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Abstract

Background: Gene set analysis (GSA) aims to evaluate the association between the expression of biological
pathways, or a priori defined gene sets, and a particular phenotype. Numerous GSA methods have been proposed to
assess the enrichment of sets of genes. However, most methods are developed with respect to a specific alternative
scenario, such as a differential mean pattern or a differential coexpression. Moreover, a very limited number of
methods can handle either binary, categorical, or continuous phenotypes. In this paper, we develop two novel GSA
tests, called SDRs, based on the sufficient dimension reduction technique, which aims to capture sufficient information
about the relationship between genes and the phenotype. The advantages of our proposed methods are that they
allow for categorical and continuous phenotypes, and they are also able to identify a variety of enriched gene sets.

Results: Through simulation studies, we compared the type | error and power of SDRs with existing GSA methods for
binary, triple, and continuous phenotypes. We found that SDR methods adequately control the type | error rate at the
pre-specified nominal level, and they have a satisfactory power to detect gene sets with differential coexpression and
to test non-linear associations between gene sets and a continuous phenotype. In addition, the SDR methods were
compared with seven widely-used GSA methods using two real microarray datasets for illustration.

Conclusions: We concluded that the SDR methods outperform the others because of their flexibility with regard to
handling different kinds of phenotypes and their power to detect a wide range of alternative scenarios. Our real data

analysis highlights the differences between GSA methods for detecting enriched gene sets.
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Background

Gene set analysis (GSA) seeks to determine whether a pre-
determined gene set, in which the genes share a common
biological function, is correlated with a phenotypic vari-
able. In the past decade, many GSA methods have been
proposed in scientific literatures. Goeman and Bithmann
[1], Nam and Kim [2] Dinu et al. [3], and Maciejewski [4]
have given thorough reviews and comparisons of previ-
ous GSA methods. Usually GSA methods are classified as
either self-contained (Q2) or competitive (Q1) methods.
Self-contained GSA methods have been used to reveal
the association between gene sets and the phenotype of
interest without taking other genes into consideration. In
contrast, competitive GSA methods aim to provide the
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relative significance of a gene set when compared with
available genes outside the gene set. Some methods use
a parametric model to find the significance, while most
methods use a resampling technique to obtain a nonpara-
metric p-value. Usually the resampling is conducted with
sample randomization to capture the variation between
biological samples. However, to find the relative signif-
icance in a competitive GSA, some authors propose a
resampling with gene randomization. Maciejewski [4]
recently concluded that to have an organization similar to
that of the actual biological study, the researchers should
employ sample randomization. Here we aim to propose a
self-contained method with sample randomization.

There are many ways to measure the association
between a gene set and a phenotype. The attribute of
the phenotype is a key point. When the phenotype is
categorical, very often researchers focus on detecting dif-
ferences among mean patterns of genes across distinct
phenotypic groups. For example, with a binary phenotype,
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many methods make use of the conventional two-sample
t-test, see Subramanian et al. [5], Tian et al. [6], Efron and
Tibshirani [7], Irizarry et al. [8], Jiang and Gentleman [9]
and so on. However, these approaches do not take the
interaction between genes into consideration. To accom-
modate the correlations, Kong et al. [10] considered
Hotelling[d test statistic of principle components, and Tsai
and Chen [11], Chien et al. [12] suggested using the
MANOVA approach. All these approaches test against the
specific hypothesis that the gene set has common means
across groups. They give satisfactory results when the
gene set has a differentially expressed mean pattern. How-
ever, overemphasizing the first moments and ignoring
other important information may result in a loss of power.

In addition to mean the second moments, including
variance and correlation, have received more and more
attention from researchers. A set of genes, being coex-
pressed across different biological samples, is said to be
coexpressed. The network formed by coexpressed genes
are of biological interest, since it provides evidence that
these genes are functionally related, see Stuart et al.
[13], Zhang and Horvath [14]. Furthermore, genes that
have different coexpressions across groups are said to be
differentially coexpressed. According to Cho et al. [15]
differential coexpression analysis is helpful to explore
key biological processes stimulated by changes in exper-
imental conditions. Choi et al. [16] attempted to find
the functional changes that accompany a comparison
of two constructed coexpression networks under differ-
ent biological conditions from ten published microarray
data sets. Given a pre-determined gene set, Choi and
Kendziorski [17] proposed a Gene Set Coexpression Anal-
ysis (GSCA) to identify differentially coexpressed gene
sets. Rahmatallah et al. [18] developed the Gene Sets Net
Correlations Analysis (GSNCA), which claims to account
for the complete correlation structure of gene set analysis.
The method for Evaluation of Dependency Differential-
itY (EDDY) proposed by Jung and Kim [19] also compares
the joint probability distributions found in different condi-
tions for a complete, thorough detection. Rahmatallah et
al. [20] employed several minimum-spanning tree-based
non-parametric multivariate tests to detect complex and
specific alternative hypotheses.

