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Rib fracture is the most common thoracic clinical trauma. Most patients have multiple different types of rib fracture regions, so
accurate and rapid identification of all trauma regions is crucial for the treatment of rib fracture patients. In this study, a two-stage
rib fracture recognition model based on nnU-Net is proposed. First, a deep learning segmentation model is trained to generate
candidate rib fracture regions, and then, a deep learning classification model is trained in the second stage to classify the
segmented local fracture regions according to the candidate fracture regions generated in the first stage to determine whether they
are fractures or not. The results show that the two-stage deep learning model proposed in this study improves the accuracy of rib
fracture recognition and reduces the false-positive and false-negative rates of rib fracture detection, which can better assist doctors

in fracture region recognition.

1. Introduction

Rib fracture is a common clinical trauma of the chest, specif-
ically a complete or partial break in the continuity of the rib
structure. Rib fractures can be caused by a variety of reasons,
such as falls, traffic accidents, and fights. They are more
common not only for children and the elderly but also for
young and middle-aged people [1]. Most patients with rib
fractures have more than one fracture area, so it is important to
detect all areas of trauma in a short time for follow-up treatment
[2]. Computed tomography (CT) is an important medical aid
used to diagnose rib fractures in the chest [3]. However, each
patient’s chest CT image consists of hundreds of slices [4], which
is time-consuming and labor-intensive to manually review. It
not only increases the workload of the orthopedic medical staff
but also easily leads to visual and psychological fatigue, which
will increase the probability of misdiagnosis or even missed
diagnosis.

Existing systems for the diagnosis of rib fractures can be
broadly classified into two categories [5]. The first category is

traditional fracture recognition models, which are used to
obtain suspected fracture areas and assist the physician in di-
agnosis [6]. The second type is fracture recognition models
based on deep learning [7]. The following are characteristics that
exist in the current rib fracture diagnosis using deep learning: (1)
the CT image-based rib fracture dataset has samples with
doubtful annotation [8], and different doctors have different
annotations for the same case [9]. The doubtful annotation is a
great challenge for deep learning models. (2) In general, CT
images of fractures are 3D medical images. Deep learning
models dealing with 3D data usually have problems such as
occupying large memory, slow computation speed, and being
prone to overfitting [10]. (3) Deep learning-based fracture re-
gion detection models usually suffer from high false-negative
and false-positive rates.

To solve the above problems, we propose a rib fracture
region recognition model based on the nnU-Net [11] seg-
mentation network and DenseNet [12] classification net-
work, which consists of two stages of training. In the first
stage, segmentation of rib fracture regions is completed to
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generate candidates of fracture regions. At the second stage,
the secondary judgment of candidate fracture regions is
completed. DenseNet classification network is mainly per-
formed to remove false-positive fracture regions. The ex-
periments show that the new proposed model improves the
accuracy of rib fracture recognition by achieving a 95%
recognition rate for rib fractures and reducing the false-
positive and false-negative rates for rib fracture detection to
5%. The rib fracture recognition algorithm proposed in this
study can well assist physicians in the recognition of all
fracture regions.

