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Abstract

Iron scavenging constitutes a crucial challenge for survival of pathogenic microorganisms in the iron-poor host
environment. Candida albicans, like many microbial pathogens, is able to utilize iron from hemoglobin, the largest iron pool
in the host’s body. Rbt5 is an extracellular glycosylphosphatidylinositol (GPI)-anchored heme-binding protein of the CFEM
family that facilitates heme-iron uptake by an unknown mechanism. Here, we characterize an additional C. albicans CFEM
protein gene, PGA7, deletion of which elicits a more severe heme-iron utilization phenotype than deletion of RBT5. The
virulence of the pga72/2 mutant is reduced in a mouse model of systemic infection, consistent with a requirement for
heme-iron utilization for C. albicans pathogenicity. The Pga7 and Rbt5 proteins exhibit distinct cell wall attachment, and
discrete localization within the cell envelope, with Rbt5 being more exposed than Pga7. Both proteins are shown here to
efficiently extract heme from hemoglobin. Surprisingly, while Pga7 has a higher affinity for heme in vitro, we find that heme
transfer can occur bi-directionally between Pga7 and Rbt5, supporting a model in which they cooperate in a heme-
acquisition relay. Together, our data delineate the roles of Pga7 and Rbt5 in a cell surface protein network that transfers
heme from extracellular hemoglobin to the endocytic pathway, and provide a paradigm for how receptors embedded in the
cell wall matrix can mediate nutrient uptake across the fungal cell envelope.
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Introduction

Candida albicans, a commensal fungus normally residing on the

skin and on mucosal surfaces, is commonly able to cause local

mucosal, cutaneous and nail infections. In debilitated and

immunocompromised patients, C. albicans is furthermore able to

spread systemically and to cause deep-seated infections that can be

life-threathening [1]. In order to survive and proliferate in host

tissues, C. albicans, like all pathogenic microbes, needs to be able

to acquire essential nutrients such as iron. Iron withholding has

long been recognized as a defense mechanism deployed by the

human host against invading microorganisms [2]. As a conse-

quence, successful pathogens had to evolve mechanisms for

scavenging iron from host molecules [3].

Several distinct iron acquisition mechanisms have been

identified in C. albicans (reviewed in [4,5]). High-affinity elemental

iron uptake requires the permease Ftr1 [6], which is associated

with a multicopper ferroxidase [7] that in turn relies on a copper

pump, Ccc2, for its biogenesis in the Golgi [8,9]. A siderophore-

mediated iron uptake mechanism requires the hydroxamate type

siderophore transporter Sit1/Arn1 [10,11]. Ferritin-iron utiliza-

tion depends on the adhesin Als3 [12]. Lastly, heme-iron

utilization potentially enables C. albicans to gain access to the

largest iron pool in the human body - some 70% of iron in the

human body is heme iron, predominantly found in the oxygen

carrier hemoglobin [13]. The heme iron acquisition pathway relies

on Rbt5, an extracellular GPI-anchored heme receptor [14]. Rbt5

contains the fungal-specific CFEM domain, which is characterized

by eight cysteine residues with conserved spacing [15]. Additional

genes required for heme-iron utilization include CaHMX1,

encoding a heme oxygenase [16,17], genes encoding components

of the ESCRT system, and a Type I myosin involved in endocytic

vesicle abscission, mutants of which are defective in both heme-

iron endocytosis and heme-iron utilization [18]. A mutant of the

vacuolar ATPase is defective only in heme-iron utilization, but not

in endocytosis [18]. Together, these genetic studies suggested a

pathway of heme-iron utilization in which interaction of free heme

or hemoglobin with an extracellular receptor such as Rbt5

eventually leads to endocytosis, degradation of the protoporphyrin

rings by heme oxygenase, and uptake of the released iron into the

cytoplasm by a vacuolar iron permease.

Given the hemolytic capacity of C. albicans [19], hemoglobin

utilization thus gives the organism access to an abundant iron

reservoir during systemic infection. Nonetheless, RBT5 was not
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required for virulence in a mouse model of systemic infection [20].

We noted however that rbt52/2 mutants are only partially

defective in heme and hemoglobin utilization [14], suggesting that

additional factors may exist alongside Rbt5 that mediate heme-

iron transport across the cell envelope. Notably, missing from the

model described above is a mechanism for transfer of heme or

hemoglobin across the cell wall. The cell wall architecture is

complex and not well understood, but is thought to consist of an

inner core of b-(1,3)- and b-(1,6)-linked glucans and of chitin (b-

(1,4)-N-acetylglucosamine), and an outer layer of glycoproteins

[21]. This provides a porous structure, which allows for diffusion

of solutes and macromolecules, though the exact size limit for

diffusion of solutes, and whether facilitated diffusion can occur, is

not known [22]. Although a significant fraction of Rbt5 can be

found in the membrane, the majority of Rbt5 is covalently linked

to the cell wall, where it represents one of the most prominent

proteins, particularly under iron starvation conditions ([23,24] and

this work). How such a cell wall matrix-embedded heme-binding

protein could facilitate transport of hemin or hemoglobin across

the cell wall was unclear.

Here, we characterize a new heme-binding CFEM protein,

Pga7, that, although less abundant, is functionally more important

than Rbt5 for heme-iron utilization in culture, and that

contributes to virulence in a mouse model of infection. In vivo,

Pga7 is localized to the cell envelope, at an internal position

compared to Rbt5. In vitro, both Rbt5 and Pga7 are able to

extract heme from hemoglobin, and furthermore, heme can be

rapidly transferred between the two CFEM proteins, suggesting

that they form the basis of a heme relay system across the cell

envelope.

Results

Pga7 is essential for heme-iron utilization
Of the two extracellular C. albicans proteins, Rbt5 and Rbt51,

that were previously shown to bind hemin, only the rbt52/2

mutant was defective in heme-iron utilization, and this defect was

only partial, since an increase in hemoglobin concentration could

restore growth [14]. However, genomic analysis revealed that

besides Rbt5 and Rbt51, C. albicans contains several additional

related CFEM proteins, including Csa1/Wap1, Pga7, and Csa2

(Fig. S1), as well as more distantly related CFEM proteins such as

Ssr1. Csa1 had been previously analyzed and was not found to

affect hemoglobin utilization under our standard growth condi-

tions [14,20]. We next focused on Pga7 because we found that like

RBT5, PGA7 is transcriptionally induced under iron starvation

conditions (our unpublished results and [25]). We deleted both

alleles of PGA7 in a wild-type background as well as in a strain

lacking RBT5, to identify possible epistatic relationships among

these genes.

As shown in Fig. 1A, the pga72/2 mutant exhibited a defect in

hemoglobin utilization that was more profound than the defect

exhibited by the rbt52/2 strain: the pga72/2 RBT5+/+ strain

requires some 30-fold higher hemoglobin concentration than the

wild-type strain to reach the same level of growth, vs. 10-fold

higher requirement for the rbt52/2 PGA7+/+ mutant. Reintro-

duction of PGA7 under its native promoter into the pga72/2

mutant was sufficient to restore normal growth with hemoglobin as

sole source of iron (Fig. 1B), confirming that deletion of this

gene was responsible for the hemoglobin utilization defect of the

pga72/2 strain. The double pga72/2 rbt52/2 mutant appears

only slightly more defective in hemoglobin utilization than the

pga72/2 mutant by itself (Fig. 1A), arguing for a central role for

Pga7 in the pathway. The same order of growth of the strains was

observed when hemin was used as sole iron source (Fig. 1C, 1D),

with similar ratios between the minimal concentrations of hemin

required for growth of the different mutants. Notably, approxi-

mately four-fold higher hemin concentrations were required to

reach the same growth levels compared to hemoglobin, consistent

with the 4 heme-per-hemoglobin stoichiometry.

The relative effects of deleting PGA7 and RBT5 on heme-iron

utilization were reproduced in the ccc22/2 background (Fig. S2),

which is defective in high-affinity iron uptake [8]. This attests to

the robustness of the effects of these mutants on heme-iron

utilization, and confirms that the pathway in which these proteins

participate is distinct from the high-affinity iron uptake pathway of

Candida. Deletion of the CFEM protein-encoding genes CSA1
and RBT51, which did not affect heme utilization in the presence

of PGA7 [14], still did not affect heme utilization even in the

absence of PGA7 (Fig. S2), indicating that they are not responsible

for the residual heme utilization of the pga72/2 mutant.

Interestingly, a small but reproducible difference between the

pga72/2 RBT5+/+ strain and the double pga72/2 rbt52/2

mutant could be detected with hemoglobin (Fig. 1A and S2A),

but not with hemin as sole iron source (Fig. 1C and S2B), raising

the possibility of a specific role for Rbt5 in heme-iron acquisition

from hemoglobin.