Many microarray experiments involve more than two
biological conditions, such as dose levels, time points, or
treatment combinations; some even consider continuous
phenotypes. To date, only a few of the previously devel-
oped GSA methods are able to handle either a categorical
or a continuous phenotype. For example, the Gene Set
Enrichment Analysis (GSEA) by Subramanian et al. [5],
the methods by Tian et al. [6] and the global test (GT) by
Goeman et al. [21]. Nevertheless, the other methods intro-
duced in previous paragraphs are for the most best-suited
for handling binary phenotypes. The linear combination
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test (LCT) by Dinu et al. [22] and its extended non-linear
combination test (NLCT) by Wang et al. [23] are recently
proposed GSAs specifically for continuous phenotypes.
GSEA, LCT and NLCT assess the association between a
gene set and a continuous phenotype using the Pearson
correlation coefficient. Alternatively, GT is a score test for
the random effect under a generalized linear model. On
the other hand, when the phenotype is not binary, identi-
fying coexpressed gene sets becomes more difficult due to
limited observations in a genomic experiment. The pre-
viously mentioned GSCA method can deal with multiple
phenotypic responses, while GSNCA is only suited to deal
with a binary phenotype.

It can be seen that existing GSA methods are devel-
oped with respect to a particular alternative hypothesis,
either of differential mean or of differential coexpression.
To discover broader alternative spaces, this study aims
to develop methods that can capture more information
regarding the association between gene sets and pheno-
types of interest. The proposed methods can be used as an
initial screening in gene set analysis. When a significance
appears, researchers can further investigate the source of
deviation by using previously reviewed methods to deter-
mine whether there is a differential mean expression, a
differential coexpression, or both. Further, our methods
have wide applications in the sense of being suitable for
binary, categorical or continuous phenotypes.

Sufficient dimension reduction (SDR) is an informative
data reduction methodology used in regression analysis.
Suppose X are p x 1 predictors, Y is a univariate response,
and the conditional distribution Y|X is the research of
interest. Suppose there exists a p x d matrix n, where
d < p, such that Y|X and Y|nTX have the same proba-
bility distribution. Then the column space of 7 is called a
dimension reduction subspace, which contains sufficient
information of the association between X and Y, see Li
[24]. The subspace always exists and is not unique. The so-
called central subspace is the intersection of all dimension
reduction subspaces, if the intersection is also a dimension
reduction subspace. This subspace is the most compact
and informative subspace. One major goal of SDR is to
find the central subspace or its subspace.

Several authors proposed the use of different slicing and
inverse regression analysis to find a subspace of the cen-
tral subspace. The major difference is the kernel matrix
used to estimate the central subspace. Table 1 in Bura
and Yang [25] provides a thorough list of the SDR ker-
nel matrices and the corresponding estimations of existing
methods. Among them, the two most popular methods
are the sliced inverse regression (SIR) by Li [24], and the
sliced average variance estimation (SAVE) by Cook and
Weisberg [26]. The kernel used in SIR is the covariance
of the conditional mean of X given Y, which detects the
deviation between the conditional mean and the marginal
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Table 1 Empirical type | error rates of eight GSA tests at @ = 0.05 for data of two biological conditions

Sample size |.Homogeneity I.Heterogeneity

n Methods p =20 p =100 p = 200 p=20 p =100 p = 200

20 GSEA 0.112 0.108 0.096 0.142 0.096 0.102
GT 0.048 0.058 0.048 0.046 0.044 0.042
MVAT 0.058 0.074 0.048 0.038 0.052 0.048
pPCOT 0.050 0.046 0.044 0.038 0.052 0.028
GSNCA 0.045 0.060 0.052 0.062 0.045 0.045
GSCA 0.042 0.076 0.066 0.048 0.046 0.046
SDRr 0.049 0.052 0.052 0.051 0.044 0.049
SDRy 0.049 0.062 0.056 0.048 0.044 0.049

40 GSEA 0.094 0.086 0.092 0.138 0.114 0.092
GT 0.054 0.044 0.044 0.058 0.050 0.042
MVAT 0.042 0.036 0.048 0.062 0.038 0.056
pPCOT 0.056 0.058 0.058 0.046 0.064 0.056
GSNCA 0.050 0.038 0.062 0.042 0.041 0.050
GSCA 0.053 0.056 0.062 0.060 0.052 0.055
SDRr 0.043 0.048 0.046 0.055 0.037 0.047
SDRy 0.039 0.050 0.038 0.046 0.036 0.046

60 GSEA 0.138 0.112 0.090 0.136 0.114 0.098
GT 0.046 0.058 0.052 0.052 0.068 0.044
MVAT 0.052 0.062 0.050 0.042 0.048 0.038
pPCOT 0.058 0.074 0.048 0.046 0.056 0.060
GSNCA 0.042 0.044 0.050 0.048 0.047 0.058
GSCA 0.049 0.064 0.044 0.056 0.061 0.067
SDRr 0.047 0.046 0.044 0.049 0.044 0.054
SDRy 0.055 0.040 0.040 0.050 0.051 0.055

mean of X. On the other hand, the SAVE detects the devi-
ation between the conditional covariance of X given Y and
the marginal covariance of X. It has been shown in Cook
and Lee [27] that the subspace found by SIR is contained
in the subspace found by SAVE. More information about
the association between X and Y is captured by apply-
ing SAVE. In this article, we employ the SAVE method for
gene set analysis.