2. Related Work

In recent years, the rapid development of deep learning has
made a great contribution to medical image-assisted diagnosis.
Many researchers have applied deep learning techniques to
fracture-assisted diagnosis. It has been proven that the use of
fracture-assisted diagnosis systems can improve the accuracy of
the doctor’s recognition of fractures and effectively save time.
For example, Tourassi et al. applied deep convolutional net-
works (ConvNets) to automatically detect posterior spine
fractures. They used the multi-atlantoaxial fusion technique to
segment spine and its posterior vertebrae in spine CT and
predict the probability of fracture at the image edges using
ConvNets (three orthogonal patches in axial, coronal, and
sagittal planes) in a 2.5D manner [13]. This method is effective
in improving the sensitivity of posterior spine fracture identi-
fication. Olczak et al. selected five openly available deep learning
networks and trained them to determine fracture, lateral body,
and examination views for 256,000 wrist, hand, and ankle
x-rays. The experimental results showed that all networks
achieved over 90% accuracy in identifying lateral body parts and
examination views [14]. Lindsey et al. developed a deep con-
volutional neural network (DCNN) to assist emergency med-
icine clinicians in reading x-rays of fracture patients, and
experimental results showed that the average misinterpretation
rate of emergency medicine clinicians was relatively reduced by
47% with the assistance of this system [7]. Raghavendra et al.
proposed an automated technique for thoracolumbar fracture
detection based on convolutional neural networks (CNNs) [15],
which was able to perform thoracolumbar fracture detection
without segmenting the vertebral body, and its detection ac-
curacy was able to reach 99.1% [16]. Takaaki et al. experi-
mentally compared the intertrochanteric fracture diagnostic
performance of convolutional neural networks and orthopedic
surgeons through the radiograph of proximal femoral [17]. The
study showed that convolutional neural networks were three
percentage points more accurate than orthopedic surgeons in
detecting intertrochanteric fractures. Pranata et al. evaluated the
performance of the residual network (ResNet) and visual ge-
ometry group (VGG) for heel fracture detection and used the
classification results of the better-performing ResNet as input to
the SURF algorithm for detecting fracture location and type
[18], which validated the feasibility of deep learning neural
networks for automatic heel fracture detection.

In previous studies, numerous researchers have also
applied deep learning to the detection of rib fractures. To
effectively detect and segment rib fracture regions, Jin et al.
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proposed a deep learning model named FracNet [19], which
was based on the classical segmentation network-3D UNet,
improved by a sampling strategy during training, and did
not rely on the extraction of the rib centerline. This method
achieved a detection sensitivity of 92.9% and reduced the
time required for clinical testing. Weikert et al. evaluated the
diagnostic performance of automatic detection of acute and
chronic rib fractures using a deep learning algorithm for
whole-body trauma CT [20]. The algorithm consisted of a
ResNet-based region proposal phase followed by a fast re-
gion-based CNN, which had a final sensitivity of 87.4% and a
specificity of 91.5% for rib fracture detection. Zhou et al.
evaluated the performance of a two-dimensional convolu-
tional neural network (CNN) model to automatically detect
and classify rib fractures and was able to output a structured
report [21]. After using this rib fracture automatic detection
system to aid clinical trials, it was found that the diagnostic
accuracy of radiologists increased from 80.3% to 91.1%,
sensitivity increased from 62.4% to 86.3%, and significantly
reduced the time required for diagnosis. Meng et al. pro-
posed a heterogeneous neural network consisting of a
cascaded feature pyramid network and a classification
network for rib fracture detection and classification. They
compared the effectiveness of CT images with and without a
deep learning model for rib fracture detection and classi-
fication [22]. The experimental results show that, with the
aid of the deep learning model, clinicians can effectively
improve the recall rate and classification accuracy of CT
images of rib fractures. Castro-Zunti et al. evaluated the
performance of InceptionV3 [23], ResNet50 [24], Mobile-
NetV2 [25], and VGG16 [26] models when classifying acute,
aged, and nonfractured ribs in axial CT images [27]. The
experimental results showed that the model consisting of the
first seven blocks of InceptionV3 was more accurate and
faster and achieved a 5-fold cross-validated accuracy and
macrosensitivity of 96% and 94%, respectively. These pre-
liminary works provide us with feasible methods for
studying rib fracture recognition, but most of the studies
summarized above were conducted on a two-dimensional
basis, losing three-dimensional information. Therefore, we
propose an algorithm for automatic rib fracture recognition
with nnU-Net and DenseNet in this study.

3. Materials and Methods

3.1. Rib Fracture Dataset. The experimental data were the
publicly available RibFrac Dataset from the MICCAI 2020
RibFrac Challenge: Rib Fracture Detection and Classifica-
tion competition, which was published by Liang Jin et al., the
authors of the FracNet network structure. The data can be
accessed at https://ribfrac.grand-challenge.org/dataset/. The
competition dataset contains a total of 420 samples from the
training set, 80 samples from the validation set, and 160
samples from the test set. The data are 3D rib CT images
annotated by a number of radiologists with different years of
experience in the interpretation of chest CT. An example
image of a 3D rib CT data is shown in Figure 1. The lower left
view shows the current 3D view, and the remaining three
views show the results of slicing the data in the axial, coronal,
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and sagittal planes, respectively. The blue crosshairs rep-
resent the current slice position, and the red area is the rib
fracture region that was manually marked by physicians.

