15]; However, under low calcium conditions, the injection device can also be activated. The 

needle complex of T3SS secretes and translocates protein effectors into the host cytoplasm, interfering 

with the function of the host cell (Figure 1) [20–23]. Hundreds of effector proteins have been identified 
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as potential T3SS substrates from diverse bacterial pathogens. Pathogenic T3SS effector proteins can 

alter signal transduction pathways in order to evade the host defense system. Some bacterial effectors can 

enter into host cells and destroy their immune system, ultimately inducing host cell death (Figure 2) [24]. 

Although the detailed molecular mechanisms of T3SS are still unclear, current research has shown that 

effector translocation by T3SS is a key way that Gram-negative bacteria can infect host cells [23,24]. 

T3SS has emerged as an attractive target for developing novel anti-virulence agents. In terms of 

therapeutic strategies, T3SS inhibitors might be used to prevent effector proteins from invading the 

host cell through active or passive immunization, so that the pathogens lose the ability to infect host 

cells (Figure 2). 

 

Figure 2. Schematic diagram of anti-virulence strategies by using T3SS inhibitors in 

Gram-negative bacterial pathogens. 

In 2014, American pharmaceutical company Kalobios reported antibody KB001-A as a P. aeruginosa 

T3SS inhibitor, and it is currently in phase II clinical trials for treating patients who have respiratory 

tract inflammation and cystic fibrosis (CF) caused by chronic P. aeruginosa infection [25]. To the best 

of our knowledge, this is the first T3SS inhibitor drug used in humans, suggesting an alternative to 

traditional antibiotics for treating bacterial infection. The action mechanism of T3SS inhibitors is very 

different from that of conventional antibiotics, because these inhibitors specifically target the virulence 

of bacteria, rather than their viability, making selective pressure on bacteria low and reducing the 

likelihood of bacterial resistance. T3SS inhibitors, especially small-molecule inhibitors, have attracted 

much attention in recent years, and this review summarizes several classes of small-molecule T3SS 

inhibitors reported in the literature between 2003 and 2015.  

4. Small Molecule Inhibitors of T3SS 

4.1. Salicylidene Acyl Hydrazides as T3SS Inhibitors 

Salicylidene acyl hydrazides were reported as the first class of small-molecule T3SS inhibitors that 

can block one or more effector proteins. Using a luciferase reporter gene assay [26] in viable Yersinia 
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pseudotuberculosis, Kauppi et al. [27] screened a chemical library of 9400 compounds and identified 

several salicylidene acyl hydrazide derivatives, such as INP0007 (1) and INP0010 (2) (Figure 3). These 

derivatives dramatically suppressed the reporter gene signal expressed by the yopE promoter, as well as 

effector protein secretion at low micromolar concentrations without affecting bacterial growth. INP0007 

(1) blocked Yersinia T3SS secretion and prevented bacteria from invading HeLa cells. When the 

uninfected HeLa cells were incubated in the presence of INP0007 (50 μM), INP0007 strongly reduced 

the YopE-induced cytotoxic reaction in the cells [28]. This result implies that INP0007 can curb the 

translocation of several Yop effectors proteins, such as YopE. INP0010 (2) blocked microinjection of 

Yops into the cytosol of the target cell and inhibited replication of Chlamydia in Hep-2 cells [29]. 

Another salicylidene acyl hydrazide, INP0400 (3) (Figure 3), inhibited the intracellular replication 

and infectivity of Chlamydia trachomatis. Interestingly, the inhibitor has different effects at different 

stages of the infectious cycle of C. trachomatis [30]: when given at the time of infection, INP0400 

partially blocked the entry of elementary bodies (EBs) into McCoy cells (host cells). In the mid-cycle, 

the inhibitor suppressed secretion of the effector IncA and homotypic vesicular fusions mediated by this 

protein. In the late phase, treatment resulted in detachment of reticulate bodies (RBs) from the inclusion 

membrane, ultimately preventing the conversion of RB to EB, thereby significantly reducing the 

infectivity of C. trachomatis. 