The determination of the dimension of the central sub-
space, the so-called structural dimension, is an important
issue in SDR data analysis. Shao et al. [28] considered a
point estimation of the dimension by sequentially apply-
ing the proposed marginal dimension test. Specifically, if
the structural dimension is zero, there is no association
between X and Y, which is the exact null hypothesis of
GSA. In this article, this marginal dimension test for test-
ing zero dimension is adopted to identify differentially
expressed gene sets. A modified test that places more
emphasis on means is also proposed. We conduct sim-
ulation studies for three scenarios of binary, three-class,
and continuous phenotypes. Using simulated data sets, we

study the performance of our proposed methods in terms
of control of type I error and power in comparison with
several existing methods. In addition, we also present the
results of two real microarray datasets, the p53 dataset
and GSE6956 dataset, for illustration. Significances of the
deregulation of gene sets obtained from the Molecular
Signature Database (MSigDB) of the GSEA website are
measured using the proposed methods and the competing
GSA methods.

The rest of the paper is organized as follows. In the
Method section, the methodology of SAVE is briefly
reviewed, and the marginal dimension test and its modifi-
cation for GSA are then proposed. In the Results section,
the proposed methods are evaluated and compared with
other GSA methods using simulation studies and real
microarray datasets. Lastly, discussion and a brief conclu-
sion are provided at the end.

Method
Suppose that X presents the gene expressions of a pre-
determined gene set of size p, and Y is the phenotypic
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response. In a self-contained GSA problem, we are inter-
ested in determining whether X is independent with Y.
The following null hypothesis is tested:

Hj : Xis independent with Y.

When employing the slicing inverse regression anal-
ysis, X is standardized with respect to its marginal
distribution, and denote Z = (Z,...,Z,) as the
standardized random vector. Assume a random sam-
ple {(Xa), Ya)), - - .» Xy, Y(n))}, where (X, Y(;)) are the
original gene expressions and phenotype of the i-th sub-
ject respectively, i = 1,...,n. Let X and Tx be the
sample mean and the sample variance-covariance matrix
of X respectively without taking Y into account. For i =
1,...,mlet Zy = 2;1/2 (X(i) — )_() Then Zqy, ..., Zy
are the #n realizations of Z. It is known that the mean
of Z is the zero vector and the covariance matrix of Z
is the p x p identity matrix, I,. Next, the observations
are classified into several disjoint groups, the so-called
Mlices¥according to the value of Y. If Y is binary, multi-
categorical, or discrete, there is a nature slicing. If Y is
continuous, we consider a monotonic discretization. The
subgroups (or slices) are formed by dividing the sample
space of Y, a subset of R, into several disjoint intervals.
Define the group/slice label variable as S. If there are H
subgroups, S =s € {1,2,...,H}.In the s-thslice, S = s, let
Ps be the corresponding sample proportion, and let by Zls
be the within-slice sample variance-covariance matrix of
Z. In SAVE, the central subspace is the column space of
the specific kernel matrix, E[ Var(Z|Y) — Var(Z)]?, where
Var(Z|Y) is the conditional covariance matrix of Z given
Y in the inverse regression, and Var(Z) is the marginal
covariance matrix of Z, which is equal to I,. The kernel

R 2
matrix is estimated by Zflzl Ds (Ez|s — Ip) .

The structural dimension, denoted by d, is defined as
the dimension of the central subspace. If the gene set is
not associated with the phenotype, the central subspace
should be null and the structural dimension should be

zero. Therefore, the problem is equivalent to testing the
following hypothesis:

Hy:d =0 versus H; : d > 0.

Shao et al. [28] proposed the marginal dimension test with
the following test statistic,

M~

H H
T = Z[ﬂs tr (f]z|s - Ip>2 = Z[as {Z (5i,j|s - 05,,‘)2} .
s=1 s=1 i=1 j=1
(1)

In which, 6;js is the (i, j)-th element of ) z|ss and o is
the (i, /)-th element of I,. The null hypothesis is rejected
if T is sufficiently large. Here we apply the marginal
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dimension test to assess the significance of the association
between the gene set and the phenotype.

Explicitly, T assesses the weighted squared Euclidean
distance between the within-slice sample covariance
matrix and the pooled sample covariance matrix of Z.
A significant difference results from the perturbation in
the second moment of Z caused by the slicing based on
the information of Y. In fact, the deviations in the first
moment across slices also contributes to 7. Denote the
population version of T by T”, which is

T' = E[tr{Var(Z|S) — Var(Z)}*].