PGA7 contributes to virulence in a mouse model of
systemic candidiasis

High-affinity elemental iron acquisition was reported to be

important for C. albicans pathogenicity [6]. We took advantage of

the strong heme-iron utilization defect of the PGA7 deletion in
vitro, to test whether C. albicans heme acquisition contributes to

its pathogenicity as well. We used a mouse model of systemic

infection, and compared the survival rate of mice infected with the

WT strain, the pga72/2 strain, and pga72/2 ,PGA7. re-

integrant strain. Mice infected with the parental PGA7+/+ strain

died significantly faster than the mice infected with the pga72/2

strains (p = 0.0024) (Fig. 2), but not significantly faster than the

mice infected with the re-integrant strains (p = 0.23), indicating

that Pga7 functions as a virulence factor in a mouse model of

systemic candidiasis. This difference in survival rates suggests that

even in the presence of a functional high-affinity iron uptake

Author Summary

Candida albicans, a commensal fungus of human mucosal
surfaces in healthy individuals, is a common cause of
superficial infections, as well as of life-threatening systemic
infections in individuals suffering from a reduced immune
function. As a systemic pathogen, it has to cope with a
scarcity of specific nutrients in the host environment, chief
among them iron. To overcome this iron limitation, C.
albicans is able to extract iron from heme and hemoglobin,
the largest iron pools in the human body, via a pathway
that involves endocytosis into the cell. Here we show that
efficient heme uptake relies on a family of extracellularly-
anchored proteins that serve as heme receptors, two of
which, at least, are required for efficient heme utilization.
Our data suggest the existence of a relay system that
transfers heme from one protein to the next across the cell
envelope, explaining the requirement for multiple heme
receptors for efficient heme-iron utilization. This study
extends our understanding of the pathway of host heme
utilization by fungal pathogens, and provides new insights
into the question of how nutrients such as heme cross the
fungal cell wall.

Fungal Heme Acquisition Network
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system, heme-iron acquisition also contributes to C. albicans
virulence.

Different abundance of Rbt5 and Pga7
The observation that, in spite of the high homology between the

Pga7 and Rbt5 proteins (Fig. S1), the pga72/2 strain had a more

severe heme-iron uptake phenotype than the rbt52/2 strain,

prompted us to test whether the severity of the mutant phenotypes

correlated with the relative levels of each protein in the cell. Pga7

was tagged with a FLAG tag introduced just beyond the predicted

signal peptide cleavage site, and expressed in cells deleted for

PGA7 but expressing RBT5. Expression of RBT5 and of FLAG-
PGA7 was induced by iron starvation, and the cells were

mechanically lysed and pelleted. No FLAG-Pga7 could be

detected in the cell supernatant (not shown). Extraction of the

salt-washed cell pellet with hot SDS released a large amount of

Rbt5, as detected using the cross-reacting a-Rbt51 antiserum [14],

but no FLAG-reactive signal (indicative of FLAG-Pga7) was

detected above background (Fig. 3A). Treatment of the remaining

pellet with a reducing agent (b-mercaptoethanol; b-ME) released

some additional Rbt5, but most predominantly, a clear band

representing FLAG-Pga7 was now detected. This suggests that

Pga7 is attached to the cell wall by b-ME -sensitive bonds.

The difficulty of detecting Pga7 suggested a low level of

expression. In order to directly compare protein expression rates of

Pga7 and Rbt5, we used a FLAG epitope-tagged version of each

protein, thereby eliminating variations due to different antisera or

different epitopes. The epitope sequence was inserted at a similar

location in both proteins, right after the predicted signal peptide

cleavage site, i.e. at the N-terminus of the mature proteins (Fig.

S1). FLAG-tagged Pga7 was also cloned under the presumably

stronger RBT5 promoter. To ascertain that addition of the FLAG

epitope, or expression of FLAG-Pga7 under the stronger RBT5
promoter, did not interfere with the activity of the proteins, we

tested complementation of the rbt52/2 and pga72/2 mutants with

the tagged vs. non- tagged constructs. FLAG-Rbt5 was able to

complement the heme-utilization defect of the rbt52/2 strain as

efficiently as non-tagged Rbt5. Similarly, FLAG-Pga7, both under

its native promoter and under the RBT5 promoter, was able to

fully complement the pga72/2 mutant for heme iron utilization,

suggesting that the tagged proteins are fully active (Fig. S3).

Protein expression levels of these three constructs were

compared in iron-starved cells by pulse-labeling for 5 min with
35S-methionine/35S-cysteine, followed by immunoprecipitation of

the newly synthesized proteins with anti-FLAG antibodies.

Figure 1. Pga7 plays a central role in heme and hemoglobin-iron utilization in C. albicans. PGA7 and RBT5 deletion strains (A, C) or PGA7 re-
integrant strains (B, D) were grown in iron-free RPMI medium in the presence of increasing concentration of either human hemoglobin (A, B) or
hemin (C, D) as a sole source of iron. Optical density was measured after 3 days at 30uC. Error bars represent standard deviations of triplicates. The
following strains were used: A, C: CAI4 (KC79, KC590)), KC589 (rbt52/2), KC626 (pga72/2), KC594 (rbt52/2 pga72/2). The two wild-type starting strains
from different sources were highly concordant. B, D: KC645 (WT,vector.), KC646 (pga72/2,vector.), KC647 (pga72/2,PGA7.).
doi:10.1371/journal.ppat.1004407.g001

Figure 2. The pga72/2 strain is less virulent in a mouse model of
systemic candidiasis. Survival of intravenously challenged mice with
Candida albicans strains is indicated. Groups of 5 mice were inoculated
with 2 independent clones of pga72/2 (KC646) or re-integrant (KC647)
and were grouped together and compared to the wild type (KC645).
Mice infected with the pga72/2 strains survived significantly longer that
mice infected with the wild type strain (p = 0.0024), whereas mice
infected with the PGA7 re-integrant strains did not survive significantly
longer (p = 0.2310).
doi:10.1371/journal.ppat.1004407.g002
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Quantitation of the FLAG-Rbt5 and FLAG-Pga7 signals revealed

that Rbt5 is expressed at approximately an order of magnitude

higher levels than Pga7 under its native promoter. When Pga7 was

expressed under the RBT5 promoter, it reached levels of

expression similar to those of Rbt5 (Fig. 3B). Thus, the stronger

phenotype of the deletion mutant of PGA7 did not correlate with

its expression levels.

Rbt5 and Pga7 exhibit distinct localization and cell wall
attachment

The requirement for these two similar proteins in the pathway

of heme iron acquisition might be explained by a different

subcellular localization. The experiment shown in Fig. 3A

suggested that Rbt5 and Pga7 are differently distributed in the

cell envelope. However, we found that the lower levels of

expression of Pga7 made detection and meaningful comparison

of its localization with that of Rbt5 difficult. Therefore, in the

following experiment, we compared the subcellular localization of

FLAG-Pga7 and FLAG-Rbt5 expressed at similar levels under the

RBT5 promoter (Fig. 3B), both by immunofluorescence micros-

copy, and by differential cell extraction.

Immunofluorescence microscopy in cells permeabilized by

partial cell wall digestion and membrane solubilization revealed

that the FLAG epitope of both proteins was detectable throughout

the cells in similar amounts, based on signal strength (Fig. 4A,

‘‘Zymolyase treatment’’). Biochemical analysis of the same cultures

used for immunofluorescence (see below, Fig. 4B) confirmed that

the total cellular amounts of both proteins were similar.

Nonetheless, while in untreated cells the anti-FLAG antibody

clearly decorated the circumference of the cells expressing FLAG-

Rbt5, no signal was detected in cells expressing FLAG-Pga7

(Fig. 4A, ‘‘No treatment’’). Treatment of the cells with NaOH led

to a stronger FLAG-Rbt5 signal, possibly by causing partial

removal of the glycosyl moieties and alkali-sensitive ester-linked

proteins at the cell wall perimeter [14,23], allowing better access

for the antibodies to the exposed epitopes. However, NaOH

treatment still did not reveal a signal in the FLAG-Pga7-expressing

cells (Fig. 4A, ‘‘NaOH treatment’’). This experiment indicates that

Rbt5 and Pga7 differ in their localization, with Rbt5 being

exposed at the periphery, and Pga7 located more internally, either

buried within the cell wall or bound to the cell membrane.

Pga7 and Rbt5 both display the modular organization and

sequence elements characteristic of GPI-anchored proteins (Fig.

S1), predictive of either membrane attachment or covalent linking

to the cell wall [26]. In order to identify biochemical differences

between Rbt5 and Pga7 cell envelope attachment that may

underlie their distinct localizations, we used a series of sequential

extractions to distinguish between soluble or membrane-bound vs.

cell wall-bound pools of Pga7 and Rbt5, and to identify the mode

of attachment to the cell wall. Different attachment modes of

proteins to the cell wall can be disrupted by distinct treatments

[27]. Non-covalent attachment via salt bonds is efficiently

disrupted by NaCl, while GPI-anchored proteins covalently linked

via a glycosidic bonds to the ß-(1,6)-linked sugars can be extracted

with hydrogen fluoride-pyridine (HF-pyridine; [23]), and proteins

covalently linked via disulfide bonds to the cell wall can be

solubilized by treatment with b-ME. Thus, after mechanical lysis

with glass beads of the cells expressing the FLAG-tagged proteins,

the supernatants were separated by centrifugation, and the pellets

were further extracted sequentially with 1 M NaCl, 2% SDS, and

4% b-ME. Finally, the remaining cell wall pellets were treated

with HF-pyridine. Equal relative amounts of each fraction were

analyzed side-by-side by polyacrylamide gel electrophoresis

followed by Western blotting with anti-FLAG.

