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ABSTRACT TnSeq is a widely used methodology for determining gene essentiality,
conditional fitness, and genetic interactions in bacteria. The Himar1 transposon is re-
stricted to insertions at TA dinucleotides, but otherwise, few site-specific biases have
been identified. As a result, most analytical approaches assume that insertions are
expected to be randomly distributed among TA sites in nonessential regions.
However, through analysis of Himar1 transposon libraries in Mycobacterium tubercu-
losis, we demonstrate that there are site-specific biases that affect the frequency of
insertion of the Himar1 transposon at different TA sites. We use machine learning
and statistical models to characterize patterns in the nucleotides surrounding TA
sites that correlate with high or low insertion counts. We then develop a quantitative
model based on these patterns that can be used to predict the expected counts at
each TA site based on nucleotide context, which can explain up to half of the var-
iance in insertion counts. We show that these insertion preferences exist in Himar1
TnSeq data sets from other mycobacterial and nonmycobacterial species. We present
an improved method for identification of essential genes, called TTN-Fitness, that
can better distinguish true biological fitness effects by comparing observed counts
to expected counts based on our site-specific model of insertion preferences.
Compared to previous essentiality methods, TTN-Fitness can make finer distinctions
among genes whose disruption causes a fitness defect (or advantage), separating
them out from the large pool of nonessentials, and is able to classify many smaller
genes (with few TA sites) that were previously characterized as uncertain.

IMPORTANCE When using the Himar1 transposon to create transposon insertion mu-
tant libraries, it is known that the transposon is restricted to insertions at TA dinucle-
otide sites throughout the genome, and the absence of insertions is used to infer
which genes are essential (or conditionally essential) in a bacterial organism. It is
widely assumed that insertions in nonessential regions are otherwise random, and
this assumption is used as the basis of several methods for statistical analysis of
TnSeq data. In this paper, we show that the nucleotide sequence surrounding TA
sites influences the magnitude of insertions, and these Himar1 insertion preferences
(sequence biases) can partially explain why some sites have higher counts than
others. We use this predictive model to make improved estimates of the fitness
effects of genes, which help make finer distinctions of the phenotype and biological
consequences of disruption of nonessential genes.

KEYWORDS Himar1 transposon, TnSeq, gene essentiality, linear regression models,
machine learning, mutant fitness, nucleotide patterns, statistical analysis

TnSeq has become a popular tool for evaluating gene essentiality in bacteria under
various conditions (1). The most widely used transposons for bacterial TnSeq are

those in the mariner family, such as Himar1 (2). To date, it has generally been assumed
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that the Himar1 transposon, frequently used to generate the transposon libraries,
inserts randomly at TA dinucleotide sites in nonessential regions across the genome
(3). The abundance of transposon insertions at each TA site can be quantified effi-
ciently using next-generation sequencing (4). Genes or loci with an absence of inser-
tions are considered to be essential, as disruption in these regions is not tolerated (2).
Genes or loci with a reduced mean insertion count are considered mutants with
growth defects, as disruptions in these regions are not fatal but cause growth impair-
ments or fitness defects (5). Genes that have significant changes in mean counts
between conditions are deemed conditionally essential (6).

There are several sources of noise in TnSeq experiments, including stochastic varia-
tions in the library generation process as well as instrument and sampling error in DNA
sequencing, resulting in a high variability in insertion counts. Statistical methods devel-
oped thus far to assess gene essentiality typically assume that insertions occur randomly
at TA sites in nonessential regions, and the reason some sites have more insertions than
others is largely due to stochastic differences in abundance in the library. However, some
studies suggest that transposon insertions at nonessential sites are influenced by the sur-
rounding nucleotides or genomic context. Transposons Tn5 and Mu (not restricted to TA
dinucleotides) showed a bias toward insertions in GC-rich regions and resulted in a less
uniform distribution of insertions in the A-T-rich genome (61% AT) of Candida glabrata
than their notably less-biased counterpart Tn7 (7). In addition, Lampe et al. (3) showed
that local bendability of the DNA strand can affect the probability of Himar1 insertion at
different chromosomal locations in Escherichia coli. Furthermore, an analysis of 14 inde-
pendent transposon libraries in Mycobacterium tuberculosis H37Rv identified a local
sequence pattern around certain TA sites that was nonpermissive for Himar1 insertions
[(CG)GnTAnC(CG)] (8). This sequence pattern extended to ;9% of sites in nonessential
regions which almost always had counts of zero (8).

In this paper, we use statistical and machine learning models to identify patterns in
the nucleotides surrounding TA sites associated with high and low insertion counts.
We discover nucleotide biases within a 64-bp window around the TA site that sup-
press Himar1 insertions and other patterns that appear to select for them (i.e., associ-
ated with high insertion counts). We capture these biases in a predictive model of
Himar1 insertion preferences that can be used to predict expected insertion counts at
any TA site as a function of the surrounding nucleotide context. We demonstrate that
these insertion preferences exist in other Himar1 TnSeq data sets from M. tuberculosis,
as well as other mycobacterial and nonmycobacterial species. The final predictive
model explains about half of the variance in insertion counts, presuming the rest
comes from stochastic variability between libraries or is due to sampling differences
during sequencing. We demonstrate that this model can be used to make improve-
ments in quantifying various degrees of fitness caused by disruption in genes (which
are not absolutely essential) by comparing the observed counts to expected counts
using a site-specific model of insertion preferences.

RESULTS
Insertion counts at TA sites are correlated between libraries. Variability in inser-

tion counts at TA sites can be attributed to various sources, including abundance in
library, experimental randomness, and local sequence biases, as well as genuine bio-
logical significance (fitness effects). To attempt to differentiate these, we reanalyzed a
previously published collection of 14 independent Himar1 TnSeq libraries grown in
standard laboratory medium (8). An extended HMM (hidden Markov model) analysis of
the 14 data sets suggests that approximately 11.6% of the organism’s TA sites are
essential for growth, and insertions in approximately 3.5% of the sites can cause a
growth defect (8). In addition, 9% of sites in nonessential regions have few to no inser-
tions due to a nonpermissive sequence pattern (DeJesus et al. [8]). Insertions at TA sites
in regions other than these are generally expected to occur randomly. If true, the inser-
tion counts at the same TA site in different libraries would be expected to be
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uncorrelated on average. However, our analysis of the 14 H37Rv transposon (Tn) libraries
shows that there is substantial correlation of counts at individual TA sites, suggesting that
some TA sites have a higher propensity for Himar1 insertion than others. Figure 1 shows
the distribution of log10 insertion counts from each library in a genomic region with 75 TA
sites (the log of counts was taken to better fit a Gaussian distribution). Each library was
TTR normalized (trimmed-total read-count normalization) to make counts from data sets
of different total size comparable (9). Figure 1A shows that mean insertion counts differ
widely among nonessential TA sites, and the variability between TA sites is more than that
within each site. Thus, high counts at a TA site in one library tend to have high counts in
other libraries, and similarly, sites with low counts occur symmetrically across the libraries.
As a comparison, insertion counts at TA sites (excluding those marked essential or follow-
ing the nonpermissive pattern) were randomized within each library. Figure 1B shows the
same 75 consecutive TA sites in this randomized data set. When randomized, the distribu-
tion of counts at sites in nonessential regions is much more uniform. The average variance
of all insertions within a TA site is 0.430, significantly lower (P value , 0.001) than the var-
iance of 0.929 found in the randomized data set. This makes it evident that the correlation
of log insertion counts across libraries is greater than expected. In fact, pairwise correla-
tions (measured using Pearson correlation coefficients) of the randomized data sets range
from 0.15 to 0.33, averaging to 0.28. Pairwise correlations of 14 libraries are considerably
higher, ranging from 0.5 to 0.97, averaging to 0.62. All 90 pairwise correlations had signifi-
cant P values (,0.01) by a permutation test. A significant high correlation across libraries
suggests there are site-specific influences, in addition to those previously observed, on
insertion probabilities at different TA sites.

Modeling insertion counts using linear regression. To determine whether the nu-
cleotides surrounding a TA site influence the probability of insertion, we examined the
association of proximal nucleotides on insertion counts, averaged over all nonessential
TA sites in the genome. Figure 2 presents evidence of site-specific nucleotide effects
that influence the relative abundance of insertions at TA sites. Insertion counts were
normalized per library before taking the log. Figure 2A shows overall nucleotide proba-
bilities 620 bp from the TA site. Most of the deviation in nucleotide probabilities
occurs within 4 bp of the central TA site, with probabilities varying up to 20% for some
nucleotides. Further insight can be gained by dividing the TA sites into three ranges:
sites with lowest counts, sites with medium counts, and sites with highest counts.
Figure 2B, depicting the 10th percentile of the range of insertion counts, shows an
increase in probabilities of nucleotides C and G, consistent with the nonpermissiveness
pattern (8), and a decrease in probabilities of nucleotides ‘A’ and ‘T’ especially at posi-
tions 62 and 63. Figure 2D, depicting the 90th percentile of insertion counts, also
shows drastic changes in nucleotide probability, with a notable increase in propensity
for ‘A’ at 23 and ‘T’ at 13. These observations suggest a correlation between the mag-
nitude of insertion counts and nucleotides surrounding TA sites. Thus, insertion counts
at a TA site could be affected by the surrounding nucleotides.