It can be shown that

p
T' =" E{Var(Zi|S) — E(Var(Z;|S)}* +
i=1

P p
3N E{Cov(zi, Z)|S) — E(Cov(Z;, Z15))} +
i=1 j£i

p b
SN {E[E@iS) - EZ)EZ1S) - EZ)])

i=1 j=1

where Var(Z;|S) is the conditional variance of Z; given S
and Cov(Z;, Z;|S) is the conditional covariance between
Z;,Zj given S for i # j,and i,j = 1,...,p. The first two
terms show the deviations in the second moment. If the
gene set has a constant mean across groups, the third term
vanishes. However, when the conditional means of genes
are independent of S but pairwisely uncorrelated, the third
term is also negligible. It leads to a lack of power in detect-
ing differential means. Hence, we proposed the following
modified test statistic, which places more weight on the
mean perturbation:

H
V=35 M(ﬁ;{f ) +zszg}]. @
s=1

In which, Z; is the sample mean vector of Z in the s-th
slice. The null hypothesis is rejected if a sufficiently large
value of the test statistic is observed.

To evaluate the statistical significance, we perform a
permutation test by using the proposed statistics. The
phenotype labels of a given dataset are randomly per-
muted a thousand times and the SDR statistics are com-
puted for each permuted dataset. An empirical distribu-
tion of each SDR statistic is then used to estimate a p-value
with reference to the observed SDR statistic from the orig-
inal data. At a significance level «, Hy is rejected if the
p-value is not greater than .

When a gene set is found to have a significant associ-
ation with the phenotypic response, another question of
interest is to find the hub genes in the set that contribute
the most significance value. As per the definition in (1),
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T can be rearranged and expressed as a sum of p terms,
T= Zle T;, where

H p

Ti:zﬁs Z(6iyfls_0ij)2 , i=1,...,p.

s=1 j=1

The statistic 7; sums up those deviations with regard
to the i-th gene. As a result, marginal importance of the
i-th gene can be evaluated on the value Tj, or on the
fraction T;/T. A gene plays an essential role if the value
dominates that of most other genes in the set, or if the
fraction exceeds some threshold. The significance of each
individual gene can be also assessed using the previously
mentioned permutation samples for significance by apply-
ing T in GSA. However, the significance is self-contained,
not competitive, since it does not take other genes into
consideration at the same time.

In this article, the gene set analysis is formulated as
a specific problem in the sufficient dimension reduction
analysis. Therefore, the proposed methods are referred to
as the SDR methods. The proposed methods are applica-
ble to single or multiple responses. In addition, they allow
response variables to be binary, multi-class or continu-
ous phenotypes. In the next section, we present a variety
of simulation studies to compare the SDR methods with
other existing methods, with regard to the performance of
identification of differentially expressed gene sets.

Results

Simulation studies

In the following, the proposed methods are denoted by
SDR7 and SDRy, corresponding to 7 in (1) and V in (2),
respectively. The competing methods in the assessment
include: (1) GSEA by Subramanian et al. [5] with R pack-
age sigPathway; (2) Global test (GT) by Goeman et al.
with R package globaltest; (3) MVAT by Tsai and Chen
[11]; (4) PCA-based test (PCOT) by Kong et al. [10] with
R package pcot2; (5) GSNCA by Rahmatallah et al. [18];
(6) GSCA by Choi and Kendziorski [17]. The methods
GSEA, GT, MVAT and PCOT are well-known GSA meth-
ods developed for differential expression, while GSNCA
and GSCA are for differential coexpression. In the first
and second simulations, differentially coexpressed gene
sets with binary and three-class phenotype data are gen-
erated accordingly. Since PCOT and GSNCA are only
applicable to comparisons of two data samples, these two
methods are absent in the second simulation study. In the
last scenario, where differentially expressed genes with a
continuous phenotype are simulated, GSEA, GT, and our
SDRs are compared with the LCT by Dinu et al. [22] under
a linear model assumption, and NLCT by Wang et al.
[23] under a non-linear model assumption. The p-values
are based on 1,000 permutations. The simulation data are
replicated 1,000 times in each model for the empirical type
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I error rate and empirical power in the null and alternative
hypothesis, respectively.

Binary phenotypic response

Our first simulation design adopts the setting used by
Rahmatallah et al. [18] for two biological condition
groups. In each replicate, we generate two gene expression
matrices of equal sample size, n/2, from p-dimensional
multivariate normal distributions (MVN) N (0, ¥1) and
N(0, ¥3), respectively. Two different types of variance-
covariance matrices are selected. The first homogeneous
case assumes that all genes have an unit variance within
each group. In contrast, in the heterogeneous case the
variances of genes are randomly drawn from the uni-
form distribution U(1,5). With regard to the correlation
structure, the genes in the first group are uncorrelated.
Consequently, X; is a p x p identity matrix in the homo-
geneous case and a diagonal matrix in the heterogeneous
case. Under Hy, the two covariance matrices are identical,
i.e. X9 = Xj. In the alternative scenario, ¥ is completely
distinct from X;. In the diagonal, the variances of genes
in the second group are also randomly generated from
U(1,5), independent of the first group. In the off-diagonal,
the first yp genes are equi-correlated with correlation p
in the second group, where y, p € (0,1). In this simula-
tion, the proportion of truly coexpressed genes, y, is either
0.25, 0.5, 0.75, or 1; the inter-gene correlation p ranges
from 0.1 to 0.9 with an increment of 0.1. Three gene set
sizes are considered: relatively small (p = 20), moderate
(p = 100), and relatively large (p = 200). The total sample
sizes n are 20, 40 and 60, respectively.