3.2. Dataset Preprocessing. Considering that the test set
samples that were not annotated could not be used for
calculating prediction accuracy, 160 test set samples were
removed from this experiment. Due to the limitation of the
experimental equipment and GPU computing power, it was
impossible to use the whole training set for training. So, we
chose 200 training samples with 1,910 different fracture
regions, which can reflect the proportional characteristics of
the original dataset, as the training set data. The validation
set of the dataset contains no rib fracture images. To reduce
the model validation time, this experiment removes no rib
fracture images and uses the 3D CT images of 60 rib fractures
in the validation set. Table 1 shows the statistics of rib
fracture regions.

From Table 1, after integrating the fracture labels, the
ratio of the number of fracture regions in the training and
validation sets is approximately 8 : 2, which is in line with the
common ratio of data in the training and validation sets.

4. Model Description

The structure of our model includes the rib fracture region
segmentation and the fracture region false-positive ex-
clusion. The first stage used nnU-Net as the fracture re-
gion segmentation model, and the second stage used
DenseNet as the fracture classification model. Since the
second stage of the fracture region false-positive exclusion
experiment was based on the first stage of the fracture
region segmentation experiment, the network structure of
the two-stage rib fracture automatic recognition model
based on deep learning proposed in this study is shown in
Figure 2.

4.1. Stagel: Regional Segmentation of Rib Fractures. This
stage mainly completes the segmentation of the rib fracture
region and generates the fracture region to be candidates.
The main steps are as follows: a series of data preprocessing
is taken on the 3D CT rib fracture training set. Then, nnU-
Net is selected as the segmentation model and the processed
training set is fed into this model for segmentation model
training. After training, the rib images in the validation set
are predicted to be segmented to generate the fracture re-
gions to be candidates, which facilitate further determina-
tion of false positives in the segmented regions.

4.1.1. Preprocessing

(a) Category label processing: the fracture region of this
competition dataset was labeled using instance
segmentation, with the original label containing five
values. 0 indicates the background region, 1-4
represents different types of rib fractures, respec-
tively, and —1 denotes that this region is a rib
fracture. Since the images are blurred and

ambiguous, it makes rib fracture difficult to be di-
agnosed and no specific category can be given. In
practice, all labels 1-4 and -1 are combined into one
category to increase the number of images of rib
fracture regions, reducing the influence of suspected
fracture regions in the sample on the segmentation
results and increasing the accuracy of rib fracture
segmentation. Therefore, this experiment is binary
fracture region segmentation regardless of the cat-
egory of fracture.

(b) Since there are inconsistencies in the resolution of
the 3D CT fracture images in the training set, they
need to be adjusted to a uniform resolution, e.g.,
I mm x 1 mm X 1 mm voxel size, which varies with
the training set. The result is obtained by calculating
the average voxel size of the training set. After de-
termining the voxel size, each sample in the training
set is resampled to obtain the new image size with the
following equation.

size = spacing x voxel. (1)

In equation (1), size is the new 3D image size,
spacing is the calculated voxel size, and voxel is the
3D pixel value.

(c) By counting the range of HU (Hounsfield unit)
values for pixels within the mask of the entire
dataset, a range of HU values in the percentage range
of [0.5, 99.5] was cropped and then normalized using
the z-score method. In particular, each voxel value of
each 3D CT sample is normalized to a mean of 0 so
that the processed 3D CT data conforms to a stan-
dard normal distribution, i.e., with a mean of 0 and a
standard deviation of 1. Such processing facilitates
model training and model convergence, improving
the training speed of the model with the following
equation:

_ X —mean

Y std 2)

In equation (2), y is the normalized data, mean
denotes the mean of the 3D CT sample, and std
denotes the variance of the 3D CT sample.

4.1.2. Loss Function. The Dice similarity coefficient is an
important indicator for evaluating the degree of overlap
between the two samples and the effectiveness of the seg-
mentation, so the segmentation loss function of the model
also uses Dice as the loss function. The formula for the Dice
loss function is as follows:

2|PNT|

=1 -
[P +T]

dice (3)
where P and T'are the predicted segmentation mask and the
true segmentation annotation, respectively.