While both Rbt5 and Pga7 could be detected in all the fractions,

the respective proportions of each protein were different (Fig. 4B).

Rbt5 was best visible in the HF-pyridine extractable fraction,

followed by the SDS-extractable fraction. In contrast, Pga7 was

most abundant in the SDS-extractable fraction, followed by the

supernatant and salt- and b-ME -extractable fractions. These

results suggest that Rbt5 is mainly distributed between a

membrane-embedded (SDS-extractable) and a sugar-linked cell

wall-attached (HF-sensitive) pool. Pga7, in contrast, is mainly

found in a cell membrane (SDS-extractable) - embedded pool, but

also exhibits a sizeable disulfide cross-linked (b-ME-sensitive) cell

wall pool. The different cell envelope attachment distribution of

these two proteins could thus account for the different subcellular

localization, as detected by immunofluorescence microscopy of the

cells (Fig. 4A).

It should be noted that the cellular distribution of Pga7 detected

upon overexpression under the RBT5 promoter may not reflect

the distribution of the natively expressed protein. Indeed, while the

levels of natively expressed FLAG-Pga7 are much lower, the only

fraction where the protein is consistently detected is the b-ME-

sensitive cell wall fraction (Fig. 3A). This suggests that the

accumulation of Pga7 in the SDS-extractable fraction seen in

Fig. 4B may be an artifact of overexpression, possibly due to

saturation of the cell wall protein partners that bind Pga7 via

disulfide bonds. Nonetheless, both natively expressed and overex-

pressed Pga7 differ in their cell envelope attachment from natively

expressed Rbt5. This different cell envelope attachment could

account for their differential localization (Fig. 4A), with Rbt5

being primarily a GPI-anchored outer cell wall protein and Pga7

primarily a disulfide bond-linked inner cell wall protein, and

consequently for their distinct functions (Fig. 1).

Figure 3. Rbt5 is more abundantly expressed than Pga7. (A)
Western blot detection of cell envelope fractions of cells expressing
FLAG-tagged Pga7 (KC605) or native Rbt5 under iron starvation
conditions, vs. a control lacking both RBT5 and PGA7 (KC594). Left
panels: SDS extract of the cell pellet after mechanical lysis. Right panels:
4% ß-ME extract of the cell pellet remaining after SDS extraction. Top
panels: detection of the membrane with a-Rbt51, which cross-reacts
with Rbt5 (Rbt51 itself is very weakly expressed under these conditions
[14]). Bottom panels: detection of the membrane with monoclonal a-
FLAG. (B) Expression of FLAG-tagged Rbt5 (KC706) or Pga7 (KC605), or
FLAG-tagged Pga7 expressed under the RBT5 promoter, (KC712) in C.
albicans cells grown under iron-limiting conditions (YPD +1 mM
ferrozine), was measured by labeling the cells with 35S-methio-
nine/35S-cysteine, followed by immunoprecipitation using a rabbit
anti-FLAG antiserum, and separation of the proteins by SDS-PAGE.
C = control cells with no FLAG.
doi:10.1371/journal.ppat.1004407.g003
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Figure 4. Different localization of Pga7 and Rbt5 expressed at similar levels. (A) Cells expressing either FLAG-tagged Rbt5 (KC713) or FLAG
tagged Pga7 under the RBT5 promoter (KC711), and a control wild type strain (KC68), were grown under iron limiting condition and fixed with
formaldehyde. The fixed cells were either washed in PBS (‘‘no treatment’’), incubated with 250 mM NaOH (‘‘NaOH treatment’’), or fully permeabilized
with zymolyase, b-ME and methanol (‘‘Zymolyase treatment’’). The cells were then incubated with anti-FLAG antibody followed by anti-Mouse IgG-
Cy3 coupled antibody. red = FLAG, blue = DAPI. Bars = 10 mm. (B) To investigate the membrane or cell wall attachment mode of Rbt5 and Pga7,
sequential fractionation and extraction of the cell culture shown in A was performed. An equal relative amount of each fraction was loaded in each
lane, and the proteins were detected by immunoblotting with a rabbit anti-FLAG antibody. The FLAG-Rbt5 or FLAG-Pga7 signal was quantitated in
each lane. The total amount of each protein was obtained by combining the signals of all the fractions together. The relative amount of protein in
each given fraction, compared to the total for that protein, is indicated below the gel. The total signal of FLAG-Pga7 was about 15% less than the
total signal of FLAG-Rbt5.
doi:10.1371/journal.ppat.1004407.g004
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Pga7 exhibits a higher affinity for heme than Rbt5
Rbt5 was previously shown to bind heme [14]. To test whether

Pga7 similarly binds heme, and to compare its heme binding to

that of Rbt5, both proteins were produced heterologously in the

fungal Pichia pastoris secretion system, which is expected to closely

mimic the biogenesis pathway of these proteins in C. albicans. The

expressed protein fragments, Pga718–195 and Rbt523–219, extend

from the predicted signal peptide cleavage site to the predicted

GPI anchor addition site of each protein.

Both recombinant proteins specifically bound to a hemin-

agarose column (Fig. 5A). Binding was stable in high salt and at

acidic pH, but some release occurred at neutral and alkaline pH.

Imidazole serves, within the side chain of histidine, as a proximal

(and sometimes distal) ligand of heme iron in many heme proteins

[28]; high imidazole concentrations achieved almost complete

release of both proteins from the hemin beads (Fig. S4). To

confirm the importance of the conserved CFEM domain in heme

binding, we mutagenized an aspartic residue conserved in most

CFEM domain proteins [15] (Asp63 of Pga7 and Asp72 of Rbt5;

Fig. S1) to alanine, and tested binding of the mutants to the hemin

column. Binding of the mutant proteins to the column was

essentially abolished, confirming the role of the CFEM domains of

Pga7 and Rbt5 in heme binding (Fig. 5A).

To more quantitatively compare the heme binding properties of

Pga7 and Rbt5, we used isothermal calorimetry (ITC) to measure

the stoichiometry of binding and the affinity of Rbt523–219 and

Pga718–195 for hemin (Fig. 5B). Average fitting of three indepen-

dent experiments on different batches of the proteins gave an

affinity (KD) of Pga718–195 and Rbt523–219 for heme of

6.561028 M and 5.461026 M, respectively. Thus, the affinity

of Pga7 towards heme is ,100-fold higher than that of Rbt5.

Saturation for both proteins was reached at a molar ratio of about

two heme per protein molecule. However, rather than indicating

two binding sites per protein molecule, this stoichiometry could be

explained by the fact that for the ITC experiments, the proteins

were titrated into 10 mM or 20 mM hemin solutions, and that at

neutral pH, at concentrations over 10 mM, heme is almost

exclusively (.90%) dimeric [29].

To investigate the stoichiometry further, we used the shift in

absorbance of heme from 380–390 nm to a sharp 406 nm peak

upon binding to a protein (Soret bandshift) as an alternative

method for assaying heme-protein interaction. Hemin was titrated

into an apoPga7 solution, keeping the free hemin at sub-

micromolar levels, and absorbance at 406 nm was recorded.

Addition of heme beyond saturation of Pga7 is expected to shift

the absorption maximum towards 390 nm, representing the

unbound heme. To obtain the concentration at which Pga7

becomes saturated with heme, the relative absorbance of Pga7-

heme to heme alone at 406 nm was plotted against hemin

concentration. The inflection point indicated that saturation of the

protein (5.5 mM apoPga7) was reached at 5.1 mM of heme

(Fig. 5C), consistent with a 1:1 heme to Pga7 stoichiometry,

suggesting that Pga7 contains a single heme binding site.

Heme binding to Pga7 was further confirmed by monodimen-

sional 1H nuclear magnetic resonance (NMR) titrations where the

formation of the heme-Pga7 adduct was followed through the

appearance of signals for peripheral methyls of the porphyrin ring

in the 53–67 ppm range (see below, Fig. 6B), which are diagnostic

for the formation of the protein-iron(III) heme complex [30,31].

Rbt5 and Pga7 can extract heme from hemoglobin in
vitro

The involvement of Rbt5 and Pga7 in hemoglobin utilization,

and the slightly increased growth defect of the pga72/2rbt52/2

Figure 5. Interaction of Pga7 and Rbt5 with heme. (A)
Recombinant wild type Rbt523–219 and Pga718–195 or their mutants in
a conserved aspartic acid residue were incubated with hemin agarose
(Hm) or glutathione agarose (glut) beads. The beads were washed and
bound proteins were released by heating to 100uC in SDS gel loading
buffer, separated by PAGE and detected by Western blotting with an
anti-Myc antibody. (B) ITC analysis of the interaction of hemin with
Rbt523–219 (left panel), and with Pga718–195 (right panel). The proteins
(60 mM) were titrated into 10 mM hemin (Pga7) or into 20 mM hemin
(Rbt5). Representative experiments are shown, with the heat signal in
the top half of each panel and the binding isotherm derived from this
signal in the lower half. The average fitting of three independent
experiments with Rbt5-heme gave n = 2.15260.0706 sites,
Ka = 1.852610563.6796104 M21 and H = 274546304.7 KJ mol21. The
average fitting of three independent experiments with Pga7-heme gave
n = 1.93060.00999 sites, Ka = 1.531610761.8176106 M21 and H = 2
7002656.69 KJ mol21. (C) UV/visible spectra from the titration of 1 ml
hemin aliquots (2 mM hemin stock) into 3 ml of 5.5 mM apoPga718–195

(1 cm path length cuvette, PBS). The inset shows the hemin-Pga7
absorbance minus hemin alone absorbance at 406 nm, at increasing
hemin concentrations. The inflection point indicates saturation of
hemin binding to Pga7 at close to 1:1 concentration.
doi:10.1371/journal.ppat.1004407.g005
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mutant over pga72/2 alone in the presence of hemoglobin but not

of hemin (Fig. 1 and S2) led us to investigate the interaction of

recombinant Pga7 and Rbt5 with hemoglobin. A sepharose column

with covalently bound hemoglobin was incubated with Pga718–195

or Rbt523–219, and the supernatants were separated from the beads.