Table 1 shows the empirical type I error rates of the
eight GSA methods at nominal level 0.05. Based on a sim-
ulation size of 1000, the standard error of the empirical
type I error rate is .0069 when the true type I error rate
is .05. Consequently, there is only 2.5 % of chance that the
empirical error rate exceeds 0.064(= .05 + (1.96)(.0069))
approximately. It can be seen that the empirical type
I error rates of GSEA are all greater than 0.064. This
method is too liberal. GSCA sometimes (4 times out of
18 scenarios) has an inflated type I error rate. In contrast,
our two methods and GSNCA are good at controling the
type I error rate in both homogeneous and heterogeneous
cases. From this table, the heterogeneity in variations of
genes does not affect the error rate of these methods.

The power curves, as functions of the inter-gene cor-
relation p, of the eight methods for total sample size
n = 40 at nominal level 0.05 are provided respectively
in Fig. 1 for the homogeneous case, and in Fig. 2 for the
heterogeneous case. Note that the difference between two
covariance matrices increases as p and y increase. Hence,
we expect to see a monotone trend in the power curves.
Looking at Figs. 1 and 2, we observe that GSEA, GT,
MVAT and PCOT, which were developed for detection
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T T T T
0.2 04 06 0.8

p

0.2 04 06 0.8

of a mean difference, have unsatisfactory performance in
terms of their ability to detect differential coexpression,
as expected. Among these four methods, GSEA seems to
be superior. However, it is important to note that its type
I error rate is severely inflated in Table 1. In the follow-
ing passage, we focus on the comparison of the four other
methods: GSNCA, GSCA, SDR7, and SDRy. When y is
low, say y = 0.25, the GSNCA method outperforms the
others in terms of statistical power. However, when the
proportion y is greater than 0.5, this method becomes
less powerful than the other three methods, and its power
curve is not monotone as the correlation deviates from
zero. When all genes are pairwisely correlated in the sec-
ond group, i.e. y = 1, the power decreases with inter-gene
correlation and becomes powerless for large p. On the
other hand, SDRr, SDRy, and GSCA have the expected
trends in power, increasing with y and p. SDR7 and GSCA
are comparable and dominate SDRy across different com-
binations of y and p. The test SDRy, places more emphasis
on mean difference and as a result suffers a power loss in
detecting differential coexpression.

In the heterogeneous case, Fig. 2 shows that the power
of SDR7 is much higher than the power of GSNCA and
GSCA because it successfully detects the deviation in vari-
ances. SDRy has comparable performance with SDRr
when the gene set size p is moderate to large. Again
when the proportion of truly coexpressed genes is large
(y = 0.75,1), the power of GSNCA does not increase with
the inter-gene correlation p. As a result, SDRy, SDRy,
GSCA, and GSNCA all demonstrate that they are good
at identifying differential correlation of genes within a
gene set. When a great proportion of genes are corre-
lated, GSNCA should be applied with caution. In actuality,
genes are likely to have differential variations in real gene
expression data. Both of the proposed SDR methods have
an advantage when dealing with differential variations of
genes.

Three-class phenotypic response

For each replicate, we generate three independent ran-
dom samples of p gene expressions with equal sam-
ple size, n/3, from p-dimensional multivariate normal
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distributions (MVN) N (0, 1), N(0, 33), and N(0, 3),
respectively. This simulates an experiment with three bio-
logical conditions. All the diagonal elements of the three
covariance matrices are randomly generated from U (1, 5).
Furthermore, X; is a diagonal matrix. Both ¥; and X3
have the following form of a block diagonal matrix of equal
size p/4:

Vi 0 0 0

|l owoo 3

Si=| o oo | i=23
00 0 Vg

Next, a mixed correlation structure between genes is
adopted in each block. Within each block, 100y percent
of genes are equi-correlated with correlation p; otherwise,
the genes are uncorrelated. In order to simulate differ-
entially coexpressed genes, correlated genes inside each
block are assigned to different positions for ¥, and Xs.
Specifically, in every block the first yp/4 genes are cor-
related in ¥,, while the last yp/4 genes are correlated
in X3.

Figure 3 provides the power curves of GSEA, GT,
MVAT, GSCA, SDR7 and SDRy for experiments with
total sample size n = 30 at selected combinations of
P, ¥. As in previous power studies, GSEA, GT, and MVAT
lack the power to detect differentially coexpressed gene
sets. The power of SDRy is relatively low for small p,
but it improves when the gene set size p increases. SDRr
outperforms other methods, even when the inter-gene
correlation is small.

Continuous phenotypic response
In this study, gene expressions are generated according to
the following model: Fori =1, ...,n,

i.i.d.
X; " MVN(0, =),

where the elements of the covariance matrix Xy =
(0ij)pxp are given by

1, 1<i=j=<p

P> 1 = i 7&/ §P1,
o i+ 1<i#)<2p,
0, otherwise.