When using Dice loss, generally positive samples for
small targets will produce severe oscillations. Because in the

case of only foreground and background, once some of the
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FiGure 1: Example of a 3D rib CT image.
TaBLE 1: Regional statistics for rib fractures.
Dataset Sample size Number of fracture areas
Training set 200 1910
Validation set 60 435
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FIGURE 2: The network structure model proposed in this study. It consists of nnU-Net and DenseNet.

pixels in the small target are incorrectly predicted, it will lead
to a drastic change in the loss value and the gradient. The loss
function is improved, and the final loss function is shown as
follows:

(4)

L= Ldice + Lce + Lcontour’

where L, denotes the error loss arising from binary cross-
entropy. L .. denotes the error loss in the 3D profile of
the fracture, which is formulated as follows:

Lcontour = J Q|VH£ ((P)l’ (5)
where Q) represents the region to be segmented that belongs to
the whole sample, ¢ represents the level set function, the zero-
level curve represents the segmentation boundary, and H,

represents the smoothed approximation of the Heaviside
function.

4.1.3. Model Architecture. In this phase, the nnU-Net is used
as the experimental framework. It is a robust adaptive
framework based on 2D Unet [28] and 3D Unet [29] that
adapts to any medical image dataset and performs different
data preprocessing for different datasets. The framework
focuses on the following: preprocessing (resampling and
normalization), training (loss, optimizer settings, and data
augmentation), inference (patch-based strategies, test-time-
augmentation integration, and model integration), and
postprocessing (e.g., enhanced single-connected domains),
while making substantial modifications to the original Unet
structure and not adopting new structures such as residual
connectivity, dense connectivity, and attention mechanisms.
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The framework has three basic versions of the Unet
model: 2D Unet, 3D Unet, and 3D cascade Unet. The first
two models are 2D Unet and 3D Unet. The third model is a
cascaded Unet structure, where the first stage performs
coarse segmentation of downsampled low-resolution im-
ages, and the second stage combines the results of the first
stage for fine-tuning. 3D Unet is used for both stages.
Compared with the original Unet, the Unet model in nnU-
Net replaces ReLU with leaky ReLU and replaces Batch
Norm with Instance Norm.

4.14. Postprocessing. After training the segmentation
model, the 3D CT images are predicted by means of patches.
There will be overlap regions in the sliding prediction, and
they will be predicted several times. In this study, we take the
maximum value to fuse the prediction results multiple times,
as shown in the following equation:

P, (voxel) = max (P, P, ..., Py), (6)

where P, (voxel) represents the segmentation prediction for
each voxel and P represents the i-th segmentation pre-
diction for that voxel.

4.2. Stage2: Fracture Area False-Positive Exclusion. In the
first stage of the segmentation network, because of the
restricted size of the network structure and the insufficient
abundance of random negative samples, the variability of
morphological features of these false-positive regions and
the morphological features of the fracture are not suffi-
ciently learned. A false-positive exclusion network needs to
be designed for targeted learning to reduce the false-pos-
itive rate. Therefore, the second stage completes the false-
positive exclusion of the fracture area and makes a sec-
ondary judgment of the predicted fracture area from the
first stage.

The main steps are shown as follows. First, a series of
data preprocessing is performed on candidate fracture
regions produced by segmentation in the first stage.
Subsequently, the processed data are fed into the classi-
fication model for training a classification model. Even-
tually, local fracture regions in the validation set are
predicted and category labels of the regions are output,
with 0 indicating no fracture and 1 indicating a fracture.
In addition, the input data for the second stage were
preprocessed in the same way as the first stage, and the 3D
DenseNet was used as the fracture classification model for
the experiments.

4.2.1. Model Inputs. To make the classification model to
pay more attention to the contextual information around
the fracture region and improve the accuracy of fracture
classification, when preprocessing for clipping local
fracture regions, three different sizes of local fracture
regions are clipped in turn, e.g., 48 x 48 x 48, 64 x 64 x 64,
and 80 x 80 x 80. They can also be adjusted according to
the actual fracture region size. After cropping local
fracture regions of different sizes, three different sizes of

fracture images were used as input to train the classifi-
cation models for each of the three different input sizes.