No stable binding of either Rbt5 or Pga7 to the hemoglobin beads

could be detected. However, the supernatants containing either

protein, but not buffer alone, exhibited a faint yellow color. To test

whether this color represents heme bound to the CFEM proteins,

visible light spectrophotometry was used to detect the characteristic

Soret peak at 406 nm, representing heme incorporated into the

protein. As shown in Fig. 6A, both Rbt5 and Pga7 acquired the

Soret peak after incubation with the hemoglobin column. The heme

was not spontaneously released from the globin, as shown by the

lack of absorbance at 380–390 nm in the ‘‘buffer alone’’ extract,

and no globin proteins were detected by Western blotting in any of

the extracts, indicating that Pga7 and Rbt5 did not cause

dissociation of the hemoglobin from the column. We thus concluded

that Rbt5 and Pga7 are both able to extract heme from hemoglobin.

The hemoglobin heme extraction activity of Pga7 was more

surprising than that of Rbt5, as the pga72/2 mutant did not

exhibit any hemoglobin-specific growth defect (Fig. 1 and S2) and

as Pga7 is buried in the cell envelope. To confirm the ability of

Pga7 to extract heme from hemoglobin, we used monodimen-

sional 1H NMR as an alternative method, and took advantage of

the differences in heme methyl resonances of heme bound to

globin vs. to Pga7. Hemoglobin displays three broad unresolved

features centered around 64, 72 and 86 ppm (Fig. 6B, bottom),

whereas heme-Pga7 shows four peaks around 53, 55, 62 and

67 ppm (Fig. 6B, top). Upon titration of hemoglobin with apo-

Pga7, the pattern of heme-Pga7 chemical shifts gradually

appeared, whereas the hemoglobin chemical shifts disappeared

upon reaching a 4:1 Pga7:hemoglobin stoichiometry (Fig. 6B). At

the same time, a white precipitate formed, probably representing

the less-soluble apoglobin [32]. These data are consistent with

efficient extraction of heme from hemoglobin by Pga7 in solution.

Heme transfer between Rbt5 and Pga7
The different localization and different affinities to heme of

Rbt5 and Pga7 raised the possibility of a relay system, in which

heme is transferred from one protein to the next across the cell

wall before being endocytosed. To test whether heme could indeed

be transferred directly between Rbt5 and Pga7, we used a size

exclusion chromatography column that efficiently separates both

proteins. Absorbance at 280 nm was used to monitor the proteins,

and absorbance at 406 nm indicated protein-bound heme. The

initial protein preparations were confirmed to be free of heme (Fig.

S5, top panels). Rbt5 and Pga7 were then each incubated with

sub-stoichiometric amounts of heme (2:1) and separated on the

chromatography column: the heme peaks (406 nm) coincided with

the protein peaks (280 nm) for each protein, indicating stable

heme binding to the proteins throughout the chromatography run

(Fig. S5, bottom panels). Next, following pre-incubation of Rbt5

with heme, the same amount of Pga7 was added to the mix, and

after another 5 min incubation, the mix was injected to the

column. Separation by size exclusion revealed a redistribution of

the total heme amount between the two protein peaks, indicating

that heme is partially transferred from Rbt5 to Pga7 (Fig. 7). In the

reciprocal experiment, where Pga7 pre-loaded with heme was

mixed with Rbt5, an identical final redistribution of the total heme

amount between both proteins was obtained, indicating that the

redistribution had reached equilibrium (Fig. 7). The total amount

of heme was identical, within 10%, in all cases, indicating that the

appearance of a signal corresponding to the second protein is not

due to binding of free heme, but must instead represent transfer of

heme from one protein the other.

Since the affinity of Pga7 for heme is much higher than that of

Rbt5, the approximately equal redistribution of heme between the

two proteins is not consistent with a heme release-and-capture

transfer mechanism between the proteins, but rather is expected to

involve a contact between Pga7 and Rbt5, either direct, or

mediated by heme. In order to test this, we measured homologous

and heterologous interactions between the proteins by surface

plasmon resonance (SPR), both in the presence and absence of

heme. Recombinant Pga7, Rbt5, and the Rbt5 D72A mutant,

which is defective in heme binding (Fig. 5), were bound to the

biosensor, and interaction with holo- or apo-Pga7 was measured.

Figure 6. Pga7 and Rbt5 can extract heme from hemoglobin. (A)
Hemoglobin covalently conjugated to CnBr sepharose beads was
incubated with 50 mM recombinant Rbt523–219 or Pga718–195, or with
PBS buffer alone. After 30 min incubation, the UV-Vis spectrum of the
supernatant was measured with a Nano-Drop 2000 spectrophotometer.
The peak at 280 nm represents the protein. The 406 nm Soret
absorption peak visible in the supernatants containing Rbt5 and Pga7
is typical of protein-bound heme. The average reading of a triplicate
experiment is represented. (B) Upfield areas of 1H NMR spectra recorded
at 600 MHz and 298 K to monitor the transfer of heme to Pga718–195.
Pga7 shows signals attributable to heme methyls in the range 53–
67 nnm (top panel). Hemoglobin is characterized by broader unre-
solved features in the 50–100 ppm range. Titration of hemoglobin
(middle panels) with increasing amounts of Pga7 gives rise to the
transfer of the heme from hemoglobin to Pga7 with progressive
disappearance of the broad features of hemoglobin and appearance of
the characteristic signals of heme methyls in Pga7. Note that
hemoglobin contains 4 heme groups per molecule.
doi:10.1371/journal.ppat.1004407.g006
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Holo-Pga7 interacted with both Rbt5 and Pga7, but much more

weakly with the Rbt5 D72A mutant (Fig. 8). The almost complete

lack of interaction with the mutant protein serves as control for the

specificity of the interaction of holo-Pga7 with the bound wild-type

proteins. Apo-Pga7 exhibited an interaction with apo-Rbt5, but

not with apo-Pga7, nor with the apo-Rbt5 D72A mutant (Fig. S6).

These data are consistent with a heme transfer mechanism

between Pga7 and Rbt5 that involves interaction between the

proteins. Furthermore, the heme-induced interaction detected

between Pga7 bound to the biosensor chip and in solution suggest

that heme can be transferred between homologous proteins as

well.

Discussion

While small nutrient molecules are assumed to freely diffuse

across the cell wall matrix, the cell wall represents a permeability

barrier for larger molecules. The molecular weight limit for

diffusion through the fungal cell wall was found to vary greatly

across different studies, with thresholds as low as 620 Da [33] and

as high as several hundred kDa [34] (heme is 616 Da). Some of the

discrepancies in porosity may be due to differences in yeast species

used, growth medium [34,35], or growth phase – with reduced

porosity in stationary phase [36] (reviewed in [22,37]). Even in

individual growing cells, porosity is probably not uniform, and it is

likely that mature cell wall is less porous than the newly

synthesized cell wall at the bud or hyphal tip of growing cells,

and may thus require a system for transporting even relatively

small molecules. In analyzing the pathway of heme-iron uptake

across the cell envelope of the pathogenic yeast C. albicans, we

found that utilization of both free heme and hemoglobin requires a

network of at least two distinct cell surface proteins of the CFEM

family, Rbt5 and Pga7. This network may represent the first

instance of a cell wall nutrient carrier system in yeast. Other fungi

also express heme transport systems, notably Cryptococcus neofor-
mans, Candida parapsilosis, and Paracoccidioides brasiliensis. P.
brasiliensis and C. parapsilosis were shown to rely, like C. albicans,
on CFEM proteins for heme-iron utilization [38,39], whereas C.
neoformans relies on an unrelated heme-binding protein, Cig1, for

heme-iron utilization [40]. However the mechanism by which

these proteins mediate heme transfer across the cell wall and

internalization into the cell is unknown.

While investigating the reason for the requirement for two

apparently similar proteins under a given set of conditions, we

found that Rbt5 and Pga7 differ in localization, abundance, and

affinity for heme. Immunolocalization of Rbt5 and Pga7 indicated

that Rbt5 is more exposed, as it is detectable by specific antibodies

at the cell surface of untreated cells, whereas Pga7 is not.

Interestingly, Rbt5 was identified as one of the top C. albicans
antigens recognized by antisera of patients recovering from

candidemia [41], suggesting that Rbt5 is preferentially presented

to the host’s immune system during infection, consistent with an

exposed localization on the cell envelope.