Pij =
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That is, all p genes have unit variance, and the first 2p;
of them are pairwisely correlated. The first p; genes are
equi-correlated pairwisely with correlation p. The correla-
tion of the next p; genes decreases as the distance between
the two genes increases. Specifically, p = 0,0.3,0.6,0.9 are
selected.

For the null scenario, the continuous phenotype Y, being
independent of X, is randomly drawn from N(0,1). We
consider two alternative scenarios. The first is a traditional
normal linear regression model : Fori =1, ..., n, given x;,

Yilxi ~ N (xiTﬂ, 1) :

The second alternative model is a non-linear model: For
i=1,...,n givenx;

Yili ~ N (exp <xiTﬁ> , 1) .

In which, the regression coefficient vector is S

(/31, e ,Bp) T, Suppose that in both models the phenotype
Y depends on ten genes, five belong to the first group
of p1 genes, the other five belong to the next group of
p1 genes. We randomly select 5 of the first group of p;
genes, and then produce their corresponding g% from
N(v,|v|). Next, another 5 genes from the second group
of p1 genes are randomly selected, and their correspond-
ing By are generated from N(—v, |v]). Aside from the ten
selected genes, all other genes have zero regression coef-
ficients. Several vl ranging from O to 2 are considered.
We consider two equal slices for the SDR methods, i.e.
H=2,p1 =p;=05.

Table 2 reports the empirical type I error rates
of GSEA, GT, SDRr, SDRy and LCT at significance
level « 0.01,0.05 for (n,p,p1) (20,20, 5),

(30,100, 20), (50, 200, 40). Based on a simulation size of
1000, the 97.5 % limit of the empirical type I error rate is
.016 and .064 respectively, which corresponds to true error
rate .01 and .05. Again GSEA is found to be too liberal
in terms of a poor control of type I error rate. In con-
trast, GT, LCT, SDRy, SDRr preserve type I error rates,
while SDR7 can have a slightly inflated type I error rate
for independent cases.

Figures 4 and 5 illustrate the power curves of the
methods being investigated under linear and non-linear
models, respectively, for n = 20,p = 100, p; 20,
and ¢ = 0.05. Since LCT was developed under a lin-
ear model assumption, it is not suitable for comparisons
under non-linear models. Hence, in the non-linear sce-
nario, we consider NLCT, which is a non-linear version of
an extended LCT, as an alternative to LCT in the compar-
ison. Figure 4 shows that SDRr and SDRy are dominated
by GSEA, GT and LCT in the linear model. The three
dominating methods evaluate the significance of a gene
set by its linear correlation with the phenotype. Hence
they demonstrate excellent performance in a linear model,
which has a strong link to a high linear correlation. The
proposed SDR methods focus on the information of the
conditional distribution of phenotype given a set of genes.
The association under investigation is not limited to the
linear correlation. However, as stated previously, account-
ing for a broader class of alternatives results in a loss of
power with respect to local alternatives. Among the two
SDRs, SDRy performs better, because its extra attention
on the mean increases the power to detect a deviation in
the pattern.

From Fig. 5, it can be seen that SDRy has substan-
tially higher power than other methods in the non-linear
model with NCLT coming in second. SDR7 and GT are
dominated by SDRy and NCLT. SDRr has acceptable
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Table 2 Empirical type | error rate of five GSA tests at & = 0.05 for data with a continuous phenotype
o =001 a =005

(n.p,p1) P 00 03 06 0.9 0.0 03 06 09

(20,20,5) GSEA 0.030 0.040 0.033 0.053 0.126 0.154 0.164 0.187
GT 0.011 0.008 0.010 0.009 0.049 0.039 0.043 0.053
LCT 0.010 0.008 0.014 0.008 0.047 0.047 0.066 0.037
SDRy 0.009 0.008 0.013 0.017 0.048 0.044 0.052 0.046
SDRr 0.014 0.011 0.010 0.017 0.055 0.053 0.049 0.055

(30,100,20) GSEA 0.021 0.036 0.035 0.057 0.110 0.147 0.178 0.188
GT 0.010 0.013 0.005 0.009 0.053 0.044 0.050 0.067
LCT 0.013 0.010 0.008 0.017 0.060 0.046 0.047 0.052
SDRy 0.009 0.015 0.010 0.012 0.043 0.047 0.045 0.042
SDRr 0.008 0.014 0.016 0.009 0.048 0.052 0.051 0.042

(50,200,40) GSEA 0.018 0.047 0.050 0.058 0.096 0.159 0.184 0.197
GT 0.004 0.015 0.007 0.008 0.038 0.050 0.061 0.054
LCT 0.012 0.012 0.014 0.013 0.056 0.052 0.060 0.042
SDRy 0.010 0.008 0.007 0.008 0.059 0.039 0.045 0.048
SDRr 0.018 0.008 0.009 0.008 0.072 0.050 0.044 0.050

performance only at p = .6. GSEA still suffers from
a poor control of type I error rate in the continuous
case.