More Gram-negative pathogens have been investigated using salicylidene acyl hydrazide  

inhibitors [31,32]. Hudson et al. found that INP0007 and INP0400 inhibited T3SS-mediated secretion 

of proteins without affecting the growth of bacteria in Salmonella [32]. Subsequently, they confirmed 

that the two inhibitors were capable of inhibiting secreted proteins via T3SS-mediated and inflammatory 

response by Salmonella in vitro. These results have demonstrated that salicylidene acyl hydrazides have 

the capacity to inhibit T3SSs in multiple species of pathogens and could serve as promising starting 

points for drug development [29]. 

 

 

Figure 3. Structures of INP0007 (1), INP0010 (2) and INP0400 (3). 

4.2. N-Hydroxybenzimidazoles as T3SS Inhibitors 

LcrF is a member of the AraC family of transcription activators [33] and is a multiple  

adaptational response (MAR) transcription factor associated with virulence in Yersinia pestis and  

Y. pseudotuberculosis [34]. Upon contacting host cells or changing temperature, LcrF is expressed and 

activates the expression of Yersinia cytotoxic Yop proteins, such as YopH, YopJ and YopE [35,36]. 
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Yops are secreted into host cells via T3SS and cause cellular apoptosis [37,38]. Y. pestis is the causative 

agent of plague and raises serious concerns regarding its potential use as a biological weapon by 

terrorists [39]. 

Kim et al. synthesized a series of N-hydroxybenzotriazole derivatives [40] (general structure  

shown as 4 in Figure 4) and identified some derivatives as potent LcrF inhibitors using a primary  

cell-free LcrF-DNA binding assay, as well as a T3SS-dependent whole cell assay (T3SS-dependent  

Y. pseudotuberculosis cytotoxicity assay) [34]. Lead Compounds 5, 6 and 7 exhibited very similar 

inhibitory activity against both LcrF and ExsA (Table 1); ExsA is an MAR transcription factor found 

in P. aeruginosa and has 85% identity and 92% similarity with LcrF. However, these compounds have 

very weak inhibitory activity against SlyA, a member of the MarR family of transcription factors in 

Salmonella spp. The DNA binding motif of SlyA is different from that of MAR proteins [41,42]. These 

results indicated that the N-hydroxybenzimidazole inhibitors are non-DNA binding and specifically 

target MAR proteins. In a murine model of Y. pseudotuberculosis pneumonia, Compound 5 and another 

N-hydroxybenzimidazole derivative, 8 (Figure 4), significantly reduced the bacterial burden in the 

lungs, offering a dramatic survival advantage [43]. The inhibitors attenuated the T3SS-mediated virulence 

without affecting the normal bacterial growth in Y. pseudotuberculosis and did not demonstrate toxicity 

against mammalian cells [43]. Since the members of the MAR family of transcription factors play central 

roles in pathogenesis across bacterial genera, the N-hydroxybenzimidazole inhibitors could have broad 

applicability as, for example, lead compounds for preclinical studies of preventing Y. spp. infection. 
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Figure 4. Structure of N-hydroxybenzimidazoles. 

4.3. Phenoxyacetamides as T3SS Inhibitors  

The opportunistic pathogen P. aeruginosa is the leading cause of hospital-acquired infections  

by Gram-negative bacteria, and T3SS is the major virulence factor contributing to infections [44]. 

There are four T3SS effectors in P. aeruginosa strains: ExoS, ExoT, ExoY and ExoU. ExoU and ExoS 

contributed significantly to persistence, dissemination and mortality, and ExoT produced minor effects 

on virulence in a mouse lung infection model, but ExoY did not play a major role in P. aeruginosa 

pathogenesis [44]. Aiello et al. developed two cellular reporter assays and screened a library of 80,000 

compounds to search for inhibitors of P. aeruginosa type III secretion [45]. The primary assay consisted 

of a transcriptional fusion of the Photorhabdus luminescens luxCDABE operon to the P. aeruginosa 

exoT effector gene, and the secondary assay included direct measurements of T3SS-mediated secretion 

of a P. aeruginosa ExoS effector-β-lactamase fusion protein, as well as detecting the secretion of 

native ExoS. Five compounds (Figure 5) were identified and demonstrated inhibitory activity against 