We trained a linear regression model on the 40 nucleotides surrounding the TA site
(positions 220. . .120) to predict insertion counts in known nonessential regions
(67,670 TA sites) using the mean counts from the 14 libraries of H37Rv. The input to
the model was a one-hot-encoding of the nucleotides, where each nucleotide at each
position was represented by 4 bits and concatenated into a bit vector, totaling 160 bi-
nary features. The resulting linear model was

log10 InsertionCountð Þ ¼ w0 1

X
i¼220::120

X
j¼A;C;G;T

wij nucij

where nucij = 1 if nuc[i] = j, nuc[i] is the nucleotide at position i relative to the TA site,
and weights wij correspond to each of the 160 binary features. This formula is equiva-
lent to a dot-product of a 160-bit vector (plus an intercept) with a vector of weights,
log10 (insertion count) = w0 1 w1 b220=A 1 w2 b220=C 1 w3 b220=T 1 w4 b220=G 1. . .1

w157 b120=A 1 w158 b120=C 1 w159 b120=T 1 w160 b120=G, where every four bits encode the
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FIG 1 Insertion counts across 14 H37Rv libraries in a region spanning 75 consecutive TA sites. In panel A, a point is plotted for insertion counts at each
coordinate for each replicate. This scatterplot is then overlaid with a box-and-whisker plot reflecting the mean and range of insertion counts at each site.
The region includes trpG for comparison, which is an essential gene, and hence, insertion counts are 0 in this gene. In the nonessential genes, the insertion
counts vary more between TA sites than within, supporting that some TA sites have a higher propensity for insertions than others. Panel B shows the same
75 sites after randomizing the insertion counts at all TA sites except those marked Essential and those showing the nonpermissive pattern. The mean and
range of counts at each nonessential TA site are much more uniform when randomized.
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nucleotide at a position 620 bp from the TA site. The model was trained and eval-
uated using 10-fold cross-validation. Figure 3 shows the average correlation between
predicted and observed log10 insertion counts. The model has some predictive power
(R2 value of 0.32) but also has high variance. A slight bias can be seen in the figure,
where the low counts are predicted too high, and the high counts are predicted too
low. This is a consequence of the regression model making predictions that do not
span as wide of a range as the actual data, due to inaccurate predictions for the sites
with the most extreme values (largest or smallest counts). The accuracy of predic-
tions made by this initial simplified regression will increase with improved models
(below), and thus, this effect will be reduced.

In Fig. 3B, nucleotides with highest coefficients in the trained model are located within
a window of 64 bp around the TA site. The pattern created by the nucleotides of these
coefficients is consistent with the nonpermissive pattern (CG)GnTAnC(CG) previously
reported (8). Nucleotide ‘G’ has the highest absolute coefficient value in the 22 position,
and ‘C’ has the highest absolute coefficient value in the 12 position. Moreover, both ‘C’
and ‘G’ have similarly high absolute coefficients in the 23 and 13 positions. In addition
to the confirmation of the nonpermissive pattern (large negative coefficients for ‘G’ at23
and ‘C’ at 13), the figure shows nucleotides ‘A’ and ‘T’ with relatively high positive coeffi-
cients in positions23 and13 from the TA site. These patterns reinforce the observations
made in Fig. 1 and provide further evidence of previously undetected site-specific nucleo-
tide biases that affect Himar1 insertion counts.

Prediction of insertion counts at TA sites relative to local average counts. We
assume that insertion counts are proportional to the permissiveness of a site, i.e., a site
with a less permissive pattern will have lower counts than a site with a more permis-
sive pattern. However, insertion counts are also affected by biological fitness. It is likely
that a TA site with a specific nucleotide pattern in a fitness-defect gene will have a
lower insertion count than a TA site with the same pattern in a nonessential gene. But
this effect (decrease or increase in counts) should be shared by multiple TA sites
locally. We can compare the insertion count observed at a site to the observed counts
at other TA sites in the region, the level of which should reflect the general fitness
effect of disrupting the gene. Thus, modeling this relative (or local) change in insertion
counts would allow us to factor out biological effects on counts and focus on the effect
of nucleotide patterns on the insertion counts.

FIG 2 Nucleotide probabilities at positions 220. . .120 from the TA site, for three ranges of insertion counts. Panel A shows the nucleotide probability at
every position across all ;65,000 TA sites in nonessential regions. Panel B shows the nucleotide probability across the 6,573 sites in the lowest 10th
percentile of the range of insertion counts (lowest 10th percentile insertion counts less than 2.1), Panel C shows the pattern across 52,026 sites in the
middle range of insertion counts (greater than 2.1 and less than 291.3), and panel D shows the pattern across 6,505 sites in the highest 10th percentile of
the range of insertion counts (90th percentile, insertion counts greater than 291.3).
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This change in insertion counts is quantified for every TA site as a log-fold change
(LFC) value. The local average was calculated for each site by taking the mean insertion
counts from the previous 5 and next 5 TA sites from the site of interest (i.e., using a
sliding window of 11 consecutive TA sites).

LocalAverage ið Þ ¼ 1
10

Xi21

i25

InsertionCount ið Þ1
Xi15

i11

InsertionCount ið Þ
2
4

3
5

The local mean excludes the central site itself and any locations marked as essential
during preprocessing. The LFC for each TA site was calculated by taking the log inser-
tion count at that site plus a pseudocount of 10 (to smooth out high variability of LFCs
for sites with low counts) and dividing it by the local average:

LFC ið Þ ¼ log2
InsertionCount ið Þ1 10
LocalAverage ið Þ1 10

 !

As with the previous model, this linear model was trained and tested using 10-fold
cross-validation. The resulting model (see Fig. S2 in the supplemental material) has an
average R2 value of 0.38, indicating that training the model to predict changes in

FIG 3 Coefficients and accuracy assessment of linear regression model trained on nucleotides as covariates. Panel A shows predicted counts versus actual
log insertion counts using linear regression. The average predictive power of the linear regression model trained with one-hot-encoded nucleotides as the
input and log insertion counts as the output using 10-fold cross-validation. The predictive power is moderate (R2 = 0.318), meaning it is able to explain
31% of the variation in insertion counts based on surrounding nucleotides. Panel B shows coefficients from the trained linear model. The coordinates along
the x axis give the positions relative to, but not including, the TA site. The model is trained on one-hot-encoded nucleotides and a target value of log
insertion counts. The symmetry of the pattern is visible in positions 24, 23, 22, 21 and 11, 12, 13, 14. The nonpermissive pattern (CG)GnTAnC(CG) is
visible in this window, as well as high coefficients associated with ‘A’ and ‘T’.
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insertion counts (relative to local mean) rather than absolute insertion counts greatly
reduces the noise due to local fitness effects (e.g., in a gene where insertion cause
growth defects, systematically reducing abundance of insertions in the region). This
allows the model to better capture the effect of nucleotides surrounding TA sites on
Himar1 insertion preferences.

A neural network model explains up to 50% of the variability in insertion counts.
As they can capture nonlinear patterns, neural networks are considered to be some of
the most powerful predictors in machine learning (10). To see if we could increase the
accuracy of our model, we tried using our data to train a fully connected multilayer
feed-forward neural network. The model contained one hidden layer of 50 nodes. This
parameter along with other hyperparameters of the network was tuned using a grid
search (see details in Materials and Methods) using a random subset of 70% of the
data. The remaining 30% of the data was used to test the final hyperparameters. The
input to the model consisted of bit-vectors encoding nucleotides surrounding each TA
site in the data set, totaling to 160 features. The target value was LFCs (log fold
changes of insertion counts relative to local mean). The model performed better than
the previous models with an average R2 of 0.493 (see Fig. S3). Thus, the neural network
can explain around half of the variability in insertion counts at TA sites based on sur-
rounding nucleotides; presumably, the remaining differences in counts still reflect sto-
chastic differences in abundance between libraries (or other influences on TA insertion
preferences for which we have not yet accounted). However, as is typical for neural
networks, this model (as a matrix of connection weights) does not provide us much
insight into nucleotide patterns that led to the predictions for the TA sites.