Analysis of the p53 dataset

Next we investigate the performance of the GSA meth-
ods with respect to the p53 microarray dataset. The p53
cancer data set is frequently used for GSA illustrations
(e.g. [5, 29]) and publicly available at the GSEA website
(http://www.broad.mit.edu/gsea/datasets.jsp). The p53
dataset seeks to identify targets of the transcription factor
p53 from 10,100 gene expression profiles in the NCI-60
collection of cancer cell lines. The mutation status of the
p53 gene has been reported for 50 of the NCI-60 cell lines
with 17 normal and 33 mutation samples. The p53 protein
is a transcription factor that plays a major role in sup-
pressing cancer. We perform GSA comparisons on the C2
curated gene sets in the Molecular Signatures Database
(MSigDB) on the GSEA website. The MSigDB contains
over 6000 gene sets of a variety of functional types. We
first discard genes in C2 pathways which do not exist in
the p53 dataset and only keep gene sets of sizes between
10 and 500, resulting in 2533 gene sets to be considered in
this study.

We compare the p-values obtained via th eight meth-
ods. Table 3 shows the number of differentially expressed
gene sets identified at varying significance levels. Look-
ing at the table, MVAT, SDRy, GSEA find most significant
pathways while GSNCA and GSCA find the least. Among

the two proposed tests, using SDRy leads to more discov-
eries than using SDRt. These findings imply that more
gene sets express differentially in the mean, rather than
in the correlation structure, across the two distinct p53-
mutation status groups. The Venn diagrams in Fig. 6
show the common pathways detected by each of SDRy,
GSNCA, GSCA, and the other four methods: GSEA, GT,
MVAT and PCOT, at significance level « = 0.01. It
shows that SDRy and the other four methods find more
significant gene sets in common. However, the findings
of GSNCA and GSCA rarely overlap with the findings
of the other four methods. Using one of the methods
alone may miss the deviation from other angles in gene
expressions.

Among the C2 curated gene sets, we highlight a par-
ticular gene set associated with DNA damage, AMUND-
SON_DNA_DAMAGE_RESPONSE_TP53. This gene set
is involved in the apoptosis and DNA damage response
to a robust p53-dependent pattern of induction. Interest-
ingly, the gene set was identified as a highly differentially
expressed gene set by SDRy with p-value < 0.001, but was
not identified as significant by either GSCA (p-value =
0.60) or GSNCA (p-value = 0.58). To focus on the 15
genes in this gene set, a Pearson correlation matrix is used
to investigate the dependence structure between genes for
normal and mutation groups. Figure 7 displays the image
plot of the reordered correlation matrix using hierarchical
clustering to visualize the degree of association between
genes. According to the plot, there is a clear difference
in the correlation structure between two conditions. This
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Fig. 4 Power comparison (n = 20, p = 100, and p; = 20) of SDRs, LCT, GT, GSEA for linear relationship between phenotype and gene set

indicates that the SDRy method is able to identify more
enriched gene sets with differential coexpression for fur-
ther investigation.

Analysis of the GSE6956 dataset

In the second real example, the gene expression profiles
of primary prostate tumors from 33 African-American
patients using the Affymetrix microarray platform are
analyzed, see Wallace et al. [30]. Each profile con-
tains the expression levels of 12,500 genes. We down-
loaded the gene expression data from the NCBI GEO
database (Edgar et al. [31]) with accession ID GSE6956.
Recently, a thorough review on relevant literatures pub-
lished from 1991 to 2012 on PubMed by Allott, Masko and
Freedland [32] concludes the existence of a link between
obesity and aggressive prostate cancer. It is known that
Leptin, a hormone produced by adipose cells, plays an
important role in regulating appetite and body weight. In
an earlier article, Freedland and Aronson [33] mentioned
that leptin is a potential prognostic marker for prostate

cancer patients because they found that increased leptin
levels in plasma or serum are associated with the develop-
ment of prostate cancer. Specifically, the expression level
of the human leptin gene (LEP) was used as a continuous-
type phenotype, see Dinu et al. [22]. The goal of this
analysis is to identify pathways that are significantly asso-
ciated with LEP for prostate cancer patients. We perform
GSA comparisons on the C2 curated gene sets in the
Molecular Signatures Database (MSigDB) on the GSEA
website. The MSigDB contains over 6000 gene sets of a
variety of functional types. We first discard genes in C2
pathways which do not exist in the dataset and only keep
gene sets of sizes between 10 and 500, resulting in 2,595
gene sets to be considered in this study. The proposed
SDRs methods consider two equal slices.

Table 4 shows the number of differentially expressed
gene sets identified by each method at significance levels
0.01, 0.05, and 0.10. Looking at the table, SDRy, SDR7,
and GSEA find more significant pathways. Although
NLCT claims that it is capable of detecting non-linear
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Fig. 5 Power comparison (n = 20, p = 100, and p; = 20) of SDRs, NLCT, GT, GSEA for nonlinear relationship between phenotype and gene set

associations, it identifies fewer significant pathways in this
example. The Venn diagrams in Fig. 8 show the common
pathways detected by the five methods at significance level
a = 0.01. Except for SDRr and SDRy, which identify
over 50% common significant gene sets, there are few
overlapping gene sets of pairwise GSA methods.