The observation that both Pga7 and Rbt5 are able to efficiently

extract heme from hemoglobin in vitro reveals a new function for

CFEM proteins and suggests a mechanism whereby the heme is

extracted from hemoglobin in the cell wall, and is transferred to

one of these two proteins. The expected difficulty for the large

hemoglobin molecules to diffuse through the cell wall matrix, and

the peripheral location of Rbt5 as compared to Pga7, would

predict that Rbt5 plays a larger role in hemoglobin than in hemin

iron utilization. and might thus explain why in the absence of

Pga7, the presence of Rbt5 was found to slightly ameliorate

hemoglobin utilization, but not hemin utilization (Figs. 1 and S2).

This model, involving extraction of heme from hemoglobin at the

cell periphery, followed by internalization of heme into the cell,

goes against our previous observation that fluorescently tagged

hemoglobin is taken up into the vacuole in an Rbt5-dependent

manner [18]. To reconcile between the observations, we suggest

that either hemin can also be labeled with rhodamine via a non-

conventional reaction, or that after heme extraction, the tagged

globin molecules are taken up by fluid-phase endocytosis into the

vacuole.

Cellular nutrient uptake typically occurs via plasma membrane

transporters. The stable binding of heme to the cell wall proteins

Pga7 and Rbt5 generates a conundrum: how can stable binding of

a ligand to a protein embedded in the cell wall matrix result in

Figure 7. Transfer of heme between Rbt5 and Pga7. The
indicated proteins were separated by gel filtration and the protein-
bound heme was detected by absorbance at 406 nm. Red curves:
50 mM of either apo-Rbt523–219 or apo-Pga718–195 in 100 ml was
incubated for 5 min with 25 mM heme before loading on the column.
Black and green curves: after pre-incubation of apo-Rbt523–219 or apo-
Pga718–195 with heme, 50 mM of the second protein was added and
incubated a further 5 min prior to loading on the column. The areas
under the curves were similar (+/210%) in all four runs.
doi:10.1371/journal.ppat.1004407.g007

Figure 8. Holo-Pga7 interacts with apo-Rbt5 and with apo-
Pga7. SPR analysis was carried out by immobilizing apo-Pga718–195,
apo-Rbt523–219, and the D72A mutant of apo-Rbt523–219, on a Biacore
biosensor chip. 3 mM holo-Pga718–195 was injected at time zero for
60 sec.
doi:10.1371/journal.ppat.1004407.g008
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uptake of the ligand into the cell? Rbt5 is found to be attached

mainly via an HF-sensitive linkage to the cell wall, indicative of a

covalent linkage to the end of b-(1,6)-glucan chains, as opposed to

Pga7, which is less abundant, appears by immunodetection to be

buried within the cell envelope, and displays fewer HF-sensitive

linkages and more b-ME -sensitive linkages to the cell wall. The

location of a protein at the end of a hydrophilic b-(1,6)-glucan

chain was suggested to confer a certain amount of diffusional

freedom, constrained only by the length of the chain [23]. The

abundance of Rbt5 was estimated to be on the order of 106

molecules per cell, based on quantitation of Rbt5-dependent 55Fe-

heme binding to C. albicans cells [14], suggesting that Rbt5

molecules could be as close as 10 nm apart on average on the

surface of a 5 mm-wide cell. It is thus conceivable that the

diffusional freedom conferred by the b-(1,6)-glucan anchor would

enable Rbt5 molecules to interact with one another. We found

that heme could be rapidly exchanged between Rbt5 and Pga7 in
vitro. The observation that heme can induce an homologous

interaction between Pga7 molecules (Fig. 8) suggests that it can be

transferred between homologous proteins as well, which would

enable it to be channeled from one CFEM protein molecule to the

next until it reaches the plasma membrane (Fig. 9). Such a relay

system would thus explain how heme-binding proteins embedded

in the rigid cell wall matrix can mediate heme uptake rather than

serving as heme sinks.

The ability of the heme to be efficiently transferred from one

CFEM molecule to the next within a single cell’s wall also raises

the possibility that, given sufficient proximity, or in the presence of

a hemophore, the heme could similarly be transferred between

different cells. Notably, recent results indicating that the secreted

CFEM protein Csa2 also plays a role in heme-iron utilization

([42,43] and our unpublished results), suggest that the CFEM

heme-transfer cascade in fact includes a soluble hemophore. Such

a molecule might conceivably be able to transfer heme not only

from the environment to the cell, but also between adjacent cells,

such as occur e.g. within biofilms, and it is thus notable that

CFEM proteins were found to play a role in C. albicans biofilm

formation [44].

Although we did not detect directionality in the transfer of heme

between Rbt5 and Pga7, directionality of the flow of heme may be

conferred by the irreversibility of the endocytosis step once the

heme molecules have reached the plasma membrane. The

endocytic pathway was found to play an essential role in heme

utilization [18]. A possible role for Pga7 would be to deliver heme

to the endocytic apparatus. Whether this would entail another,

third heme-binding component, or whether membrane-bound

fractions of Rbt5 or Pga7 accompany heme through endocytosis, is

not known. Genetic epistasis analysis of the rbt52/2 and pga72/2

mutants indicated that pga72/2 is more defective in heme

utilization, and that it is epistatic to rbt52/2. The model for heme

uptake proposed above can readily explain this genetic relation-

ship: whereas Pga7 would function in helping heme to penetrate

the cell via endocytosis, Rbt5 would merely facilitate diffusion of

heme across the cell wall. Thus, in the absence of Rbt5, heme

utilization is limited by the extent of free diffusion of heme or

hemoglobin through the outer layers of cell wall, while in the

absence of Pga7, its utilization may be limited by the more

restricted ability of the cell to internalize heme from the external

medium by general fluid-phase endocytosis. An alternative

explanation for the differential phenotype of rbt52/2 vs. pga72/2

is that the higher affinity of Pga7 for heme is responsible for its

requirement at lower heme concentrations. Pga7 and Rbt5 might

thus represent independent high-affinity, low-throughput and a low-

affinity, high-throughput systems of heme uptake, respectively,

similar perhaps to the parrallel high- and low-affinity uptake systems

for e.g. ammonium [45] or iron [46]. However in view of the

observed transfer of heme between Rbt5 and Pga7, of the

coordinate regulation of the two genes, and of their different

cellular location, we favor the model that places both proteins within

a single sequential heme uptake system.

CFEM proteins are found in many fungi. Alignment of the

CFEM proteins sequences most similar to Rbt5 and Pga7 that

were identified in 6 fungal genomes reveals clearly distinguishable

Rbt5 and Pga7 branches (Fig. S7). Each of six fungal genomes

screened appears to carry at least one Rbt5 homolog and one Pga7

homolog, possibly mirroring the functional distinction between

these proteins in heme uptake, and suggesting that the relay

network of heme acquisition may be conserved in these other

fungi. It is not clear however that all CFEM proteins are involved

in heme uptake, since S. cerevisiae, which does not utilize heme-

iron [8], does express a CFEM protein, Ccw14/Icwp, and since

none of the 3 Aspergillus fumigatus CFEM proteins could be

shown to bind hemin or to promote heme utilization [47]. On the

other hand, Candida glabrata CCW14, the apparent ortholog of

C. albicans SSR1, was recently shown to affect intracellular iron

homeostasis [48], suggesting a role in iron uptake of this class of

CFEM proteins as well. In addition, common to the mutants in all

the CFEM genes analyzed to date, be they members of the Rbt5/

Pga7 clade in C. albicans, the A. fumigatus CFEM proteins, or S.
cerevisiae Ccw14, are phenotypes consistent with structural defects

in the cell wall ([47,49,50] and our unpublished data). The notion

that Rbt5 and Pga7 are part of a dynamic protein network

involved in heme transfer does not exclude the possibility that

regardless of their nutrient uptake activity, CFEM proteins are

able to form structural networks of proteins that contribute to the

rigidity of the yeast cell wall.

C. albicans is a commensal organism of the human digestive

system, and it is presumably in this context that the heme

utilization pathway normally functions. The estimated one-third of

iron ingested as heme-iron in a typical Western diet is indeed

Figure 9. Schematic model of the heme relay network that
extracts heme from hemoglobin and delivers it to the
endocytic pathway. Cell wall polysaccharide organization was
modeled after [62,63]. The identity of the membrane receptor that
mediates internalization into the cell – Rbt5, Pga7, or another protein –
is unknown.
doi:10.1371/journal.ppat.1004407.g009
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relatively more bioavailable, compared to non-heme iron, in the

alkaline conditions of the small intestine lumen [51], and mouse

gut-adapted C. albicans cells, while exhibiting reduced expression

of elemental iron uptake genes, show persistent expression of heme

uptake pathway genes [52]. Nonetheless, we find that heme-iron

utilization contributes to the virulence of C. albicans in a systemic

infection model, indicating that this pathway may play a role in the

context of a systemic infection as well. The prognosis of systemic

candidiasis is still poor, with a crude mortality rate of 40% [53].

The identification of the network of cell surface proteins involved

in heme-iron uptake, and the demonstration that this pathway is

important for the virulence of C. alicans in a mouse bloodstream

infection model, may open up new possibilities for inhibiting this

pathogen, either by interfering with the CFEM heme uptake relay

network, or by taking advantage of this network to specifically

introduce toxic compounds into the cell.