Certain nucleotides surrounding TA sites are associated with high or low
insertion frequencies. It has been previously noted that there are biases in distribu-
tions of nucleotides surrounding TA sites, making them more permissive or less per-
missive. If a site has a pattern that is considered more permissive, it should have a
higher insertion count than its neighbors and thus a positive LFC. The opposite is true
for sites with a less permissive pattern. They should have lower counts than their
neighbors and thus negative LFCs. The heatmap in Fig. 4 was generated to visualize
any additional nucleotide biases that may result in unusually high or low insertion
counts. For each nucleotide N and position P within 620 bp of a TA site, the mean LFC
was calculated over the subset of TA sites having nucleotide N at position P (Materials
and Methods). The heatmap reinforces the idea illustrated in Fig. 2 of the correlation
between nucleotide biases and insertion count magnitudes. A ‘G’ in position 22 and
its symmetric counterpart ‘C’ in position 12, as well as ‘C’ in the 23 position and its
counterpart ‘G’ in the 13 position, are associated with low mean LFCs. This indicates
that TA sites with at least one of these nucleotides in their relative positions tend to
have lower insertion counts than their neighbors, consistent with the nucleotide bias
represented by the nonpermissive pattern (CG)GnTAnC(CG) observed in reference 8.
Similarly, there is a distinctive pattern for positive mean LFCs: an ‘A’ in position 23 and
its counterpart ‘T’ in position13 are both associated with higher mean LFCs and hence

FIG 4 Enrichment and depletion of insertions as a function of nucleotides surrounding TA sites for the 14 libraries of
H37Rv in vitro. The mean LFC [log fold change: log2(observed_count/local_mean)] of sites with each filtered nucleotide
at every position in a 20-bp window of the TA site in the H37Rv data set is visualized here. The heatmap is centered
at the median of mean LFCs. Nucleotides colored green at certain positions are enriched (have higher than average
insertion counts), while those colored purple are depleted (relative to the local average nucleotide content).
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can be interpreted as being more permissive for Himar1 insertions (associated with
increased counts). However, the effects of multiple biases appearing in a single
sequence are not additive. For instance, a ‘C’ in the 22 and an ‘A’ in the 23 position
do not “cancel” each other out; they are interdependent. We quantify how effects like
these combine in the tetranucleotide model below.

There appears to be a slight periodic pattern of the G and C nucleotides surround-
ing the TA site, between 20 and 4 bp from the TA site in Fig. 4 (also evident in Fig. 2).
The nucleotides show an increase in mean LFC for every third position in the sequence.
Representing this pattern in a simplistic manner and comparing it to the LFC target
variable showed little correlation. Thus, this periodic sequence was not incorporated in
our model.

Symmetric tetranucleotide linear model (STLM). To gain more insight into the nu-
cleotide patterns observed through the heatmaps, we devised a variant of the linear
model, called the symmetric tetranucleotide linear model (STLM). In the linear models
previously mentioned, the pattern associated with an individual nucleotide was implicitly
assumed to be additive, and thus, each nucleotide position was treated as an independ-
ent variable. But we wondered whether a stronger pattern might be found through com-
binations of these nucleotide positions, which can represent nonlinear interactions.

Training the linear model to predict LFCs based only on the nucleotides in a window
of 64 bp from the TA site yielded nearly identical results to the regression predicting
LFCs using all 40 nucleotides (R2 = 0.35 and the same coefficient pattern for nucleotides
in range 24. . .14), indicating that most of the influence on LFC predictions is within an
8-bp window (see Fig. S4). This is reinforced by the heatmaps, as a majority of the appa-
rent effects occur within 4 bp from the TA site. If we use all the sequence combinations
of the nucleotides in positions 24. . .14 as features in our model, we will have 48 =
65,536 features (i.e., terms in a linear model, or inputs to a neural network). However, the
patterns of nucleotide biases are symmetrical (reverse-complement), as shown by the
heatmaps, thus making the distinction between all 8 nucleotides unnecessary. The 4 nu-
cleotides upstream of the TA appear to affect the insertion counts in the same way as the
reverse-complement of the 4 nucleotides downstream of the TA site. Therefore, it is nec-
essary only to capture the association of 4 nucleotides at a time on LFCs in the model.
Hence, we shift to training our models based on combinations of 4 nucleotides, i.e., tetra-
nucleotides, which reduces the number of features in our model to 44 = 256.

As input to the STLM, each TA site is represented as a vector where all features are
set to 0 except for the upstream tetranucleotide and reverse-complemented down-
stream tetranucleotide (Fig. 5). This is essentially the same as adding two bit-vectors,
one vector with the bit for the upstream tetranucleotide on and another separate vec-
tor with the bit for the downstream tetranucleotide on. The result is a sparse 256-bit
vector with only 2 bits on (except when the two tetranucleotides are the same, in
which case the single feature value for the tetranucleotide is set to 2). The result is a
linear model that follows the equation

LFC ¼ intercept1w1bAAAA 1 . . .1w256bTTTT

where w1. . .w256 are the weights associated with tetranucleotides (to be trained by the
model) and bAAAA. . .bTTTT are the bits corresponding to the presence of the adjacent
tetranucleotide features for every TA site. Encoding both the upstream and reverse-com-
plemented downstream tetranucleotides allows us to use the same model to represent
the bias from both sides of the TA simultaneously as independent features, additively
contributing equal weight. Assume for a given TA site, both upstream and downstream
tetranucleotides are associated with high LFCs; then, they will reinforce to predict an
even higher insertion count for that site. But if the upstream tetranucleotide has a trend
to contribute a high LFC and the reverse-complemented downstream tetranucleotide has
a trend to contribute a low LFC, they will tend to cancel each other out.

As seen in Fig. 6A, 10-fold cross-validation using the H37Rv data resulted in an aver-
age R2 value of 0.469. This R2 value is slightly lower than, but nearly equal to, that of
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the neural network (P value , 0.01 from two-tailed t test). However, the STLM provides
us more insight into patterns contributing to the prediction of the LFCs. In a regression
with these tetranucleotide features, we expect each coefficient (i.e., weights) of the
model to correlate with the average LFC associated with each tetranucleotide (over TA
sites surrounded by these tetranucleotides). Figure 6B shows the relationship of the
STLM coefficients and the mean observed LFCs of the corresponding tetranucleotides
(shifted on the y axis by the bias [intercept] in our data). The strong linear trend visible
adheres to the expectation of a high correlation and indicates our model accurately
represents our data. The individual tetranucleotide coefficients are shown in Fig. 6C,
sorted in decreasing order (see Table S1 for full table). Consistent with the patterns
observed in the heatmaps in Fig. 4, the bottom 10 features associated with low coeffi-
cients (predictive of low mean LFCs) all have a ‘G’ in the second position upstream of
the TA sites and a ‘C’ or ‘G’ in the third position. The features associated with the top
10 coefficients, thus higher LFC values, all have an ‘A’ in the third position upstream
from the TA site. However, the strength of the STLM is that it accounts for

FIG 6 Predicted LFC versus actual LFC using STLM. Panel A shows a plot of the actual LFCs versus the LFCs predicted by our model. The predictive power
of this model is about the same as the neural network (R2 = 0.468), but panel B shows there is a high correlation of mean LFCs of each tetranucleotide
and the coefficient in the STLM of the same tetranucleotide, indicating our model represents our data well. Panel C shows the coefficients associated with
each tetranucleotide (Table S1), sorted by coefficient value.

FIG 5 Illustration of the STLM. For each TA site the upstream tetranucleotide and reverse-
complemented (rc) downstream tetranucleotide are extracted. The relative bits are set in a 256-bit
vector that is given as an input to the STLM to predict LFCs.
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combinations of 4 nucleotides at a time, resolving cases where single-nucleotide pat-
terns might conflict.

While the STLM was able to partially predict the frequency of insertion at different
TA sites (R2 = 0.47), a significant amount of variability remains between observed and
predicted insertion counts. This can be attributed to factors that the model did not
account for, such as GC content outside the 24. . .14 region or DNA bendability (11).
However, when the STLM was augmented with the addition of GC content as a feature,
where GC content was calculated with the 620-bp window, it showed an improve-
ment in R2 of only 0.02. When the STLM was augmented with bendability as an addi-
tional feature, calculated for each TA site using the bend-it program (12), the results
were nearly identical to that of the model with only the 256-bit vectors (R2 = 0.47).
These experiments indicated that the tetranucleotides are a larger factor in the predic-
tion of LFCs than GC content or bendability. Using only the GC content and bendability
as two features to a linear model resulted in an R2 of nearly zero for all the data sets
tested. Furthermore, plots of LFC versus bendability and LFC versus GC content
showed little to no correlation.