4.2.2. Postprocessing of Classified Probability Values.
After separately training the classification model for the
three different input sizes, the final classification results are
performed using a weighted average, as shown in the fol-
lowing equation:

P,=d4 %P, +AyxPy+As %P, (7)

where P, represents the final classification probability
value of a 3D CT image, A, denotes the classification
accuracy of the classification model on the validation set
under the first size, P, represents the probability value of
the classification model on the validation set under the
first size, A, denotes the classification accuracy under the
second size, P, represents the probability value under the
second size, A, denotes the classification accuracy under
the third size, and P_; represents the probability value
under the third size. The given equation is used to cal-
culate whether a fracture is present in the input local 3D
CT image.

4.3. Model Evaluation and Parameter Settings

4.3.1. Evaluation Metrics. In this study, the diagnostic
model evaluation metrics use Dice similarity coefficient
(Dice), intersection over union (IoU), average symmetric
surface distance (ASSD), and Hausdorff distance (HD).

Dice is a similarity measure used to calculate the sim-
ilarity of two samples. The value of Dice is in the range [0-1],
1 for the best segmentation result and 0 for the worst. The
formula is as follows:

2|PAT|

Dice(P,T) = Pl +[TT

(8)

where P is the predicted segmentation result, and T is the
labeled segmentation result. The above equation is also
equivalent to the following equation:

2TP

Dice(P,T) = — -~
ice(P.T) = 55 T 2TP + IN

(9)

IoU is also used to calculate the similarity of two samples.
It equals to the overlap of the two regions divided by the
pooled portion of the two regions, with the following
formula:

TP
IoU=—Fr— 10
°" TFP+ TP+ EN (1
ASSD is the average surface distance, which is an
evaluation metric in the medical image segmentation
competition CHAOS. ASSD is given by the following
equation:



ASSD (A, B) =

where S(A) denotes the surface voxel of set A, S(B) denotes
the surface voxel of set B, and a and b denote the voxels in
sets A and B, respectively. | -|| is the distance paradigm
between the point sets A and B, which generally is the
Euclidean distance.

The Dice is more sensitive to the internal filling of the
mask, while the HD is more sensitive to the segmented
boundary. HD is a measure describing the degree of simi-
larity between two sets of points. It is also a definition of the
distance between two sets of points. In contrast to ASSD, HD
is also known as the maximum surface distance. HD between
A= {al,...,ap} and B = {bl,...,bp} is defined as

H(A,B) = max(max{mina - b}, max{minb - a}). (12)
acA | beB beB ( acA

4.3.2. Parameter Settings. After data preprocessing, the
input data size (patch size column), the training batch size,
the number of pooling layers, the resolution of the input
image, and the average image size for 2D Unet and 3D Unet
are shown in Table 2.

5. Results

5.1. Quantitative Indicator Assessment Results. Among the
above metrics, larger is better for both Dice and IoU, and
smaller is better for ASSD and HD-95, indicating that the
predicted segmentation results are very close to the true
segmentation results. HD-95 denotes the value of the
Hausdorff distance multiplied by 0.95, with the aim of
eliminating the effect of a very small subset of the outliers.
The results can be seen from Table 3:

(1) The 2D Unet segmentation model trained with 2D
fracture images as input has the worst performance
in all indicators, because the 2D image segmenta-
tion does not consider the three-dimensional
structure of 3D fractures and lacks the contextual
information of the Z-axis expression of the fracture
region.

(2) Since 3D_lowres Unet has a small image resolution
compared to 3D_fullres Unet during training, the
input image size after sampling is smaller. It results
in a loss of some detailed information in the 3D
image, so it is lower than 3D_fullres Unet in all
indexes, 0.82 lower in Dice, 1.21 lower in IoU,
9.21 mm higher in ASSD, and 14.9mm higher in
HD-95. Despite the loss of some information, the 3D
Unet segmentation model learns contextual and
global information about the fracture region. Its
result is better than 2D Unet, with 10.93 higher in
Dice, 11.06 higher in IoU, 10.39 mm lower in ASSD,
and 31.41 mm lower in HD-95.