Materials and Methods

Ethics statement
All experiments were performed under strict adherence to the

National Institutes of Health guidelines for the ethical treatment of

animals. Signs of infection (torticollis, lethargy, ataxia) were

monitored three times daily throughout the experimental time

course. Moribund mice were euthanized by cervical dislocation

under isofluorane anesthesia. Approval for these studies was granted

by the University of Tennessee Animal Care and Use Committee on

September 7, 2011 until September 6, 2014 (protocol # 016-0911).

The University of Tennessee has an Animal Welfare Assurance on

file with The Public Health Service and is under regulation of the

USDA and PHS. UT Animal Welfare Assurance Number – A3668-

01. UT AAALAC Accreditation File Number – File 000178 (UTK

is fully accredited by AAALAC).

Media and growth conditions
C. albicans strains were grown in rich medium (YPD; 1% yeast

extract, 2% Bacto peptone, 2% glucose, 25 mg/ml uridine).

Transformants were selected on SC-URA plates (0.17% yeast

nitrogen base; 0.5% ammonium sulphate, 2% glucose, 2% agar).

For iron starvation, cells were grown in iron poor medium (IPM)

or in iron free medium (IFM). IPM was prepared by supplement-

ing YPD with 1 mM ferrozine (Sigma) [8,54] IFM was prepared

as described previously [8,18] with the following modifications:

RPMI-1640 HEPES (Sigma) was supplemented with 2% glucose,

25 mg/ml uridine and 25 mg/ml adenine, then the medium was

desferrated by 5% w/v Chelex100 (Sigma) for 2 hours and

100 mg/ml human serum iron chelator apotransferrin (Sigma) was

added. Chelex100 beads were removed by filtration and essential

metals except iron were restored (40 mg/L CuSO4, 400 mg/L

ZnSO4, 400 mg/L MnCl2, 200 mg/L MoNa2O4 and 200 mg/L

CaCl2). The final pH was adjusted to 7.2 with 1N HCl, and only

medium prepared the same day was used.

P. pastoris was grown in YPD. Transformants were selected on

YPD supplemented with 100 or 1000 mg/ml Zeocin (Invitrogen).

Buffered Glycerol-complex Medium (BMGY; 1% yeast extract,

2% peptone, 100 mM potassium phosphate, pH 6.0, 1.34% YNB,

461025% biotin, and 1% glycerol) and Buffered Methanol-

complex Medium (BMMY; 1% yeast extract, 2% peptone,

100 mM potassium phosphate, pH 6.0, 1.34% YNB, 461025%

biotin, and 0.5% methanol) were used for protein expression.

Hemin and hemoglobin preparation
All stocks were freshly prepared before each assay. For growth

assays, stock solutions of 0.1 mM human hemoglobin (Sigma) in

PBS, 0.5 mM bovine hemoglobin (Sigma) in PBS, or 2 mM hemin

(Frontier Scientific) in 0.2 N NaOH were chelated with 5% w/v

Chelex100 (Sigma) for 2 hours before use. For all other assays,

hemin was prepared in PBS in the presence of 10 mM NaOH. For

NMR analysis, stock solutions of 0.1 mM bovine hemoglobin in

PBS and of 25 mM hemin in 0.1 N NaOH were used.

Plasmids and strains
CaPGA7 59 region (2930)-(21) and 39 region (+661)-(+1100) as

SacI-SpeI and HindIII-KpnI PCR fragments, respectively, were

cloned into KB986 [55], containing the hisG-URA3-hisG

fragment, to generate the PGA7 deletion plasmid (KB2025). A

PGA7 complementation plasmid (KB2111) was generated by

cloning the PGA7 region from (2570) to (+1343) as a HindIII-

KpnI PCR fragment into pBES116 [56]. The FLAG tag coding

sequence was introduced on a primer and fused after the signal

sequence, at position +52 of PGA7 and +79 of RBT5, and

introduced into pBES116 as HindIII-KpnI fragments to generate

KB2189 and KB2268, respectively. To overexpress FLAG-tagged

Pga7 under iron starvation, the RBT5 promoter region (2550)-(2

1) and the FLAG-tagged PGA7 open reading frame from KB2189

were fused by PCR and inserted as HindIII-KpnI fragments into

pBES116 to generate KB2274. To generate Pichia-expressed

proteins lacking signal peptide and GPI anchor consensus

sequences, KB2259 and KB2258 were constructed by amplifying

PGA7 (+52) to (+585) and RBT5 (+67) to (+657), respectively, and

introducing them as EcoRI-XbaI into pPICZaA (Invitrogen). The

aspartateRalanine mutants were constructed by PCR-mediated

site directed mutagenesis of KB2259 and KB2258 to generate

KB2296 and KB2271, respectively.

C. albicans strains are listed in Table 1. Deletion of PGA7 was

obtained in CAI-4 or CAF3-1 background by sequential deletion

of both alleles using plasmid KB2025 [57]. The deletions were

confirmed by PCR and Southern blot. Pichia pastoris strains for

expression of recombinant proteins are listed in Table 2. SacI-

linearized plasmids (KB2258, KB2271, KB2259, KB2258, or

KB2156) were integrated at the AOX1 locus of P. pastoris X-33

(Invitrogen) using the LiCl method as described in EasySelect

Pichia Expression Kit (Invitrogen), except that after four hours

recovery, 100 ml were plated on YPD +100 mg/ml Zeocin, and the

rest of the cells were plated on YPD +1 mg/ml Zeocin.

Growth assays
Overnight cultures grown in YPD were diluted in the morning

into a series of two-fold dilutions of hemin or hemoglobin in IFM

or IPM. Cells were inoculated in flat-bottomed 96-well plates at

OD600 = 0.0002 for IFM or OD600 = 0.000005 for IPM. Plates

were incubated at 30uC with 60 rpm shaking. Growth was

measured as optical density (OD600) with an ELISA reader after 3

days.

Virulence assay
The parental strain was compared to the pga72/2 mutant strain

and the re-integrant strain. The PGA7 gene was reintroduced in

the C. albicans genome on a URA3-marked plasmid. Since the

URA3 presence and position of integration into the genome is

known to affect the virulence of C. albicans [58,59], we introduced

the URA3 vector into the WT strain and the pga72/2 mutant

strain at the same ADE2 genomic location. C. albicans strains

were grown overnight in 50 ml of YPD at 30uC with constant

shaking. The strains were harvested, washed twice with water, and

resuspended to 16107 cells/ml in water. Each strain was injected

via tail vein into a group of 5 mice, 0.1 ml suspension (16106 cells)

per mouse. Mice were housed five per cage with food and water
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supplied ad libitum. Signs of infection (torticollis, lethargy, ataxia)

were monitored three times daily throughout the experimental

time course. Moribund mice were euthanized by cervical

dislocation under isofluorane anesthesia. Survival fractions in

virulence tests were calculated by the Kaplan-Meier method, and

survival curves were tested for significant difference (P,0.01) by

the Mantel-Haenszel test using GraphPad Prism.

Pulse-labeling
To measure the expression of FLAG-tagged proteins under iron

starvation conditions, C. albicans cells were grown overnight in IPM

at 30uC, diluted 1:20 in the same medium, and grown 2 hours to

OD600 = 1.3. 1.5 ml of the culture were spun down, washed twice in

low-iron YNB +1 mM ferrozine, resuspended in 0.1 ml of this

medium supplemented with 0.25 mCi 35S methionine/cysteine

(Perkin Elmer Easytag Express) and incubated for 5 min at 30uC.

Proteins were then extracted and immunoprecipitated as described

in [60], using a rabbit anti-FLAG antiserum Proteins were

separated by SDS-PAGE and visualized and quantitated using a

GE Typhoon FLA 7000 phosphorimager.

Protein localization
Samples for protein localization by immunofluorescence and

cell fractionation were taken from a single initial culture in each

Table 1. List of C. albicans strains.

Name Genotype or description Origin

KC2 = CAF3-1 ura3D::imm434/ura3D::imm434 [57]

KC78 = CAI4 ura3D::imm434/ura3D::imm434 [57](via A. Johnson)

KC590 = CAI4 ura3D::imm434/ura3D::imm434 [57](via J. Becker)

KC482 KC2 pga7D::hisG/pga7D::hisG This study

KC605 KC482 ade2:: FLAGPGA7 CaURA3 This study

KC712 KC482 ade2::RBT5p- FLAGPGA7 CaURA3 This study

KC645 KC590 ade2::CaURA3 This study

KC626 KC590 pga7D::hisG/pga7D::hisG This study

KC646 KC626 ade2::CaURA3 This study

KC647 KC626 ade2::CaURA3 PGA7 This study

KC589 CAI-4 rbt5D::hisG/rbt5D::hisG This study

KC706 KC589 ade2:: FLAGRBT5 CaURA3 This study

KC594 KC589 pga7D::hisG/pga7D::hisG This study

KC68 KC2 Caccc2D::hisG/Caccc2D::hisG [8]

KC811 KC68 ade2::CaURA3 This study

KC485 KC68 pga7D::hisG/pga7D::hisG This study

KC684 KC485 ade2::CaURA3 This study

KC536 KC485 ade2::CaURA3-PGA7 This study

KC617 KC485 ade2::CaURA3 FLAGPGA7 This study

KC711 KC485 ade2:: CaURA3 RBT5p- FLAGPGA7 This study

KC139 CAI-4 Caccc2D::hisG/Caccc2D::hisG rbt5D::hisG/rbt5D::hisG This study

KC683 KC139 ade2::CaURA3 This study

KC621 KC139 ade2:: RBT5 CaURA3 This study

KC713 KC139 ade2:: FLAGRBT5 CaURA3 This study

KC488 KC139 pga7D::hisG/pga7D::hisG This study

KC170 CAI-4 rbt5D::hisG/rbt5D::hisG rbt51D::hisG/rbt51D::hisG This study

Caccc2D::hisG/Caccc2D::hisG csa1D::hisG/csa1D::hisG

KC508 KC170 pga7D::hisG/pga7D::hisG This study

doi:10.1371/journal.ppat.1004407.t001

Table 2. List of P. pastoris strains.