Application of STLM to other Himar1 TnSeq data sets. To evaluate whether the
nucleotide biases derived from these 14 independent data sets in H37Rv are represen-
tative of generalized insertion preferences of the Himar1 transposon, we compared the
biases seen so far to those in other Himar1 TnSeq data sets.

Staying within the Mycobacterium genus, we obtained data sets from Himar1 TnSeq
libraries, grown in regular growth medium (7H9), of M. avium (13), M. abscessus ATCC
19977 (14), M. smegmatis mc2155 DLepA (E. J. Rubin, unpublished data), and M. tuber-
culosis H37Rv DRv0060 (15). We extracted the LFCs from the data sets based on the
insertion counts at TA sites in each genome along with tetranucleotide vectors based
on the nucleotides surrounding each TA site. The heatmaps for each of the data sets in
Fig. 7 show the mean LFCs associated with each nucleotide at each position within a
620-bp window of the TA site. These heatmaps look nearly identical to the heatmap
of H37Rv in Fig. 4. They exhibit the same negative LFC bias for 23 ‘C’, 13 ‘G’, 22 ‘G’,
and 12 ‘C’ and the same 23 ‘A’, 13 ‘T’ positive LFC bias. STLM LFC predictions for
each of the new TnSeq data sets were adjusted by a simple regression-based proce-
dure to correct for differences in the LFC distribution (further described in Materials
and Methods). Results, calculated as correlations between predicted and observed LFCs
with the regression adjustment (see Fig. S5), along with the nucleotide biases observed in
the heatmaps, show that the STLM can help explain the variability in insertion counts at
different TA sites for these data sets (using coefficients trained on M. tuberculosis H37Rv
data but applied to data sets from other mycobacterial species). The predictive power of
our model on the M. abscessus data set (R2 of 0.504) is slightly higher than, but about the
same as, the M. tuberculosis test set. We ran the same analysis on a recently published
TnSeq data set from an independent library of M. abscessus ATCC 19977 (16) as well and
observed very similar heatmaps and predictive power (R2 of 0.477). This shows we can
explain ;50% of the variance in Himar1 insertion counts in this organism based on the
nucleotide biases. All the data sets exhibited a correlation between observed and pre-
dicted LFCs (and hence insertion counts) and displayed a nucleotide pattern similar to
the heatmaps from the other mycobacterial TnSeq data sets.

To examine whether these biases also occur outside the Mycobacterium genus, we
obtained Himar1 TnSeq data sets from Caulobacter crescentus (17), Rhizobium legumi-
nosarum (18), and Vibrio cholerae (chromosome I only; chromosome II behaves simi-
larly) (19). We calculated LFCs (log fold change of insertion counts relative to local
mean) at each TA site in these genomes and plotted the heatmaps as associations of
nucleotides at specific positions around the TA with LFCs. As Fig. 8 shows, the heat-
maps associated with all three data sets reflect the same nucleotide patterns found in
the mycobacterial data sets. Applying the STLM to these data sets yielded significant
correlations between predicted and observed LFCs, with statistically significant R2 val-
ues (see Fig. S6). The correlation for Vibrio cholerae is lower than the others (R2 =
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0.249), possibly due to sequence preferences in the fragmentase used for shearing dur-
ing the sample prep for sequencing. This was done differently than other TnSeq experi-
ments and could have introduced additional variance into the insertion counts for the
Vibrio data set. However, the heatmap shows a pattern consistent with the nucleotide
biases we see with the TnSeq data sets from other organisms. This indicates that the
nucleotide biases visible in the mycobacterial data sets also explain some of the inser-
tion count variances present in nonmycobacterial data sets, thus supporting that the
STLM captures generalized site-specific biases on insertion preferences of the Himar1
transposon.

SNPs around TA sites in an M. abscessus clinical isolate exhibit predictable
changes in insertion counts. To evaluate whether changes in nucleotides proximal to
TA sites would have a predictable effect on transposon insertion counts, we obtained a
Himar1 Tn library for a clinical isolate of M. abscessus Taiwan49 (M. abscessus T49) and
compared it to a Tn library in the reference strain, ATCC 19977 (generated by methods
described in the work of Akusobi et al. [14]; see “Data availability” for data files with
raw insertion counts). These two strains of M. abscessus are fairly divergent, belonging
to different subspecies (ATCC 19977 in Mycobacterium abscessus subsp. abscessus, and
Taiwan49 in Mycobacterium abscessus subsp. massiliense); they have 114,335 single nu-
cleotide polymorphisms (SNPs) between them based on a genome-wide alignment.
However, at the level of functional genomics, they are similar. As determined through
the HMM method in TRANSIT (9), 513 out of 4,923 total genes in ATCC 19977 and 451

FIG 7 Enrichment and depletion of insertions as a function of nucleotides surrounding TA sites for
mycobacterial TnSeq data sets. The four heatmaps are calculated in the same manner that the H37Rv heatmap
was calculated in Fig. 4. The mean of each filtered nucleotide at every position in a 620-bp window around
the TA sites is calculated. The patterns of all the heatmaps look very similar to both each other and to the
H37Rv heatmap in Fig. 4.
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out of 4,225 total genes in T49 are predicted to be essential or growth defect genes.
Four hundred seventeen of these genes overlap. Figure 9 shows that predicting inser-
tion counts in this isolate with the STLM yielded an R2 value of 0.49. This is, as
expected, quite similar to the results of the M. abscessus reference data set reported
above. After aligning the genomes of the M. abscessus Taiwan49 clinical isolate and
the M. abscessus reference strain, we found 9,303 TA sites where there was exactly one
SNP in the 8-nucleotide window (64 bp) surrounding the TA site.

A plot of the average changes in observed LFCs versus the average changes in pre-
dicted LFCs between the reference and isolate strain at these sites for every TA site
with an adjacent SNP can be seen in Fig. 10 (see Materials and Methods). We expected
that when a nucleotide with a high negative bias was mutated, the observed LFC
would increase, and when a nucleotide with a high positive bias was changed, the
observed LFC would decrease. Figure 10 shows this effect. The colored points in the
graph are the most significant nucleotide-position pairs that we have previously
observed to have the highest LFC biases. When a nucleotide is switched from an ‘A’ in
the 23 position (blue) or a ‘T’ in the 13 position (green) to any other nucleotide, there
is a decrease in observed LFC, and when a ‘G’ in the 22 position (orange) or ‘C’ in the
12 position (pink) is changed, there is an observed increase. The presence of this effect
of SNPs on the LFC, i.e., differences in insertion counts at corresponding TA sites in dif-
ferent clinical isolates, along with the high correlation of the observed and predicted
LFC changes, provides further evidence that the STLM can represent the nucleotide
biases on transposon insertion preferences with high accuracy.

The accompanying table in Fig. 10 is a truncated view of the SNPs sorted in increas-
ing order of mean observed LFC change (for the full table, see Table S2). In addition to
the general pattern observed in the plot, we see that the magnitudes of the LFC differ-
ences correspond to the magnitudes of nucleotide biases. In the previous heatmaps,
‘A’ in the 23 position (and the downstream reverse-complemented pattern) shows the

FIG 8 Enrichment and depletion surrounding TA sites for nonmycobacterial TnSeq data sets. The four
heatmaps are calculated in the same manner that the H37Rv heatmap (Fig. 4) and mycobacterial heatmaps
(Fig. 7) were calculated. The mean of each filtered nucleotide at every position in a 620-bp window around
each TA site is calculated and centered on the median of mean LFCs.
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strongest bias for high LFCs and ‘C’ in the 23 position or ‘G’ in the 22 position (and
the downstream reverse-complemented pattern) shows the strongest bias toward low
LFCs. Following this pattern, the biggest decrease in mean observed LFC occurred
when an ‘A’ in the 23 position was changed to a ‘C’ and the biggest increase in mean
observed LFCs occurred when ‘C’ in the 23 position was changed to an ‘A’. Thus, the
effect of SNPs between a pair of moderately divergent strains corresponds to the nu-
cleotide biases observed within other Himar1 TnSeq data sets and furthers the notion
that these biases are general and can explain a significant portion of the variance in
transposon insertion counts.