TV Ry min a-b+
IS(A)| +S(B)| <a€S(A) beS(B)
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a€eS(A)

min b—a), (11)

beS(B)

(3) We use 3D_lowres Unet as a first stage in the 3D
cascade Unet and fine-tune it with 3D_fullres Unet,
which is better than 3D_lowres Unet in all metrics,
with 0.27 higher in Dice and 0.43 higher in IoU.
However, it decreases in ASSD and HD-95. Because
some detailed information is lost in the first stage, in
the second stage, the predictions from the first stage
are preprocessed again. The two preprocessing
processes make the loss of detail information in the
3D fracture region more severe. Moreover, ASSD
and HD-95 indicators belong to the distance cate-
gory and are extremely sensitive to image resolution,
resulting in a slightly worse result for ASSD and HD-
95. But Dice and IoU work well.

The result in Table 3 shows that using high-fractional
images as input to the segmentation model gives optimal
segmentation results. Low-fractional images do not achieve
optimal segmentation of the fracture region due to the loss of
detail.

5.2. Model Loss Curves. Figure 3 shows the training set loss
curve, the validation set loss curve, and the trained Dice
value curve for each Unet model. The following results can
be shown in Figure 3:

(1) The training loss and validation loss of each Unet
model both gradually decrease, indicating that each
Unet model slowly converges. The training loss and
validation loss of 3D_fullres Unet are the lowest, at
around 0.28 and 0.35, respectively.

(2) In terms of the training Dice values, it is similar to
the results calculated for the quantitative metrics. It
also shows that 3D_fullres Unet and 3D cascade
Unet have the highest training Dice values, both
around 0.75, and 2D Unet has the lowest Dice values,
only around 0.68.

(3) In the training process of the two-stage 3D cascade
Unet, training loss can be seen to significantly drop,
while the validation loss shows fluctuations. It is
because the two-stage 3D Unet loses some detailed
information, which makes the model to learn limited
features, and the model gradually shows an over-
fitting situation.

From the above analysis, 3D Unet performs best in rib
fracture region segmentation. Its training results are fed
into a false-positive exclusion model for the fracture
region in the second phase of the experiment. Its effec-
tiveness in validating the identification of rib fracture
regions on the validation set achieved a 95% identifica-
tion rate and only a 5% false-positive rate. This result
indicates that this study can better assist physicians in the
identification of rib fracture regions.
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TaBLE 2: Input parameter settings.
Model Patch size Batch size Pooling layers Spacing/mm Median size
2D Unet 512 x 512 12 [7, 7] 1.25x0.74x0.74 328 x 512 x 512
3D_lowres Unet 96 x 160 x 160 2 [4, 5, 5] 2.58 x1.53x1.53 159 x 248 x 248
3D_fullres Unet 96 x 160 x 160 2 [4, 5, 5] 1.25%x0.74x0.74 328 x 512 x512
TaBLE 3: Assessment results of different Unet models with rib fracture segmentation.
Unet Dice 10U ASSD/mm HD-95/mm
2D 51.05 36.54 35.00 124.42
3D-fuller 62.80 48.81 11.40 78.11
3D-lower 61.98 47.60 20.61 93.01
3D-cascade 62.25 48.03 22.13 100.61
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6. Discussion

We propose a two-stage rib fracture automatic recognition
algorithm, which is mainly used to rapidly identify multiple
rib fracture lesions in patients with rib fractures, which assists
clinicians to diagnose multiple rib fractures from CT scans. As
a deep learning-assisted diagnostic system, it was trained on a
training set of 1,910 rib fracture regions from 200 patients and
tested on a test set of 435 rib fracture regions from 60 patients.
It achieved a 5% false-positive rate and 95% recognition rate
in the final rib fracture detection and significantly reduced the
time required for clinical judgment.