P. aeruginosa type III secretion without affecting bacterial growth. These inhibitors also blocked the 

T3SS-mediated secretion of a YopE effector-β-lactamase fusion protein from an attenuated Y. pestis 
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strain. The best inhibitor identified is phenoxyacetamide MBX1641 (9), which effectively inhibits the 

secretion of T3SS effector protein ExoS in P. aeruginosa.  

Table 1. Target specificity and in vitro antibacterial activity of three lead N-hydroxybenzimidazoles. 

Compound 
IC50 (μM) a 

LcrF ExsA b SlyA c 

3.9 3.5 >53.8 

O2N

N

N

OH

NH

O

OCH3

6

8.0 5.9 >55.2 

7.6 6.7 >52 

a IC50 was determined using a dose-response analysis with the maximum concentration of 25 μg/mL; b MAR 

transcription factor in P. aeruginosa; c MarR family transcription factor in Salmonella spp. 

 

Figure 5. Structures of 9–13. 

In order to search for more potent T3SS inhibitors against P. aeruginosa, our lab studied the 

structure-activity relationship (SAR) of MBX1641 in collaboration with Yang’s group at the University 

of Wisconsin at Milwaukee. We designed and synthesized a series of new α-phenoxyacetamide 

derivatives by modifying the 2,4-dichlorophenoxy group, the length of the amide side chain and the 

3,4-(methylenedioxy)benzyl group [46]. P. aeruginosa PAO1 was chosen as the target strain, and a 

promoter-probe vector pPROBE-AT containing the promoterless green fluorescent protein (gfp) gene 

was used to construct an exoS promoter-gfp plasmid reporter pATexoS. PAO1 containing pATexoS was 

cultured in T3SS-inducing medium containing DMSO or supplemented with 250 μM of each synthesized 

compound, and promoter activity was assessed at 6 h by measuring GFP intensity using flow cytometry. 

Four new derivatives (14a–14d; Figure 6) have shown a strong inhibitory effect against exoS gene 

expression in P. aeruginosa. Among them, 14d not only exhibits stronger potency against PAO1 T3SS 

than MBX1641, but also has better solubility in aqueous solution. In addition, we selected a number of 

compounds to determine the expression level of ExoS and ExoT proteins via Western hybridization. 
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MBX1641, 14a and 14b significantly inhibited the expression of ExoS and ExoT proteins (Figure 7). 

The results have demonstrated that the inhibitors can effectively suppress the expression of PAO1 

T3SS effectors ExoS and ExoT.  

 

Figure 6. Structures of Compounds 14a–14d. 

 

Figure 7. Alteration of the production of T3SS effectors ExoS and ExoT by T3SS inhibitors. 

P. aeruginosa PAO1 cells were grown in LB broth supplemented with 10 mM NTA 

(nitrilotriacetic acid) and 250 μM inhibitors. The same volume of DMSO was added to the 

culture as a negative control. The Western blot was performed using an anti-ExoS antibody. 

4.4. 2-Imino-5-arylidenethiazolidinones as T3SS Inhibitors 

In search of S. typhimurium T3SS inhibitors, Felise et al. developed and performed a high-throughput 

screening for compound libraries of 92,000 small molecules and discovered that 2-imino-5-arylidene 

thiazolidinone (TTS29; Figure 8) inhibited T3SS secretion or assembly without affecting bacterial 

growth [47]. They purified the needle complexes of S. typhimurium and found that TTS29-treated 

samples had lower levels of needle components, whereas the levels of whole-cell proteins were 

unchanged. These results indicated that TTS29 disrupts the needle assembly. This inhibitor can block the 

secretion and virulence functions of a wide array of animal and plant Gram-negative bacterial pathogens, 