Nucleotide biases observed in insertions at TA sites in a Tn5 TnSeq data set are
different than the biases that occur in Himar1 TnSeq data sets. To evaluate whether
the patterns of bias we see in the Himar1 TnSeq data sets are due to biases of the
transposase itself, and not due to the process of generating the libraries (including cel-
lular factors such as cognate DNA-binding proteins that might influence transposon
insertion during transfection in living cells, for example), we analyzed a Tn5 TnSeq
library of Salmonella enterica serovar Typhi Ty2. Though Tn5 is from a different (non-
mariner) family of transposases (20), the Tn library was generated and sequenced using
a similar methodology (PCR amplification of transposon insertion junctions, followed
by short-read sequencing on an Illumina sequencer) (21). We analyzed the Salmonella
baseline (in vitro) data set similarly to the way we analyzed the Himar1 data sets,
except we restricted attention to TA sites with insertion counts greater than 0 (22,406

FIG 9 M. abscessus Taiwan49 clinical isolate data set. The heatmap in panel A is calculated in the same manner that the previous heatmaps were
calculated. The pattern of this heatmap looks very similar to the H37Rv heatmap (Fig. 4) as well as the heatmap for the M. abscessus ATCC 19977 reference
strain (Fig. 8). The predictive power of the STLM on the M. abscessus T49 data set in panel B shows a high R2 value of 0.517, like that of the M. abscessus
reference data set. This indicates that nucleotide biases explain at least half of the variance in insertion counts for this data set with nucleotide biases.
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of 230,942 TA sites had insertions) and used the global nonzero mean at TA sites as a ref-
erence to calculate LFCs. Although the logo plot in Fig. S7 shows biases present for Tn5
insertion at TA sites, they clearly differ from the biases observed for Himar1 insertion.
Starting at position 210 from the TA site, we see a preference for the consensus
sequence AGTWTWAGACT, where W stands for A or T. This is similar to the published
weak consensus pattern (from a much smaller data set) for Tn5 preferred target sites:
“AGNTYWRANCT” (22). Like the sequence biases observed with Himar1, the pattern for
Tn5 can also be seen reverse-complemented downstream of the TA site. Since TA sites in
the Tn5 and Himar1 TnSeq data sets reveal completely different nucleotide patterns, we
infer that the biases observed in Himar1 libraries are not due to the process of construct-
ing or sequencing the library but are, rather, specific to the Himar1 transposase itself.

Using expected insertion counts to improve gene essentiality predictions.
Previous methods of identifying essential genes within individual data sets have been
based on the magnitude of insertion counts. For example, tools such as TnSeq-
Explorer (23) use the mean of insertion counts in sliding windows to classify genes by
essentiality. The limitation of relying on raw insertion counts is that they can be highly
variable among TA sites, and this noise can lead to inaccurate estimation of the relative
level of fitness defects caused by transposon disruption. We describe a new method,
called the TTN-Fitness method using the Gene1TTN model, which considers the site-
specific biases on Himar1 insertion preferences to correct the observed counts for
expectations based on the nucleotides surrounding each site.

The Gene1TTN model incorporates nucleotide context into an insertion count-
based model, allowing us to decouple the two main causes for low insertion counts: bi-
ological and Himar1 insertion preferences. This allows us to make a more informed
assessment on the level of gene fitness defect for biological reasons. The input to the
model for each TA site is a vector consisting of a binary encoding of the gene in which
it is located, combined with the 256 tetranucleotide (TTN) features. Each TA site is repre-
sented as a bit vector, with 3,981 features, one for each gene, and 256 features encod-
ing the upstream and reverse-complemented downstream tetranucleotides adjacent to
the site. We excluded TA sites from genes determined to be ‘Essential’ through the
Gumbel analysis (24) and Binomial Distribution (see Materials and Methods), which

FIG 10 SNPs in M. abscessus Taiwan49 clinical isolate exhibit predictable changes in nucleotide biases. Panel A shows the correlation of changes in
observed versus predicted LFCs for the 96 possible SNPs in the 64-bp window around the TA site (taking reverse-complement for those downstream). The
colored markers are the nucleotide-position pairs previously found to have the highest biases. The table in panel B is sorted by increasing mean delta
observed LFC and provides more details on these SNPs. As expected, the most extreme changes occur when the SNP occurs in the 23, 22, 12, or 13
position. The top 10 and bottom 10 values, i.e., the biggest decreases and biggest increases in LFC, follow the heatmap patterns of the Himar1 data sets
tested.
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quantify the significance of gaps (or runs of consecutive TA sites lacking insertions) to
identify essential regions. The model can be represented in matrix form as

Y ¼ b1CG1DT (M1)

where Y is a vector of the log10 of insertion counts at every TA site, G is the matrix of
3,981 gene covariates for each site, C is vector coefficients to be fit per gene, T is the
matrix of 256 tetranucleotide covariates for each site, and D is the vector of coefficients
to be fit per tetranucleotide. The intercept b is close to the global average of log10

insertion counts, and the coefficients (C) for every gene reflect the deviation of the
gene’s mean log10 insertion count from the global average, adjusting for the effect of
surrounding nucleotides (D). Essentially, we are finding the deviation of the gene’s
mean insertion count from the global average based on biological reasons, i.e., sub-
tracting out the effect of site-specific nucleotide-based Himar1 insertion preferences.
Thus, the gene-specific coefficients (C) represent adjusted estimates of the fitness level
of each gene.

The regression model was trained on the M. tuberculosis H37Rv in vitro data set. The
significance of genes (i.e., P value) was calculated using a t test (25) and then adjusted
for multiple testing to limit the false-discovery rate (FDR) to #5% using the Benjamini-
Hochberg method (26). Genes with an adjusted P value of ,0.05 and negative coeffi-
cient are interpreted as ‘Growth Defect’ (GD) genes, and those with an adjusted P
value of ,0.05 and a positive coefficient are interpreted as ‘Growth Advantaged’ (GA)
genes. Genes with an insignificant coefficient near 0 (adjusted P value. 0.05) are inter-
preted as ‘Non-Essential’ (NE). Genes identified a priori as essential by the Gumbel
method in TRANSIT (9) were marked ‘Essential’ (ES) by the TTN-Fitness method and
excluded from both training and testing. Gumbel identifies large essential genes well
but tends to classify small genes (with ,10 TA sites) as ‘Uncertain’, depending on the
overall level of saturation of the data set. Thus, we use the binomial distribution to
classify additional significant genes (P , 0.05) lacking insertions that are likely essential
as ‘Essential-B’ (ESB, as a subcategory of ES) (see Materials and Methods). The
HMM1NP model, a modified HMM to account for nonpermissive sites described by
DeJesus et al. (8), distinguishes between ‘ES’ and ‘ESD’ (Domain-Essential) genes, which
our model does not. For model comparison, we have combined the two categories
into one labeled ‘ES/ESD’. As seen in Fig. 11A, the TTN-Fitness method labels a similar
number of genes essential as the HMM-NP method, though slightly fewer nonessential
and more in the growth-defect and growth-advantaged categories (8). The confusion
matrix in Fig. 11B shows that there are 345 genes labeled ‘Essential’ in both the TTN-
Fitness method and the HMM1NP model (i.e., on the diagonal in the confusion ma-
trix), showing a great deal of overlap. Between the 2 methods, 1,777 ‘Non-Essential’
genes also overlap. However, the biggest difference is that a large number of genes la-
beled ‘Non-Essential’ (NE) by the HMM get reclassified as either ‘GD’ or ‘GA’ by the
TTN-Fitness method. Of genes labeled ‘Non-Essential’ in the HMM1NP model, 14.7%
have slightly lower than average insertion counts and are classified as ‘GD’ via the
Gene1TTN (M1) model. Of genes labeled ‘Non-Essential’ by the HMM1NP model,
25.4% have insertion counts slightly higher than average and are classified as ‘GA’
through the Gene1TTN (M1) model. This shows that the TTN-Fitness method labels
genes similarly to the HMM1NP model for the most part but is more sensitive to devia-
tions from the average insertion count and consequently labels some genes more spe-
cifically as ‘GD’ or ‘GA’.

Figure 12A shows a linear relationship between the coefficients associated with tet-
ranucleotide features in the Gene1TTN (M1) model and the corresponding coefficients
of the STLM, illustrating that the influence of tetranucleotides on predicted counts cap-
tured in this model is consistent with the effect previously discussed in the STLM.
Figure 12B shows the difference in the fitness assessment of genes compared to a
Gene-Only (M0) model, dropping the TTN features and hence lacking the site-specific
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adjustments based on tetranucleotide covariates. The Gene-Only (M0) model encodes
only the gene at every TA site and can be expressed in matrix form as

Y ¼ b1 CG (M0)

The intercept (b) is the global average log10 insertion count in the genome, and the
coefficient C corresponding to each gene is the deviation of the gene’s mean insertion
count from the global average. As this model does not incorporate the tetranucleoti-
des, if there is a gene with a very negative coefficient, it will be interpreted as ‘Growth
Defect’ regardless of whether the suppression of insertions is due to a true biological
gene defect or nucleotide bias. The scatterplot of the gene coefficients between the
two models in Fig. 12A shows a strong linear trend, indicating that estimated mean
(log10) insertion counts for most genes are quite similar between the two models.
However, the dispersion suggests that taking the nucleotide context into account
changes the fitness estimate for a number of outlying genes. Genes that show the
highest differences in coefficients between the two models are frequently labeled
‘Uncertain’ by the HMM1NP model (8), a majority of which are small genes with fewer
than 5 TA sites. Details on the difference in the coefficients and their significance
(determined through a Student t test and an FDR-adjusted P value) can be found in
Table S3.