There are two main reasons for these results. First, we
used nnU-Net as the network framework for training in
the first phase of rib fracture region segmentation. The
nnU-Net is proposed as a framework for automatic ad-
aptation to any new dataset. It has a good segmentation
result for the RibFrac dataset. Furthermore, we trained
each of the three models in the nnU-Net network
framework—2D Unet, 3D Unet, and 3D cascade Unet—to
select the network model with the best results for sub-
sequent experiments. Second, we conducted an experi-
ment to exclude false-positive fracture regions on the
basis of rib fracture region segmentation. We use 3D
DenseNet as the classification model. Using the seg-
mented fracture regions as the input to the classification
model can narrow the classification range and exclude the
false-positive fracture regions in the first stage of seg-
mentation, which effectively improved the accuracy of rib
fracture recognition.

From the final identification results, it can be concluded
that the two-stage rib fracture automatic recognition algo-
rithm proposed in this study is helpful in assisting physicians
in multiple rib fracture recognition and detection, indicating
that the artificial intelligence-aided diagnosis system is
feasible for multiple rib fracture recognition.

Data Availability

The experimental data were the publicly available RibFrac
Dataset from the MICCAI 2020 RibFrac Challenge: Rib
Fracture Detection and Classification competition, which
was published by Liang Jin et al,, the authors of the FracNet
network structure. The data can be accessed at https://
ribfrac.grand-challenge.org/dataset/.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This research was sponsored by the National Natural Science
Foundation of China (nos. 82074579 and 81973981), the
Traditional Chinese Medicine Science and Technology
Project of Shandong Province (no. 2020M006), and the
Natural Science Foundation of Shandong Province (no.
ZR2020MH360).

Evidence-Based Complementary and Alternative Medicine

References

[1] Y. Jinliang and H. Guang, “Strategies, operational techniques
and future directions in the treatment of rib fractures,”
Journal of Traumatic Surgery, vol. 18, no. 1, pp. 1-5, 2016.

[2] S. Khung, P. Masset, A. Duhamel et al, “Automated 3D

rendering of ribs in 110 polytrauma patients: strengths and

limitations,” Academic Radiology, vol. 24, no. 2, pp. 146-152,

2017.

Y. Jun and T. Guoyu, “Exploring the working principles of CT

in medical imaging technology and new applications,” Im-

aging Research and Medical Applications, vol. 4, no. 3,

pp. 87-88, 2020.

[4] H. Ringl, M. Lazar, M. Topker et al., “The ribs unfolded - a CT
visualization algorithm for fast detection of rib fractures:
effect on sensitivity and specificity in trauma patients,” Eu-
ropean Radiology, vol. 25, no. 7, pp. 1865-1874, 2015.

[5] J. He, S. L. Baxter, J. Xu, J. Xu, X. Zhou, and K. Zhang, “The
practical implementation of artificial intelligence technologies
in medicine,” Nature Medicine, vol. 25, no. 1, pp. 30-36, 2019.

[6] Y.LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,

vol. 521, no. 7553, pp. 436-444, 2015.

R. Lindsey, A. Daluiski, S. Chopra et al., “Deep neural network

improves fracture detection by clinicians,” Proceedings of the

National Academy of Sciences, vol. 115, no. 45, pp. 11591~

11596, 2018.

A. Urbaneja, ]. De Verbizier, A.-S. Formery et al., “Automatic

rib cage unfolding with CT cylindrical projection reformat in

polytraumatized patients for rib fracture detection and
characterization: feasibility and clinical application,” Euro-

pean Journal of Radiology, vol. 110, pp. 121-127, 2019.

M. Lenga, T. Klinder, C. Biirger, J. V. Berg, A. Franz, and

C. Lorenz, “Deep learning based rib centerline extraction and

labeling,” in Proceedings of the International Workshop on

Computational Methods and Clinical Applications in Mus-

culoskeletal Imaging, Granada, Spain, September 2018.

X. Xu, F. Zhou, B. Liu, D. Fu, and X. Bai, “Efficient multiple

organ localization in CT image using 3D region proposal

network,” IEEE Transactions on Medical Imaging, vol. 38,

2019.

[11] F. Isensee, P. F. Jaeger, S. A. A. Kohl, J. Petersen, and

K. H. Maier-Hein, “nnU-Net: a self-configuring method for

deep learning-based biomedical image segmentation,” Nature

Methods, vol. 18, no. 2, pp. 203-211, 2021.

G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger,

“Densely connected convolutional networks,” in Proceedings

of the 2017 IEEE Conference on Computer Vision and Pattern

Recognition, pp. 2261-2269, Honolulu, HI, USA, July 2017.