Discussion

Since Subramanian et al. [5] proposed the concept of
gene set enrichment analysis (GSEA), many self-contained
GSA have been proposed to identify enriched gene sets
or pathways. Most previous studies focus on testing the

Table 3 Number of differentially expressed gene sets identified
by eight GSA methods for the p53 dataset

P—value SDR; SDRy GSEA GT  MVAT PCOT GSNCA GSCA
<0001 10 40 12 15 44 8 5 2
<001 45 107 100 64 186 36 28 18

< 0.05 199 329 413 226 627 143 159 100

enrichment of gene sets with a differential mean expres-
sion or differential coexpression. In this paper, we propose
two self-contained tests for gene set analysis by adopting
the sufficient dimension reduction paradigm. The infor-
mation that the proposed SDR tests acquire include the
deviations in mean, variation and correlation structure.
As a consequence, these methods are more flexible in
terms of being able to detect a wide variety of alternative
scenarios.

Through numerical studies, we compare the suitability
of proposed SDR methods with that of other existing GSA
methods to test differential expression with a continuous
phenotype and also to test differential coexpression with
a categorical phenotype. Overall the SDR methods yield
satisfactory performance. More specifically, SDR excels
at detecting differential variation and/or coexpression
while SDRy is recommended for differentially expressed
gene sets. However, as a trade-off, their statistical pow-
ers may be dominated locally by other methods devel-
oped under specific alternatives. Another shortcoming is
the increased computational burden, because the tests
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P53 cancer dataset at the 0.01 significance level

Fig. 6 Venn diagrams of significant gene sets for each of the three GSA methods, SDRy, GSNCA, GSCA, and the other four GSA methods using the

involve calculating the group-wise or slice-wise covari-
ance matrices.

In most gene expression data sets, the number of sub-
jects n is much fewer than the number of genes p. It leads
to a singular sample covariance matrix of X. Consequently,
data standardization becomes difficult. One solution is
to apply another covariance matrix estimation, which is
guaranteed to always be non-singular. For example, the
shrinkage covariance matrix proposed by Schifer and
Strimmer [34]. Alternatively, since the aim here is to deter-
mine the structural dimension, one can simply skip the
standardization step. Consider the following modified test
statistics,

H 2
T — Zf?s tr (EX\S — Ex) ,

Voo ip [rf(s32 - 20+ -0 & -7,

where 3 X|s = (Gijis) is the sample covariance matrix of X
in the s-th slice, s = 1....,H; and f)x = (6;)) is the the
sample covariance matrix of X calculated from the pooled
sample.

The proposed methods are applicable to single, multi-
ple, categorical, and continuous phenotypes. With a con-
tinuous response, the slicing/discretization is employed
to reduce the sparsity, and this may result in a loss of

statistical power. Li [24] indicated that the slice num-
ber may affect the asymptotic property of the estimate,
although in their simulation study the effect is not signif-
icant. Becker and Gather [35] showed that different slice
numbers produce different estimates for the structural
dimension. They recommend a reasonable slice number,
about 0.1n. We have conducted a simulation study to
investigate the effect of slice numbers. Simulation set-
ting and results are provided in detail in the Additional
file 1. We find that SDRy is robust with respect to the
slice number, while SDR7 is not. When employing SDR7,
researchers are advised to use various slice numbers. With
limited samples, as is the case in a real genomic study,
using fewer slice number yields better performance.

In the real examples, different methods very often find
different significant gene sets. Similar findings can be seen
in Wu and Lin [36]. This reflects the fact that each method
is constructed under different alternative hypothesis and
uses different approaches to search for significant gene
sets. Even though sufficient dimension reduction analysis
aims to gain the most thorough information about a
regression model. However, the space estimated by devel-
oped techniques, such as SIR and SAVE, is shown only as a
subspace of the central subspace. This indicates that some
informative part of the central subspace may be still miss-
ing, and it also explains why the proposed methods are not
able to provide an exhaustive list of significant pathways
in the examples.
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Table 4 Number of differentially expressed gene sets identified

by five GSA methods for the GSE6956 dataset

P—value SDRr SDRy GSEA GT NLCT
<001 48 60 46 6 18
<005 211 249 235 45 104
<0.10 419 494 455 94 259

Conclusions

We have introduced two new GSA methods based on
the concept of sufficient dimension reduction, which has
the ability to capture sufficient and essential structural
information in gene sets. The proposed SDR meth-
ods provide increased statistical power and can accom-
modate both categorical and continuous phenotypes




Hsueh and Tsai BMC Bioinformatics (2016) 17:74

Page 14 of 15

SDR_V

SDR_T

Fig. 8 Venn diagrams of significant gene sets for five GSA methods using the GSE6956 dataset at the 0.01 significance level

in order to assess the significance of a given gene
set.
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