
Heliyon 7 (2021) e06997
Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon
Research article
Self-selection of evolutionary strategies: adaptive versus non-adaptive forces

Matthew Putnins a, Ioannis P. Androulakis a,b,c,*

a Biomecdical Engineering Department, Rutgers University, Piscataway, NJ, USA
b Chemical & Biochemical Engineering Department, Rutgers University, Piscataway, NJ, USA
c Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
A R T I C L E I N F O

Keywords:
Evolution
Genetic algorithms
Adaptation
* Corresponding author.
E-mail address: yannis@soe.rutgers.edu (I.P. An

https://doi.org/10.1016/j.heliyon.2021.e06997
Received 7 November 2020; Received in revised fo
2405-8440/© 2021 The Authors. Published by Else
nc-nd/4.0/).
A B S T R A C T

The evolution of complex genetic networks is shaped over the course of many generations through multiple
mechanisms. These mechanisms can be broken into two predominant categories: adaptive forces, such as natural
selection, and non-adaptive forces, such as recombination, genetic drift, and random mutation. Adaptive forces
are influenced by the environment, where individuals better suited for their ecological niche are more likely to
reproduce. This adaptive force results in a selective pressure which creates a bias in the reproduction of in-
dividuals with beneficial traits. Non-adaptive forces, in contrast, are not influenced by the environment: Random
mutations occur in offspring regardless of whether they improve the fitness of the offspring. Both adaptive and
non-adaptive forces play critical roles in the development of a species over time, and both forces are intrinsically
linked to one another. We hypothesize that even under a simple sexual reproduction model, selective pressure will
result in changes in the mutation rate and genome size. We tested this hypothesis by evolving Boolean networks
using a modified genetic algorithm. Our results demonstrate that changes in environmental signals can result in
selective pressure which affects mutation rate.
1. Introduction

Evolution consists of both non-adaptive and adaptive forces. Non-
adaptive forces are primarily random, including mutation, genetic
drift, and recombination. Adaptive forces depend on the relative or ab-
solute fitness of individuals within a population, such as natural selec-
tion. The causes, mechanisms, and outcomes of each of these forces vary.
Although all of these forces play critical roles in evolution, mutation is
the ultimate source of novel genetic information [1]: recombination
utilizes existing genetic material, genetic drift is the stochastic change in
allele frequency of existing genes, and natural selection is a bias in the
selection of existing organisms because of how existing traits interact
with their environment.

Natural selection, mutations, recombination, and genetic drift all
interact with one another throughout the course of evolution [2–5]. The
interplay between these processes results in the emergence of complex
networks of gene interactions, which continue to change over time. As-
pects of these networks are gradually changed over the course of gen-
erations through both the random and selective pressures of evolution,
with beneficial network features more likely to be conserved [3, 4, 6, 7, 8,
9, 10]. The relative influence of each evolutionary force on the formation
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and modifications of these networks is debated [1, 3, 4, 11, 12], with
random, non-adaptive forces limiting the effects of selection under
certain circumstances [3, 4, 11, 13].

Some of these forces, such as the rate of mutation, are evolvable traits.
The rate of mutation is driven by the fidelity of the DNA replicase which
exists within each organism [2, 4, 5, 13, 14]. While the rate of mutation
may not affect a living organism's current chance of procreation, muta-
tions that occur during reproduction may be neutral, deleterious, or
beneficial. If mutations are more likely to be deleterious, then organisms
that have high mutation rates are more likely to have less-fit offspring. It
is generally believed that most mutations are neutral, with a small ten-
dency toward deleterious mutations [15, 16]. Under this paradigm most
genetic mutations will result in neutral changes to an organism [3, 11]. If
neutral forces are the main forces acting on the genetic makeup of a
species, then deleterious mutations can only be purged through natural
selection if the force of selection is higher than the force of genetic drift
[13, 17].