To identify genes with the biggest differences in predicted counts in the Genes1TTN
model (M1) versus the Gene-Only model (M0), we extracted the coefficients for each gene
from both models and sorted the genes based on the difference of the two coefficients
(Table S3). The coefficient difference for each gene was calculated as the M0 coefficient
subtracted from the M1 coefficient for that gene. In Table 1, we provide a list of the top
20 and bottom 20 genes (filtering out genes with less than 1 TA site with insertions) for
which the TTN features make the biggest difference, along with a summary of some sta-
tistics for each group and the effect on essentiality categorizations. The category of genes

FIG 11 Distribution of HMM1NP and TTN-Fitness states for genes provided in the M. tuberculosis H37Rv data set. Panel A shows the distribution of
classification of genes by the two methods. Panel B shows the confusion matrix of the classification of genes in the two methodologies. Most of the genes
are labeled NE in both models. Genes determined to be ‘Uncertain’ in the HMM1NP model are assigned other states in the TTN-Fitness method. A fraction
of genes labeled ‘NE’ (Non-Essential) in the HMM1NP model (highlighted matrix components) are reassigned as ‘GA’ (Growth Advantage) or ‘GD’ (Growth
Defect) using the TTN-Fitness method, indicating that the TTN-Fitness method is more sensitive in estimating fitness than the HMM1NP model.
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with the greatest increase in coefficient value due to the incorporation of surrounding nu-
cleotides (“Top 20”) have a higher average GC content than the average gene in the ge-
nome. A higher GC content means a higher possibility that a TA site in these genes fol-
lows the nonpermissiveness pattern (contains a ‘G’ in the 22 position, a ‘C’ in the 12
position, a ‘C’ in the 23 position, or a ‘G’ in the 13 position from the TA site). As
expected, these genes have a lower-than-average observed insertion count. M1 predicts
insertion counts for these genes with greater accuracy than M0. It reclassifies 7 genes
(including 4 of the 5 PGRS genes in the Top 20), which were labeled ‘GD’ by M0 based on
just the average insertion count in each gene, as ‘NE’ with the incorporation of the nucle-
otide biases. In addition, M0 underpredicts insertion counts for the Bottom 20 genes and,
as a result, classifies 5 of these genes as ‘GA’. M1 considers the nucleotide context, includ-
ing an ‘A’ in position23 or a ‘T’ in position13, and predicts insertion counts much closer
to the actual observed counts and classifies only 1 gene as ‘GA’. Thus, the inclusion of sur-
rounding nucleotide context into the model improves the accuracy of predicting
expected counts and, ultimately, the assessment of gene fitness.

As an example, Rv0833 (PE_PGRS13) is one of the genes in the Top 20 genes whose
fitness interpretation is changed from ‘GD’ to ‘NE’ via the Gene1TTN model in the
TTN-Fitness method (compared to Gene-Only model). This change in essentiality call is
consistent with the fact that PGRS13, like all other PE_PGRS genes, was found to be
nonessential in vitro in reference 8, and genes in the PGRS family are not known to
have a critical function in vitro (27). As seen in Fig. 12B, it is interpreted as ‘Growth
Defect’ through model M0 (Gene-Only; coefficient = 21.02, adjusted P value = 2.95 �
1026) and as ‘Non-Essential’ by model M1 (Gene1TTN; C = 20.26, adjusted P
value = 0.109, hence not significantly different from 0). The difference in labeling indi-
cates that, based on the surrounding nucleotides, the low insertion counts at TA sites
in Rv0833 are predictable. This is supported by the fact that the PE_PGRS genes are

FIG 12 Correlation of coefficients in the Gene1TTN model (of the TTN-Fitness method) and coefficients in models using its components. Correlation of
coefficients of TTNs in the STLM and the TTN-Fitness model (A) has a strong linear relationship as well as similar distributions, indicating that the models
incorporate the effects of TTNs on the insertion count in the same way. Correlation of gene coefficients between the Gene-Only model and the TTN-Fitness
model (B) shows a linear trend, indicating that most genes behave in the same way and yield similar results in the two models. However, there are a few
that are show log fold change greater than this majority. The scale of coefficients in the Gene1TTN model is greater than that in the Gene-Only model,
indicating a notable number of genes whose predicted fitness estimate changes with the inclusion of nucleotide context. The points with black outlines
and labels are genes that we have explored. The gray boxes above and below the y = x line in the plot are the regions where the top 20 and bottom 20
genes lie, respectively.
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especially GC rich (27). The gene contains 12 TA sites spanning 2,250 bp. Of the nucleo-
tides in the ORF, 81.3% were ‘G’s or ‘C’s and 6 sites contained the nonpermissiveness
pattern. Thus, observed insertion counts in the gene are much lower than the global
average insertion count, but they are expected to be. PE_PGRS13 is one of the 53
PE_PGRS genes (out of 62 total PE_PGRS genes annotated in the M. tuberculosis ge-
nome) labeled ‘NE’ by both the HMM1NP and Gumbel methods. Thus, the TTN-Fitness
method (incorporating nucleotide context via the Gene1TTN model features) was able
to correctly evaluate the fitness of PE_PGRS13 as nonessential, consistent with our
understanding of its lack of known function in vitro.

To investigate genes that exhibit large differences in fitness assessment between
the TTN-Fitness method and the HMM1NP method, Fig. 13 shows a volcano plot of
the gene coefficients from the Gene1TTN model versus the 2log10 of the FDR-
adjusted P value. The gray points in the plot are gene coefficients that were not seen
to significantly deviate from 0. These are interpreted as ‘nonessential’ genes by the
TTN-Fitness method. The genes that were found to be significant are colored according
to their labels in the HMM1NP model. The vertical solid line at C = 0 is where the col-
ored genes on the left are interpreted as ‘GD’ and colored genes on the right are

TABLE 1 Changes in fitness assessment with the incorporation of surrounding tetranucleotidesa

aThe table shows a comparison of three categories of genes, with one where the coefficient in M1 (Gene1TTN features) is
higher than the coefficient in M0 (Gene-Only features) and one where the coefficient in M1 is lower than the coefficient in
M0. The relationship between the GC content and observed count (averaged over the TA sites in each gene) reflects the
proposed insertion count biases. The insertion count expected by M1 (taking surrounding nucleotides into account) is
closer to the average observed count than the insertion count expected by M0 (looking only at insertion counts) for all the
categories listed. The bar charts in the right column demonstrate that incorporating nucleotide biases, as is done in the
TTN-Fitness method, changes essentiality calls from GD (Growth Defect) to NE (Non-Essential) for many of the top 20
genes, and from GA (Growth Advantaged) to NE for several in the bottom 20.
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interpreted as ‘GA’ by the TTN-Fitness method. All significant genes labeled ‘GA’ or
‘GD’ by the HMM1NP model fall on their respective sides of the C = 0 line, but there
are a few ‘nonessential’ and ‘Uncertain’ genes that are reclassified by the TTN-Fitness
method.

With improvements in fitness assessment from the incorporation of tetranucleoti-
des, small genes (3 or fewer TA sites) labeled ‘Uncertain’ by the HMM1NP model can
be evaluated with greater confidence. Of the 71 genes labeled ‘Uncertain’ by the
HMM1NP model, most (65) have 3 or fewer TA sites, indicating the uncertainty comes
from the short length of the gene. These genes are all concretely classified by the TTN-
Fitness method (mostly as ‘Non-Essential’ [51 genes] or ‘Growth-Defect’ [18 genes])
(Fig. 11B). Rv3461c (rpmJ, 50S ribosomal protein L36), a gene with 3 TA sites, is an exam-
ple of such an ‘Uncertain’ gene (8). The gene is seen in Fig. 12B to be interpreted as
‘Non-Essential’ by the Gene-Only model M0 (C =20.87, adjusted P value = 0.074, not sig-
nificantly different from 0) and ‘Growth Defect’ by the Gene1TTN (M1) model (C =
21.02, adjusted P value = 9.41 � 1024), indicating the insertions for the genes are lower
than expected according to the surrounding tetranucleotides. Figure 13 shows that the
gene is similar to other genes labeled ‘Growth Defect’ or ‘Essential’ by the HMM1NP
model. Rv3461c is a part of the L3P family of ribosomal proteins. Other genes in this fam-
ily have been labeled as ‘Essential’ or ‘Growth Defect’ by the HMM1NP model and
‘Growth Defect’ per the Gene1TTN model. In fact, rpmJ was categorized as a ‘Growth
Defect’ gene in early TraSH experiments (2). Therefore, this previously ‘Uncertain’ gene
should be interpreted as ‘Growth Defect’, as the TTN-Fitness method suggests, with
confidence.