such as Y. spp., P. aeruginosa and Francisella novicida. However, the major disadvantage for TTS29 is 

its moderate potency (only 83 μM). Therefore, the researchers synthesized a series of new derivatives 

of TTS29, and the structure-activity relationship results showed that imino nitrogen, the aryl group and 

the substitution pattern on the arylidene ring are critical for inhibitory activity, whereas the amido 

nitrogen is tolerated for modification. Dipeptide analogs 16 and 17 (Figure 8) have much better potency 
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than TTS29 at low micromolar IC50 values (8 μM and 3 μM, respectively) [48]. The new analogs were 

synthesized through a solid-phase approach. Some tethered thiazolidinone dimers had also been 

synthesized, and many of these dimers inhibited the T3SS-dependent secretion of a virulence protein at 

a concentrations lower than that of TTS29 [49]. For example, the IC50 value of dimer 18 is 5 μM. 
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Figure 8. Structures of Compounds 15–18. 

4.5. Plant Phenolic Compounds as T3SS Inhibitors 

Natural plant phenolic compounds are secondary metabolites synthesized by plants. Apart from their 

role in growth, pigmentation and reproduction, they also play an important role in disease resistance. 

Plants have evolved a systemic acquired resistance mechanism to protect themselves from pathogen 

invasion [50]. Inspired by this self-protection mechanism found in nature, we explored inhibitors of  

D. dadantii T3SS hrpA genes. After systematically screening a series of natural plant phenolic compounds 

and their derivatives, we found that p-coumaric acid (19) (Figure 9) significantly repressed the expression 

of T3SS regulatory genes through the HrpS-Hrp two-component system [51]. On the other hand, 

trans-cinnamic acid (20) and o-coumaric acid (21) induced the expression of D. dadantii T3SS genes 

hrpA via the RsmB-RsmA pathway.  

Very recently, we converted 19 into the corresponding hydroxamic acid and found that the resulting 

trans-4-hydroxycinnamohydroxamic acid (22) has an eight-fold higher inhibitory potency than 19 [52]. 

22 inhibits the T3SS of D. dadantii HrpY via HrpX/HrpY two-component signal transduction and Rsm 

systems. To the best of our knowledge, this is the first inhibitor to affect the T3SS of D. dadantii through 

both the transcriptional and post-transcriptional pathways. In addition, our previous studies show that 

22 reduces the biofilm formation of P. aeruginosa PAO1 and affects the T3SS of P. aeruginosa via the 

GacSA-RsmYZ-RsmA-ExsA regulatory pathway [53]. 
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Figure 9. Structures of Compounds 19–25. 

E. amylovora, of the family Enterobacteriaceae, is a Gram-negative bacterial plant pathogen. It is the 

causal agent of fire blight in apple, pear, raspberry and other rosaceous plant species, and it infects 

leaves, blossoms, succulent shoots and immature fruits. Annual losses to fire blight and costs of control 

in the USA are estimated at over $100 million. Losses and costs in many other countries are also huge [54]. 

Currently, the approach for controlling fire blight pathogen employs antibiotics and copper spray.  

The most commonly-used antibiotics for treating E. amylovora are streptomycin and oxytetracycline: 

streptomycin kills E. amylovora, whereas oxytetracycline merely inhibits its growth. In the 1990s, 

30%–40% of planted pear trees in the USA were treated with streptomycin or oxytetracycline or  

both, and 19% of planted apple trees were treated with streptomycin each year [55]. However, the 

streptomycin-resistant strains of E. amylovora are now widespread and common in apple and pear 

orchards of the western United States and British Columbia in Canada and have also been reported in 

New Zealand, Israel and Lebanon. Resistance in the fire blight pathogen has had widespread economic 

and political implications [55]. The U.S. EPA strictly regulates the use of existing antibiotics (e.g., 

streptomycin and oxytetracycline) on plants in the USA and has established a higher standard for 

approval of new antibiotics due to antibiotic resistance concerns.  