From this we would expect that the evolution of mutation rate would
be driven by the selective force against deleterious mutations and the
ability of the population to overcome genetic drift, which is determined
by population size [4, 13]. Non-adaptive forces, such as drift and random
ril 2021
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mutations, also play a role in shaping more complex genetic traits, such
as genetic regulatory networks [3, 6, 18], and there are a number of
different ideas on how function, selection and the non-adaptive processes
of evolution influence the formation of these networks [3, 7, 10, 18, 19,
20, 21, 22].

Studying how complex traits, nonadaptive forces, and adaptive forces
interact requires a holistic view of the evolutionary process allowing for
each respective aspect to properly influence the course of evolution.
Proposed models of gene network formation primarily focus on either
non-adaptive or adaptive processes as explanations for gene networks,
while studies looking into the influence of selective pressure on non-
adaptive processes, specifically the effect of selection on mutation rate,
are often de-contextualized from more complex polygenic traits.

There has been much research into the paradigm of non-adaptive
forces as the primary driver of complex gene network formation, with
networks formed by random processes appearing to be similar in struc-
ture to biological networks [10, 18, 22, 23]. These non-adaptive network
models assert the null hypothesis: The structure of regulatory networks
exists because of the rules that create them, not because of the selection
of specific functions. These models are proposed as explanations for types
of structures found universally within gene networks, such as the
scale-free nature of some biological networks [18]. However, other evi-
dence suggests that biological networks may not be scale-free [24, 25] or
may not have small world properties [26] and that many functional ge-
netic network structures are conserved over long periods [19, 20, 21]. In
addition, these networks present non-adaptive forces (such as mutation
rates and gene duplications) as static, constant phenomenawhen genome
size and mutation rate have both been seen to change in response to
external stressors [27, 28].

Research into functional network models, focused on the perfor-
mance of a network rather than the non-adaptive forces that form it, are
meant to understand how function influences network structure, and
have used a variety of functions models which include electronic logic
circuits [8], neural networks [29], and networks that exhibit oscillatory
behavior [6, 30]. The algorithms used to identify potential functional
network structures are not always evolutionary, which would ignore the
influence of non-adaptive processes altogether, and those which are
suffer shortfalls by evolving networks using fixed mutation rates [29, 31,
32] or fixed network size [6].

In addition to the non-adaptive network models and functional
network models, the third set of relevant models look at the influence of
selective pressure on mutation rate. Mutations are the result of a random
process, but that random process is a genetically heritable trait which
makes it susceptible to the same forces of natural selection. If mutations
are generally deleterious then the mutation rate will always be selected
against and will asymptotically approach some lower limit, known as the
drift barrier hypothesis [4, 13, 17]. Evidence indicates that selective
pressure may influence the mutation rate as well, with environmental
stressors leading to changes in the mutation rate of a population [2, 5, 12,
33, 34]. The competing ideas of mutation rate being limited by genetic
drift, or mutation rate being selected by genetic hitchhiking are not
mutually exclusive, with stable populations likely benefiting from a
depressed mutation rate while populations in changing environments
where multiple beneficial mutations are possible, or even necessary,
would be likely to encourage the hitchhiking of higher mutation rate
traits. There has been less research which contextualizes the evolution of
the mutation rate in the context of complex, polygenic traits.

We propose a computational model of evolution which would allow
both adaptive and non-adaptive forces to influence the formation of
complex networks, while simultaneously allowing for the mutation rate
to act as a heritable trait as it would in real world populations. This model
mimics environmental signal transduction to study how environmental
pressure, selection of complex traits, and nonadaptive forces interact.
The fitness of each individual is determined by how well the evolvable
transduction network, represented by a Boolean network, creates a
desired output signal based on environmental signals.
2

This model contextualizes the evolution of mutation rate with the
evolution of complex, polygenic traits. We hypothesize that there should
be two behaviors of the mutation rate: when the population is relatively
stable phenotypically, we should see an asymptotic decrease in the mu-
tation rate, as predicted by the drift-barrier hypothesis, while we would
expect drastic changes in the environment to result in increased mutation
rate. We can further expect that the mutation rate in these changing
environments will generally increase by secondary selection. This would
show that while the mutation rate is not tuned to optimize evolution in
response to stressors, it still changes in response to stressors and may
have broader effects on a population, including increasing genetic
diversity.