These examples show the improvement of fitness assessment with the incorpora-
tion of tetranucleotides in an insertion-count-only model. This enables the TTN-Fitness
method to account for the effect of genomic context on the Himar1 transposon inser-
tion preferences and thus better assess a gene’s fitness defect due to genuine biologi-
cal causes.

FIG 13 Plots of gene coefficients versus adjusted P values in the Gene1TTN model, colored by states
determined by the HMM1NP model. The HMM1NP methodology labels genes as ‘Non-Essential’
(NE), ‘Essential’ (ES/ESD), ‘Growth Defect’ (GD), ‘Growth Advantage’ (GA), and ‘Uncertain’. ‘Uncertain’
genes are typically smaller genes. The horizontal dashed line is where adjusted P value is 0.05 in the
Gene1TTN model. By the TTN-Fitness method, genes below that line are insignificant (gray) and thus
‘NE’. The vertical solid line is where gene coefficient C = 0 in the Gene1TTN model. By the TTN-
Fitness method, colored points left of the line are ‘GD’ genes and colored points to the right are ‘GA’
genes. The genes with labels are discussed in the text.
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DISCUSSION

Previous studies have demonstrated the presence of some site-specific biases on
Himar1 transposon insertion preferences based on a nonpermissive pattern that exists
around TA sites with low insertion counts in nonessential regions (8). This led us to
hypothesize that perhaps insertion counts at different TA sites could be predicted
based on surrounding nucleotides. We developed a model that captures nucleotide
biases and uses them to predict changes in relative insertion counts, i.e., LFCs. The LFC
metric compares raw counts at a site to the local average, which allows us to predict
the deviation in insertion counts from the neighborhood rather than the absolute
insertion counts themselves. This method allows us to examine just the effect of the
nucleotides on the insertion counts, independent of biological effects (e.g., genes with
different levels of growth defect). The STLM developed for the task incorporated tetra-
nucleotides upstream and downstream of the TA site, taking advantage of the sym-
metric nature of the bias patterns observed in the heatmaps. Furthermore, the tetranu-
cleotide features ensured that the model could capture nonlinear combinations
(interactions) of nucleotides proximal to the TA site, not just incorporating the effects
or individual nucleotides in an additive way. The STLM statistically performed as well
as the neural network and in addition was able to provide further insight into nucleo-
tide patterns that influence insertion counts.

The coefficients of the trained STLM showed that there was a pattern of insertion
count suppression consistent with the nonpermissive pattern previously observed (8).
In addition, a pattern of increased insertion counts in the presence of ‘A’ in the 23
position or ‘T’ in the 13 position was also visible. But the linear model represents these
patterns in a more general way so that they can be used to predict expected insertion
counts at any TA site, conditioned on the surrounding nucleotides. These nucleotide
biases were able to explain up to ;50% of insertion count variance in the other
Himar1 data sets. These site-specific nucleotide biases were observed in a variety of
TnSeq data sets from other mycobacterial and nonmycobacterial species. Comparing
TA sites with substitutions in the 64-bp window between two divergent strains of M.
abscessus showed changes in observed LFCs that corresponded to nearby SNPs as pre-
dicted by the STLM, providing further evidence of the generality of these biases.

There is a precedent for transposons in some families having insertion biases for
certain sequence patterns. Tc1 (also in the mariner family) was shown to weakly prefer
inserting at TA sites with the consensus pattern CAYATATRTG (28). The pattern
included a coupled symmetric target site preference of an ‘A’ in position 23 and a ‘T’
in position 13, consistent with our model. We were able to identify similar sequence-
dependent patterns and quantify them in a more general way with a model that can
predict expected insertion counts for every TA site. Another example of a transposon
with an insertion bias is the Tn5 transposase. It can insert anywhere in a genome but
tends to insert in GC-rich regions (7, 29). A detailed pattern analysis applied to known
Tn5 insertion sites suggested that the consensus pattern for preferred target sites is
AGNTYWRANCT (22). We were able to see this consensus pattern in our analysis of a
Salmonella enterica Tn5 TnSeq data set. Through this analysis, we were able to rule out
the possibility that the biases we observe in Himar1 might be due to the generation of
the TnSeq libraries rather than the transposon itself. We were also able to rule out pos-
sible effects of cellular factors, such as DNA-binding proteins, affecting transposon
insertion locations, since all the libraries analyzed were generated via transfecting live
cells rather than using in vitro (extracellular) transposition.

Early studies in E. coli suggested that the Himar1 transposon tends to insert at TA
sites in more “bendable” regions of the genome (11), as measured experimentally.
Bendability is a cumulative effect of specific nucleotides on local geometric parameters
of the DNA helical axis; each nucleotide makes a small contribution, on the order of a
few degrees, to angular distortion (bend, roll, tilt) of the axis, with different nucleotides
(or combinations of nucleotides) having a different effect. This can accumulate over
tens of nucleotides to produce a macroscopic bend or kink in the DNA. Goodsell and
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Dickerson (12) parameterized the geometric effects for each trinucleotide and used
this to generate a model which can be used to predict the bend and twist of the helical
axis accumulated locally using a sliding window. It was speculated that local bendabil-
ity could facilitate the melting of the double helix, recognition/binding of the transpo-
sase, and formation of the precleavage complex (11). However, while it is possible that
bendability contributes weakly to Himar1 insertion preferences, the effect likely spans
a larger window of nucleotides than just 64 bp around the TA sites; local bendability
is not likely to be substantially affected by the 4 nucleotides on either side of the TA
sites, which have a predominant influence according to our statistical analysis. In addi-
tion, we computed this around the TA sites in our data set and added it as a covariate
in our linear models, but it did not improve the performance of the models.

The patterns of nucleotide biases on Himar1 transposon insertion preferences may
have emerged as a result of the physical interaction between the Himar1 transposase
and the DNA. Figure 14 displays the X-ray crystal structure (PDB 4u7b) of the complex
between the MosI transposon (also in the mariner family) and the precleavage state of
the DNA double helix (30). As expected, the components of the TA dinucleotide (T57,
A58) interact with the protein (residues 119 to 124 [WVPHEL], orange). However, the 4
adjacent nucleotides also make extensive contact with the protein in a small tunnel by
packing against Asp284-His293 (green). Arg118 likely makes charged-polar interactions
with the nucleotides at positions 22 and 23. These positions are where different nu-
cleotides proximal to TA dinucleotides are observed to have insertion biases in Himar1
data sets. The interactions between these TA-adjacent nucleotides and amino acid side
chains in the transposase could influence the energetics and therefore the frequency
of successful transposon reactions at TA sites. While it would be tempting to try to per-
form a detailed analysis of the hydrogen bonding and other molecular interactions
between nucleotides in the DNA fragment and amino acid side chains of the transpo-
sase they contact to derive a structural explanation for the observed preferences for
certain nucleotides surrounding the TA site, it must be remembered that this structure
is of MosI (whose insertion biases are unknown, except for TA restriction), and a
detailed analysis of molecular interactions relevant to the biases of the Himar1 transpo-
sase, as we have characterized, will have to await determination of an X-ray crystal
structure of a complex of the Himar1 transposase bound to a target DNA fragment
(containing a TA site).