Name Genotype or description Origin

KC755 Mut+ ZeoR Pga7(18–195a.a.)- Myc-66His This study

KC756 Mut+ ZeoR Pga7(18–195a.a.) D63A-Myc-66His This study

KC758 Mut+ ZeoR Rbt5(23–219a.a.)-Myc-66His This study

KC759 Mut+ ZeoR Rbt5(23–219a.a)D72A-Myc-66His This study

doi:10.1371/journal.ppat.1004407.t002
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experiment. To obtain maximal levels of expression, and given

that RBT5 and PGA7 are both induced by iron starvation,

ccc22/2 background strains were used, which are defective in

high-affinity iron uptake, and therefore partially iron starved even

in regular culture medium. Overnight cultures in YPD medium

were extensively washed with water, inoculated in iron-poor

medium at OD600 = 0.3, and grown to OD600 = 4 (about 6 hours).

For immunofluorescence, 5 ml aliquots were fixed with 4.5%

formaldehyde in 16PBS for 20 min and then subjected to the

immunofluorescence detection protocols, as described below. A

second 5 ml aliquot from the same culture was harvested by

centrifugation, washed with cold water and with 50 mM Tris

pH 7.5, snap-frozen in liquid nitrogen and stored at 280uC,

before sequential extraction (see below).

Immunofluorescence microscopy: untreated cells were rinsed

once in PBS +0.1% bovine serum albumin (PBS-BSA), then

blocked for 1 hour with PBS-BSA before overnight incubation at

4uC in PBS-BSA containing 1:500 monoclonal anti-FLAG M2

antibody (Sigma). Cells were then extensively washed with PBS-

BSA, and incubated in PBS-BSA containing Cy3-conjugated

Donkey anti-mouse IgG at 1:200 dilution (Jackson ImmunoR-

esearch) for 1 hour at room temperature. Cells were then washed

5 times with PBS and placed on polylysine-coated slides. Samples

fixed on slides were rinsed once with PBS before mounting in

Vectashield mounting medium containg DAPI (Vector Laborato-

ries). NaOH-treated cells were resuspended in 250 mM NaOH

and incubated for 20 minutes on ice before proceeding with

antibody staining as described above. For cell permeabilization,

cells were washed with phosphate buffer (pH 7.5), then resus-

pended in sorbitol buffer (phosphate buffer pH 7.5 containing

1.2 M sorbitol) with 0.5 mg/ml Zymolyase 100T (USBiological)

and 0.1% b-ME in sorbitol buffer, and incubated for 10 minutes

at 37uC. Two volumes of cold sorbitol buffer were added before

centrifugation and 2 additional washes in sorbitol buffer. Cells

were placed on polylysine-coated slides, then blocked in PBS-BSA

as above, and incubated in the presence of 1:500 monoclonal anti-

FLAG M2 antibody (Sigma) in PBS-BSA overnight in a humid

chamber at 4uC. Slides were washed with PBS-BSA and incubated

with Cy3-conjugated Donkey anti-mouse IgG (Jackson Immu-

noResearch) for 1 h at room temperature, rinsed once with PBS-

BSA, and mounted with Vectashield + DAPI (Vector Laborato-

ries). Epifluorescence microscopy was performed using a Zeiss

AxioImager M1 equipped with a plan- Apochromat 1006 oil

immersion objective and rhodamine and DAPI filter sets.

For sequential cell extraction, the frozen 5 ml cell culture pellets

were resuspended in 50 mM Tris-HCl, pH 7.5, and mechanically

broken with 425–600 mm glass beads (Sigma) in the presence of a

protease inhibitor cocktail. (1 mM phenylmethylsulfonyl fluoride

(PMSF), and 0.02 mg/ml each of chymostatin, pepstatin A,

leupeptin, and antipain), in a BeadBeater apparatus for 4 pulses

of 1.5 min each with 5 min intervals on ice. To remove the cytosolic

proteins, the lysate was centrifuged in an Eppendorf centrifuge at

max speed at 4uC for 30 min, and the supernatant was removed

and concentrated to 200 ml using an Amicon Ultra 3K MWCO

filter (Millipore). The pellets were then washed extensively with 1M

NaCl, and the wash fractions were pooled and concentrated to

200 ml in an Amicon Ultra 3K MWCO filter. To remove

membrane proteins, the pellets were extracted 5 times by heating

5 min at 95uC in 50 mM Tris pH 7.5, 2% SDS, centrifuged at RT,

and the supernatants were pooled and concentrated. To remove

disulfide-linked cell wall proteins, the pellets were extracted 4 times

by heating 5 min at 95uC in 50 mM Tris pH 7.5, 2% SDS, and 4%

b-ME, centrifuged at RT, and the supernatants were pooled and

concentrated. The remaining pellets were extensively washed with

cold water, dried and frozen in liquid nitrogen. To release GPI-

ß1,6-glucan-linked cell wall proteins, frozen cell wall pellets were

incubated in 200 ml HF-pyridine (Sigma) at 0uC for 3 h [23]. The

supernatants were removed after centrifugation and precipitated by

addition of 9 volumes of 95% methanol buffer (95% [vol/vol]

methanol, 5% 1 M Tris-HCl pH = 7.5) and incubated at 0uC for

2 hours. The pellets were washed 3 times with 85% methanol buffer

(85% methanol, 5% 1 M Tris-HCl pH = 7.5, 10% H2O), dried and

resuspended in 26Laemmli Sample Buffer. 1/50 of each fraction

was loaded onto precast 4–20% TGX gels (BioRad), followed by

Western blot transfer to Immobilon transfer membranes (Millipore).

Blots were reacted with a polyclonal anti-FLAG antibody (Sigma;

1:1,000) and secondary IRDye 800 antibody (LI-COR; 1:10,000),

followed by imaging and quantitation of the FLAG-tagged proteins

using the Odyssey Infrared Imaging System (LI-COR).

For detection of FLAG-Pga7 and Rbt5 at native expression

levels, an overnight culture in YPD was washed once with water

and diluted to OD600 = 0.3 in 10 ml IFM, then grown for 5 hours

to OD600 = 2. The cells were then harvested by centrifugation,

resuspended in 50 mM Tris-HCl, pH 7.5, and mechanically lysed

using a bead-beater apparatus. Cell fractionation was carried out

as described above but the lysate supernatant and NaCl

extractions were discarded. The membrane proteins were

extracted once by heating for 5 min at 100uC in 50 mM Tris

pH 7.5, 4% SDS, centrifuged at RT, and the disulfide-linked cell

wall proteins were extracted once by heating for 5 min at 100uC in

50 mM Tris pH 7.5, 4% SDS, and 4% b-mercaptoethanol,

followed by centrifugation at RT. 1/5 of each fraction was loaded

onto a 6%–15% gradient SDS-PAGE gel, followed by Western

blot transfer to a nitrocellulose membrane. Blots were incubated

with monoclonal anti-FLAG M2 antibody (Sigma; 1:1,000) and

secondary anti-mouse-HRP antibody (Jackson labs; 1:5,000). Then

the blots were stripped and incubated with anti-Rbt51 and

secondary anti-rabbit-HRP antibody (Sigma; 1:5,000)

Recombinant protein expression and purification
The various rPga7 and rRbt5 derivatives were expressed as C-

terminal Myc-66His tagged proteins in the P. pastoris expression

system as described (Pichia expression manual, Invitrogen,

Carlsbad, CA). Briefly, cells from an overnight culture in BMGY

were washed in 2 volumes of water and diluted in BMMY to

OD600 0.5–1. Cultures were then incubated at 28uC with vigorous

shaking for 72 to 96 hours, with addition of 0.5% methanol every

24 hours. The cells were removed by centrifugation (1500 rpm,

30 min), 10 mM imidazole was added to the supernatant, and the

pH was adjusted to 8.0. The medium was centrifuged again

(13,000 rpm, 20 min), and the supernatant was filtered through a

nitrocellulose 0.22 mm filter, then loaded onto a 2 ml HisTrap FF

affinity column (GE Healthcare) equilibrated with 300 mM NaCl

and 50 mM NaH2PO4, pH = 8. The column was washed every

150 ml load with 20 mM imidazole in 300 mM NaCl and 50 mM

NaH2PO4, pH = 8, then the proteins were eluted with 250 mM

imidazole in 300 mM NaCl and 50 mM NaH2PO4, pH = 8. To

remove bound heme and obtain pure apo-protein, the proteins

were treated with 3 M imidazole by tilting for 2 hours at 4uC,

followed by centrifugation for 30 minutes at 4uC, until all heme

was precipitated and the supernatant was clear. The supernatant

was then filtered and loaded onto a HiLoad 16/60 Superdex size

exclusion column (GE Healthcare) equilibrated with PBS.