To capture these behaviors, we performed two types of simulations:
one with a static fitness function, and one where the fitness function is
changed within a run of the genetic algorithm allowing the same popu-
lation to evolve in two different epochs. We would expect that the static
fitness function populations will have an asymptotically decreasing mu-
tation rate and generally lower diversity over time, while populations
which have a change in fitness function will increase their mutation rate
when the fitness function changes and as a result have higher diversity.

2. Methods

2.1. Evolutionary algorithm

We used a modified genetic algorithm [35] to simulate the evolution
of regulatory networks. These regulatory networks are represented by
Boolean networks, with the value of each node being a binary value (0 or
1) at discrete time points represented as integer values. These regulatory
networks are simulated multiple times, with each simulation having a
stimulatory input signal and different initial conditions for each of the
nodes within the network. The network produces an output signal in
response to this input and depends on the initial conditions of the
network. The fitness of the network depends on how closely the period of
the output signal matches the period of the target, summed across the
multiple simulations.

For our simulations in this paper there are 3 distinct input signals for
each network, with each input signal having a unique target period. The
periods of the three targets are linearly related as τ, 2*τ, and 4*τ. In these
specific simulations τ represents the smallest oscillatory period a network
is expected to produce and serves as a normalizing factor to compare how
difficult it may be for a population to evolve a specific function. These
simulations were performed in two ways: One with a static value of τ for
the whole course of the evolution, and one with a τwhich changes after a
predefined number of generations, which breaks the evolution into two
epochs.

In this genetic algorithm an individual I is represented by three pa-
rameters: The regulatory network, the mutation rate of the network and
the duplication/deletion rate of the network. The regulatory network is
the Boolean network discussed briefly above, and in detail below. The
mutation rate determines the probability of connections within a
network being formed, deleted, or modified. The duplication/deletion
rate refers to the probability of a node being duplicated or deleted during
themutation phase of the genetic algorithm. Themodel is initialized with
a population P, which consists of a set of individuals. For our model the
population consists of one hundred individuals. Each individual is
initially identical: an initial naïve network, a preset mutation rate and a
preset duplication/deletion rate. The initial networks have no edges and
are hence “naïve”. These networks initially have five nodes, which
include one input node, one output node, and three intermediate nodes.
The fitness of each individual is assessed, and tournament selection is
used to select two individuals (p1 and p2) as parents. The parents then
generate two offspring o1 and o2 by a crossover operator, which results in
the new regulatory networks for the next generation.

Each offspring receives the mutation rate and duplication/deletion
rate from one of its parents. Each offspring network is mutated based on
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the inherited mutation rate, and each offspring network has the number
of nodes adjusted by the duplication/deletion rate inherited. The muta-
tion rate and duplication/deletion rate are then modified based on a
random variable. The offspring replace the parent in the next generation,
without any form of ratchet or elitism mechanism. This process is
repeated until a predefined number of generations pass. There are no stop
conditions based on fitness or other parameters, only based on the
number of generations passed. This is summarized by the algorithm (GA)
below:

Start GA
initialize P
g ¼ 0

while g � gmax
g ¼ gþ1
evaluate fitness of individuals in P
select parents from individuals in P
crossover parents to form offspring
mutate offspring
duplicate/delete nodes in offspring
mutate mutation rate and duplication/deletion rates

end while
end GA

2.1.1. Individual representation
Each individual consists of a regulatory network, a mutation rate, and

a duplication/deletion rate. Each regulatory network is modeled using a
Boolean network which consists of environmental input, an output, and a
series of functional nodes. The regulatory network is represented by an
adjacency matrix, which contains all the information necessary to
construct the Boolean network. Each row of the matrix represents a node,
with each column within that row representing how that node connects
to other nodes in the network. For our specific experiments, the first row
Figure 1. General overview of how an individual network is processed. Each individu
processing section of the network and produces an output signal. The network output
information describing a network. Each row corresponds to a node and each column r
logic representation. The second network assumed the duplication of node “3” which
logic is mutated in the third network. Each index on the adjacency matrix can have
integer. The value represents a logical function associated with the connection: All in
while all incoming edges with a functional value of 2 are combined using an AND f
groups. In this example the column labelled “2” represents the inputs to Node 2. The
processed by an AND function.