We demonstrated the utility of our model of nucleotide biases on Himar1 insertion
frequencies by using it to improve gene essentiality predictions via the TTN-Fitness
method. One way to determine the essentiality of a gene is to take the average count

FIG 14 Crystal structure of the complex between the MosI transposon and DNA (PDB 4u7b). DNA double helix, with denatured (single-strand) end in the
precleavage state. This is a stylized (cartoon) representation of the interaction. The red nucleotides represent C53-T54-G55-A56 (sites 24. . .21). The yellow
nucleotides represent the TA site, T57-A58. The blue nucleotide is G59, which is site 11. The transposase itself is shown as a molecular surface. Amino
acids 119 to 124 (WVPHEL) are colored orange, and Asp284-His293 are colored green. The two images are vertical 180-degree rotations illustrating front
and back views of the transposon-DNA interaction.
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of insertions at all the TA sites in the gene and determine the essentiality based on a
set of cutoffs (31). This method treats all TA sites as being equivalent a priori (i.e., as in-
dependent, and identically distributed observations, with equal prior probability of
insertion) and does not allow for site-specific differences that can greatly affect the
insertion count at each site. Incorporating these surrounding nucleotides takes out (or
corrects for) the effect of insertion biases and focuses the analysis on true biological
effects, thus increasing our certainty in fitness calls for these genes. In the TTN-Fitness
method, we fit a linear model to the insertion counts at TA sites, incorporating the
gene in which it resides and the nucleotides surrounding each site as covariates. The
coefficients associated with genes in the regression model reflect how much the mean
insertion counts in the gene deviate from the global average, after correcting for the
expected insertion counts at each site in the gene. For most genes, predicted fitness
did not change substantially between the ablative Gene-Only model and the
Gene1TTN model of the TTN-Fitness method. However, the assessment for some nota-
ble genes did change with the inclusion of tetranucleotide features. For example,
PE_PGRS13 was implied to be a ‘Growth Defect’ gene by a simplified insertion count
based methodology (averaged at the gene level) due to the low insertion counts at its
TA sites. However, sites in this gene are surrounded by mostly ‘G’s and ‘C’s which have
been determined by Himar1 preferences to suppress insertions. So, the insertions are
low, but they are expected to be low, and thus, the gene is determined to cause less of
a fitness defect than previously predicted. The Gene1TTN model used in the TTN-
Fitness method has an advantage for small genes with l#3 TA sites (220 in H37Rv ge-
nome) such as Rv3461c (rpmJ), previously undetermined by essentiality estimates. The
model is less susceptible to noisy counts (high or low) at individual sites because we
can compare the observed counts at those sites to expected counts from their nucleo-
tide context, correcting for the effect of insertion biases and thus improving the identi-
fication of conditionally essential genes and genetic interactions, i.e., to better distin-
guish true biological fitness effects by comparing the observed counts to expected
counts using a site-specific model of insertion preferences. This method could also be
helpful for analyzing differences in essentiality of genes between different strains (e.g.,
clinical isolates), where the TTN-Fitness model can correct for expected counts at TA
sites to account for differences in the surrounding nucleotides (e.g., due to the differ-
ent genetic backgrounds of the libraries).

MATERIALS ANDMETHODS
Data set of 14 independent Himar1 insertion libraries of M. tuberculosis H37Rv grown in vitro.

We obtained 14 independent TnSeq libraries in M. tuberculosis H37Rv previously analyzed (8), represent-
ing a combined total of 35,314,576 independent insertion events by the Himar1 transposon. All libraries
were treated uniformly and grown in standard laboratory medium (7H9/7H10). Briefly, the 14 libraries
were constructed by transfection of the MycoMar T7 phagemid carrying the Himar1 transposon into the
parent strains. DNA was extracted for sequencing and fragmented by shearing. Adapters were then
ligated, and the transposon-genomic junctions were PCR amplified (4). The M. abscessus, M. avium, M.
smegmatis, Caulobacter, Rhizobium leguminosarum, and M. tuberculosis H37Rv DRv0060 libraries were
constructed similarly. Every library in the 14 replicates has a mean saturation, i.e., percentage of TA sites
in the genome with 1 or more transposon insertions, of 0.65, totaling to a saturation of 0.85 for the
entire data set. As these are 14 independent libraries, the probability of a nonessential site with zero
insertions for stochastic reasons is quite small. However, there is a lack of insertions in nonpermissive
sites in nonessential regions, which account for 9% of all TA sites. Most of the remaining sites with zero
insertions correspond to essential regions.

This high level of saturation enabled us to reliably observe the nucleotide bias of insertion counts at
different TA sites. The data set was normalized using TTR normalization in TRANSIT (9) (the top and bot-
tom 5% of read counts are trimmed to reduce the influence of outliers). Counts are then divided by the
total counts in each data set and scaled back up so the mean count at nonzero sites is 100.0. We identi-
fied essential regions as consecutive sequences of 6 or more TA sites with counts of two or less and sub-
sequently removed them. Using the resulting data set, we were able to explain nucleotide bias at TA
sites not only for H37Rv but also for other mycobacterial and nonmycobacterial Himar1 TnSeq data sets.

Significance of the correlation of insertion counts between TnSeq data sets. The correlation of
insertion counts at TA sites between TnSeq data sets was calculated using a Pearson correlation coeffi-
cient. As mentioned previously, the log of insertion counts was used, since the Pearson correlation coef-
ficient assumes that the input data are normally distributed. The two-tailed t test for the means for two
independent samples was used to measure whether the expected value differs significantly between
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samples. Since we do not assume population variance between the two data sets is equal, the Welch t
test is performed.

Tenfold cross-validation linear regression. The data were split for 10-fold cross-validation using
sklearn.model_selection.KFold(). Within these folds, we used Ridge Regression implemented in
sklearn.Ridge() with alpha = 0.1 to train and test linear models (target values of log insertion counts or
LFCs) with L2 regularization.

Hyperparameter tuning the neural network. The data were separated into training and testing
using a 70-30 train-test split. We used 10-fold cross-validation on the 70% training split of the data to
tune the number of nodes per hidden layer, number of hidden layers, the activation function, value of
alpha, and whether to use early stopping. We used scikit-learn’s GridSearchCV to perform this operation
and checked the accuracy of the final hyperparameters set on the reserved 30% set.

Mean LFCs per nucleotide-position pair. For every position 620 bp from the TA site, we filtered
for nucleotides ‘A’, ‘T’, ‘C’, and ‘G’. We took the mean LFC of the training samples (TA sites) with that nu-
cleotide in that position. This calculation yielded the mean LFC for each nucleotide at each position
20 bp from the TA site, which was then visualized as a heatmap with a diverging color palette.

Model adjustment calculations. Each TnSeq data set has a slightly different LFC distribution. Thus,
the predictions of a TnSeq data set from the STLM, trained on H37Rv data, had to be adjusted. This was
accomplished by a simple regression-based procedure. First, we determined the linear relationship
between the mean LFC for each tetranucleotide in H37Rv by regressing it against the mean LFC of each
tetranucleotide in our target strain. The linear relationship could be represented as targetStrainLFCs = m �
H37RvLFCs 1 offset. We used this relationship to adjust the LFC predictions made by the STLM using the
target strain’s data LFCadjusted =m � LFCSTLM 1 offset.

Average change in observed LFC versus average change in predicted LFC between strains. In
comparing the genome sequences of M. abscessus ATCC 19977 and the Taiwan49 clinical isolate, there
are 9,303 TA sites with exactly one SNP in the surrounding 64-bp window. There are 8 positions and 12
possible substitutions per position, thus 96 possible SNPs that can occur. For each of these possible nu-
cleotide changes, we calculated the difference between the observed LFC in the reference strain and
the observed LFC in the isolate strain. The mean of this difference was determined to be the mean
observed LFC difference for that SNP. We performed a similar calculation for the predicted LFCs. Using
the STLM, we found the predicted LFCs at TA sites in the reference strain and predicted LFCs at TA sites
with a specific SNP in the clinical isolate. The average of the difference in these two predicted LFCs was
the mean change in predicted LFC.

Using the binomial distribution to filter small essential genes before training the Gene+TTN
model. The first step in fitness estimation is to identify and remove any essential genes. These genes are
excluded from the Gene1TTN analysis. First, larger essential genes (with Z10 TA sites) are identified
using the Gumbel method in TRANSIT (9). Then, smaller essential genes with no insertions are identified
and removed based on a binomial calculation. Given the probability that an insertion does not occur
(P = 1.0- saturation), the probability of k TA sites out of n total having no insertions follows the binomial
distribution:

P kð Þ ¼ n
k

� �
pkqn2k

Thus, the probability that all TA sites in a gene have 0 insertions is a binomial distribution where k = n:

P nð Þ ¼ n
n

� �
pnð12 pÞ0 ¼ pn

We use this formula to determine the minimum n such that P(n) is ,0.05, and we then label any genes
with n or more TA sites, all of which have insertion counts of 0, as ‘Essential-B’ (‘ESB’). This method is a
necessary additional step to the Gumbel method to find smaller genes that may have been missed,
especially in data sets with lower saturation.

Data availability. The source code (Python scripts) for performing the calculations described in this
paper (including the TTN-Fitness model) is available at https://github.com/ioerger/TTN-Fitness. The raw
data files (wig files with insertion counts at TA sites) for the 14 replicate libraries of M. tuberculosis, along
with 3 replicates for M. abscessus Taiwan49, can also be found in the demodata/directory of the same
GitHub repository.
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FIG S1, TIF file, 1.9 MB.
FIG S2, TIF file, 2.3 MB.
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