[13] G. D. Tourassi, S. G. Armato, and H. R. Roth, “Deep con-
volutional networks for automated detection of posterior-
element fractures on spine CT,” Medical Imaging 2016:
Computer-Aided Diagnosis, vol. 9785, Article ID 97850P,
2016.

[14] J. Olczak, N. Fahlberg, A. Maki et al., “Artificial intelligence
for analyzing orthopedic trauma radiographs,” Acta Ortho-
paedica, vol. 88, no. 6, pp. 581-586, 2017.

[15] X. C. Chen, Deep Learning Algorithm and Application Re-
search Based on Convolutional Neural Network, Zhejiang
Gongshang University, Zhejiang, China, 2014.

[16] U. Raghavendra, N. S. Bhat, A. Gudigar, and U. R. Acharya,
“Automated system for the detection of thoracolumbar
fractures using a CNN architecture,” Future Generation
Computer Systems, vol. 85, 2018.

[3

[7

[8

[9

(10

[12


https://ribfrac.grand-challenge.org/dataset/
https://ribfrac.grand-challenge.org/dataset/

Evidence-Based Complementary and Alternative Medicine

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

(29]

U. Takaaki, T. Yuki, and G. Shinichi, “Detecting inter-
trochanteric hip fractures with orthopedist-level accuracy
using a deep convolutional neural network,” Skeletal Radi-
ology, vol. 48, 2018.

Y. D. Pranata, K. C. Wang, and J. C. Wang, “Deep learning
and SURF for automated classification and detection of
calcaneus fractures in CT images,” Computer Methods and
Programs in Biomedicine, vol. 171, 2019.

L. Jin, J. Yang, K. Kuang et al., “Deep-learning-assisted de-
tection and segmentation of rib fractures from CT scans:
development and validation of FracNet,” EBioMedicine,
vol. 62, Article ID 103106, 2020.

T. Weikert, L. A. Noordtzij, . Bremerich et al., “Assessment of
a deep learning algorithm for the detection of rib fractures on
whole-body trauma computed tomography,” Korean Journal
of Radiology, vol. 21, no. 7, p. 891, 2020.

Q.-Q. Zhou, J. Wang, W. Tang et al., “Automatic detection
and classification of rib fractures on thoracic CT using
convolutional neural network: accuracy and feasibility,” Ko-
rean Journal of Radiology, vol. 21, no. 7, pp. 869-879, 2020.
X. H. Meng, D. J. Wu, Z. Wang et al,, “A fully automated rib
fracture detection system on chest CT images and its impact
on radiologist performance,” Skeletal Radiology, vol. 50, no. 9,
pp. 1821-1828, 2021.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,”
in Proceedings of the 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2818-2826, Las
Vegas, NV, USA, June 2016.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the 2016 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770-778, Las Vegas, NV, USA, June 2016.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and
L. C. Chen, “Mobilenetv2: inverted residuals and linear
bottlenecks,” in Proceedings of the 2018 Conference on
Computer Vision and Pattern Recognition, pp. 4510-4520, Salt
Lake City, UT, USA, June 2018.

K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” in Proceedings of
the 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 2015.

R. Castro-Zunti, K. J. Chae, Y. Choi, G. Y. Jin, and S.-b. Ko,
“Assessing the speed-accuracy trade-offs of popular con-
volutional neural networks for single-crop rib fracture clas-
sification,” Computerized Medical Imaging and Graphics,
vol. 91, Article ID 101937, 2021.

T. Falk, D. Mai, R. Bensch et al., “U-Net: deep learning for cell
counting, detection, and morphometry,” Nature Methods,
vol. 16, no. 1, pp. 67-70, 2019.

O. Cicek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and
O. Ronneberger, “3D U-net: learning dense volumetric seg-
mentation from sparse annotation,” in Proceedings of the 19th
International Conference Medical Image Computing and
Computer-Assisted Intervention - MICCAI 2016. MICCAI
2016, S. Ourselin, L. Joskowicz, M. Sabuncu, G. Unal, and
W. Wells, Eds., Athens, Greece, October 2016.