Hemin-bead association/dissociation assays
Association. Proteins (750 nM) in PBST (PBS +0.005%

Tween 20) buffer were assessed for their ability to bind hemin-

agarose vs. glutathione-agarose columns (Sigma). Beads and

Fungal Heme Acquisition Network

PLOS Pathogens | www.plospathogens.org 12 October 2014 | Volume 10 | Issue 10 | e1004407



protein were mixed for 2 hours on a rotator at room temperature.

Beads were extensively washed with PBST, resuspended in 26
Laemmli Sample Buffer +4% b-ME, and heated for 10 minutes at

100uC before loading onto precast 4–20% TGX gels (BioRad).

Proteins were transferred by Western Blot to immobilon transfer

membrane (Millipore), which was reacted with the anti-Myc 9E10

antibody (1:1,000) followed by the anti-mouse IRDye 800

antibody (LI-COR; 1:10,000), and detection by Odyssey Infrared

Imaging System (LI-COR).
Dissociation. Recombinant proteins from P. pastoris growth

medium were immobilized onto hemin-agarose for 2 hours as

described above. The beads were then washed with PBS and

resuspended in the indicated buffers (Glycine-HCl pH = 2.2,

Citrate-Phosphate pH = 4.2, Citrate-Phosphate pH = 5.2, Cit-

rate-Phosphate pH = 6.2, Tris-HCl pH = 7.2, Tris-HCl pH = 8.2,

Carbonate-Bicarbonate pH = 9.2, Carbonate-Bicarbonate

pH = 10.2, imidazole as indicated in PBS) and incubated for

1 hour. The supernatant was separated by centrifugation, and 56
Laemmli Sample Buffer was added. Beads were washed with PBS

and resuspended in 26 Laemmli Sample Buffer in the same

volume as the corresponding supernatant sample. Samples were

gel-separated and detected as above.

Heme extraction from hemoglobin
Bovine hemoglobin was covalently bound to CnBr-activated

Sepharose-4B beads (Sigma). The hemoglobin (Hb) beads were

washed extensively before incubation with Pga7 and Rbt5 to

remove any spontaneously released heme. The experiment was

done in triplicate for each sample. A UV-Vis spectrum of 50 mM

apo-proteins was measured using Thermo Scientific Nano-

Drop2000 (BD bioscience), then 50 ml of the protein solution, or

of buffer alone, was mixed with 10 ml Hb-beads. The samples were

tilted for 30 minutes at room temperature, and UV-Vis spectrum

of the supernatant was taken as above. The average spectrum of

the triplicate sample was plotted.

Isothermal Titration Calorimetry (ITC)
Titrations were performed at 25uC using a MicroCal iTC200

system (GE HealthCare). Proteins were in PBS and hemin was

freshly prepared and diluted in PBS. All injections were carried

out at 150 second intervals. To prevent/minimize heme adsorp-

tion, the calorimeter cell and the micro syringe used for injections

were extensively washed with 10 N NaOH after each experiment.

Protein concentration was determined using a NanoDrop spec-

trophotometer, and heme stock concentration was determined by

absorbance at 398 nm in organic solution [61]. For the titration

experiments, the concentrations of recombinant protein was

60 mM in the syringe and 20 mM hemin in the cell for rRbt5

titration and 10 mM hemin in the cell for rPga7 titration. Each

titration was repeated at least 3 times with different protein

batches.

The resulting titration data were analyzed and fitted using the

Origin for ITC software package supplied by Microcal to obtain

the stoichiometry (n), the dissociation constants (KD), the enthalpy

(DH) and the entropy (DS) changes of binding. For the fit, any

constraints on the stoichiometry and DH were not fixed.

Absorption spectroscopy
UV–visible absorption spectra of hemin titrated into PBS buffer

or into a Pga7 solution was collected using a Cary 50 scanning

spectrophotometer (Varian), and a 1-cm-pathlength 3 ml quartz

cuvette. Heme stock concentration was measured as described

above. The Pga7 concentration was determined by the absorbance

of Pga7 at 280 nm using predicted absorption coefficients of

e= 26,600 mM21. In order to calculate the stoichiometry, the

relative absorbance at 406 nm of Pga7-heme minus heme alone

was plotted against the heme concentration.

Size exclusion chromatography
100 ml samples were injected in a Superdex 200 10/300 column

(GE Healthcare) equilibrated with PBS, and monitored on an

AKTA Avant system. Absorbance was recorded at 280 nm and

406 nm.

Nuclear Magnetic Resonance
NMR experiments were performed on protein samples ranging

from 0.1 to 0.5 mM concentration in PBS buffer, pH 7.4.

Monodimensional 1H NMR spectra tailored to detection of

paramagnetic signals were acquired at 600 MHz (14.1 T) with a

spectral width of 200 ppm and 64 K data points. Water

suppression was achieved by fast repetition rate and presaturation

during a 100-ms recycle delay.

SPR measurements
All measurements were performed using a Biacore T200

apparatus (GE). Proteins were subjected to size exclusion

chromatography to remove any trace of aggregation. The CFEM

proteins were immobilized directly onto a CM-5 chip using

standard amine chemistry. All injections were performed multiple

times in random order and double-blanked against an empty cell

and against buffer alone. Data analysis was performed using

Biacore’s standard evaluation software.

Supporting Information

Figure S1 Alignment of the signal peptide-CFEM do-
main region of the five most closely related C. albicans
CFEM proteins, Rbt5, Rbt51/Pga10, Csa2, Csa1 (1st

CFEM domain only) and Pga7. The sequences were aligned

using the MAFFT G-INS-i algorithm and visualized with Jalview

[64]. The location of the FLAG epitope introduced into Rbt5 and

Pga7 is indicated with a green arrowhead. The conserved aspartic

acid mutagenized in Rbt5 and Pga7 is indicated with a red

arrowhead. The predicted GPI anchor site of Rbt5 and Pga7 is

indicated with an orange arrowhead.

(TIF)

Figure S2 The ccc22/2 pga72/2 strain is strongly
defective in heme and hemoglobin-iron utilization. The

indicated C. albicans CFEM protein deletion strains in ccc2-/-
background were grown in iron-limiting conditions (YPD +1 mM

ferrozine) in the presence of increasing concentration of either

bovine hemoglobin (A) or hemin (B) as a sole source of iron.

Optical density was measured after 3 days at 30uC. Error bars

represent standard deviations of triplicates. The strains used were

KC68 (ccc22/2), KC139 (ccc22/2 rbt52/2), KC170 (ccc22/2

rbt52/2 rbt512/2 csa12/2), KC485 (ccc22/2 pga72/2), KC508

(ccc22/2 rbt52/2 rbt512/2 csa12/2 pga72/2).

(TIF)

Figure S3 FLAG-tagged Pga7 and Rbt5 are fully active in
vivo. The ability of the FLAG-tagged alleles of RBT5 and PGA7
to complement their respective deletions was compared to

complementation with the native alleles of these genes, by growing

the strains in iron-limiting conditions (YPD +1 mM ferrozine) in

the presence of increasing concentration of bovine hemoglobin as

a sole source of iron. Optical density was measured after 3 days at

30uC. Error bars represent standard deviations of triplicates.

(TIF)
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Figure S4 Stability of Pga7 and Rbt5 binding to hemin-
agarose. The recombinant proteins Rbt523–219 and Pga718–195

were immobilized on hemin-agarose beads. Release of Rbt523–219

and Pga718–195 from hemin-agarose was tested at different pH (A)

and different imidazole concentrations (B). B = bound fraction,

S = supernatant (released) fraction.

(TIF)

Figure S5 Stable heme binding by Rbt5 and Pga7. apo-

Rbt523–219 or apo-Pga718–195 (50 mM) were subjected to size

exclusion chromatography before (top panels) or after (bottom

panels) a 5 min incubation with 25 mM heme. Absorbance was

measured at 280 nm (blue curves) and 406 nm (red curves),

representing protein and heme absorbance, respectively.

(TIF)

Figure S6 Apo-Pga7 interacts with apo-Rbt5 but not
with apo-Pga7. SPR analysis was carried out by immobilizing

the recombinant CFEM proteins Pga718–195 (green), Rbt523–219

(blue), and the D72A mutant of Rbt523–219 (red) on a biosensor

chip. 1.25 mM apo-Pga718–195 was injected for 120 sec over all

three surfaces.

(TIF)

Figure S7 Proximity tree of Pga7 and Rbt5 homologues
in six fungal genomes. The genomes of five species were

screened for sequences similar to C. albicans Rbt5, Rbt51 and

Pga7 by BLAST. The 18 most homologous sequences were

aligned using the MAFFT G-INS-i algorithm [64] and a tree was

built on this alignment using the NJ method. Prefixes: no prefix –

C. albicans; Cp – C. parapsilosis; Ct – C. tropicalis; Clus – C.
lusitaniae; Dh – Debaryomyces hansenii; Lelon – Lodderomyces
elongisporus.
(TIF)
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