We have found that some plant phenolic compounds can inhibit the expression of E. amylovora  

T3SS [56]. Using a green fluorescent protein (GFP) reporter combined with a high-throughput flow 

cytometry assay for measuring the expression of E. amylovora T3SS, 4-methoxycinnamic acid (23) 

and benzoic acid (24) (Figure 9) were identified as E. amylovora T3SS inhibitors. 23 and 24 altered 

the expression of E. amylovora T3SS via the HrpS-HrpL pathway. 23 inhibited the T3SS gene through 

the RsmB-RsmA system. We observed that the two inhibitors weakened the hypersensitive response 

(HR) in tobacco leaves by suppressing the T3SS of E. amylovora. Additionally, the sulfonate ester 25 

was identified as the E. amylovora T3SS inducer [56]. The phenolic compounds (23, 24) and their 

derivatives, which specifically targeted the E. amylovora T3SS, may provide an alternative strategy to 

antibiotics in fire blight control.  

4.6. Polyol Products as T3SS Inhibitors 

Although the majority of Escherichia coli strains are benign for humans, several strains are 

pathogenic. For example, enteropathogenic E. coli (EPEC) infects the human intestinal epithelium  

and is a major cause of infantile diarrhea in developing countries. EPEC is an extracellular bacterial 
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pathogen and uses a T3SS to deliver bacterial effectors into host cells [57]. Linington et al. isolated a 

complex glycolipid, caminoside A (26; Figure 10), from the marine sponge Caminus sphaeroconia [58]. 

Caminoside A effectively blocked the pathogenicity of EPEC by inhibiting the T3SS expression with 

an IC50 value of 20 μM and without killing the bacteria. Caminosides B, C and D were isolated from 

the marine sponge C. sphaeroconia, and all of the glycolipids showed inhibitory activity against the 

EPEC T3SS (IC50 = 20 μM) [59]. 

Six guadinomines were isolated from the culture broth of Streptomyces sp. K01-0509 as inhibitors 

of EPEC T3SS-induced hemolysis by Iwatsuki et al. [60,61]. Guadinomine B (27; Figure 10) showed 

the most potent inhibition with an IC50 value of 7 ng/mL.  

A linear polyketide, aurodox (28; Figure 10), was isolated from the culture broth of S. sp. by using a 

screening system for the T3SS-mediated hemolysis of EPEC [62]. Aurodox strongly inhibited the 

T3SS-mediated hemolysis with an IC50 value of 1.5 μg/mL without affecting bacterial growth, and it 

specifically blocked the secretion of T3SS proteins, such as EspB, EspF and Map. In an in vivo infection 

study, after aurodox was administered, mice survived a lethal dose of Citrobacter rodentium, a model 

bacterium for human pathogens, such as EPEC. This study suggests that certain microbes might 

produce small molecules capable of counteracting bacterial infection [62]. 
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Figure 10. Structures of caminoside A, guadinomine B and aurodox. 

5. Conclusions and Prospects 

In the past few years, extraordinary efforts have been made by a number of laboratories to discover 

new T3SS inhibitors as potential anti-infective agents. However, some challenges still need to be 

addressed before these inhibitors are proven to be effective therapeutics. None of the small-molecule 

T3SS inhibitors described in this review have advanced into the clinic. One major issue is that the precise 

mechanisms of action and effective targets remain unclear. Another is that the current small-molecule 

T3SS inhibitors have limited potency, with IC50 values in the single digits of micromolar concentrations. 
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Clinical development of the antibody KB001-A against P. aeruginosa infection has clearly 

demonstrated the therapeutic potential of T3SS inhibitors. Since the atomic structure of the needle 

body of S. typhimurium has been successfully revealed, it is hoped that the next major breakthroughs 

will be the complete structural elucidation of all of the T3SS structural proteins, effector proteins and 

chaperones. If this can be achieved, then clear targets for T3SS inhibitors will be within reach. The 

design and synthesis of small-molecule T3SS inhibitors will be more specific and potent, and researchers 

will more easily discover and develop such inhibitors for treating human bacterial infections. 
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