3

represents the input node, and the last row represents the output node of
the network.

The logic controlling the incoming connections to a node is deter-
mined by the numeric values within the adjacency matrix. Each index on
the adjacency matrix can have a value of 0, which represents there is no
edge present or a positive or negative integer. For example: all incoming
edges with a functional value of 1 are combined using an OR function,
while all incoming edges with a functional value of 2 are combined using
an AND function. Complex functions are then defined by combining
multiple functional groups. In the example of Figure 1, the column
labelled “2” represents the inputs to Node 2. The presence of 2 inputs
each with a value of “2” represents that these inputs will be processed by
an AND function. In this way the value of a node N at time point t during
the assessment of the regulatory network is determined based on the
binary value of the Boolean function associated with that node (BN)
during the prior time point:

NðtÞ¼BNðt� 1Þ
The value of each node within the network is either 1 or 0. The

functions defining relationships between these nodes are logic functions
based on Boolean logic. These functions may be AND, OR, and NOT.
Other Boolean functions (such as NAND or XOR) were excluded because
they are not generally found in evolved gene networks.

The environmental input is represented by a node in the network (and
thus, also represented in the adjacency matrix) whose value is set by the
input signal. The network is not allowed to form edges which lead to the
input node.

The output is used to measure the fitness of the network and is repre-
sented by a node in the network. To prevent any trivial solutions from
forming, theoutput nodewasnot allowed to formanyoutgoing connections.

Although the input and output nodes have restrictions on having
incoming or outgoing edges, there are no restrictions on the other nodes.
al receives an environmental signal. This signal is propagated through the signal
is used to assess the fitness of the individual. An adjacency matrix expressed the
epresents the corresponding connection of that node. The first network describes
results in augmenting the logic driving the activity of node “2”. The same node's
a value of 0, which represents there is no edge present or a positive or negative
coming edges with a functional value of 1 are combined using an OR function,
unction. Complex functions are then defined by combining multiple functional
presence of 2 inputs each with a value of “2” represents that these inputs will be
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Because the intermediary nodes have no restrictions, they may form
feedback loops, feedforward loops and other networks structures which
may create or alter oscillations even if the input is a constant signal.

2.1.2. Fitness evaluation
Each network within a population is assessed for fitness by comparing

the output of the network in response to multiple environmental inputs.
The simulation of regulatory networks uses k input signals, with each
input having a different pattern. This pattern may be a constant (for
example the input node may be fixed to a constant value of 1) or may be
oscillating (for example the input node may oscillate between 0 and 1
every time point). In all of the simulations for this model k is set to 3.

When the fitness is assessed for an input signal the initial conditions
of the nodes in the network are important: different initial conditions
may result in different output signals (even using the same input signal)
from the network. However, it becomes computationally difficult to
calculate the fitness for every possible initial condition as the networks
get larger. Thus, the fitness for each of the input signals is assessed for s
starting conditions. These starting conditions are randomly selected. In
all of the simulations for this model s is set to 32, which is the number of
possible starting conditions given the initial network size of 5.

This results in k*s total network simulations per network for the
purpose of assessing the fitness of the network. Each network simulation
is stopped once a limit cycle is reached. This is determined when two
time points have identical values for every single node, regardless of how
many time points are between these two time points. If allowed to
continue, this cycle would repeat indefinitely because the Boolean net-
works are updated in a deterministic way. The period of the output signal
(Oai) of the network for that simulation is the length of the limit cycle.

Once all of the network simulations reach limit cycles, the period of
the output signal in each network simulation is collected into an output
period set [Oa1,1; Oa1,2 ...Oak,s]. This set represents a 1:1 comparison of
environmental stimuli to the network's response. The output oscillation is
assessed only on the period of the output signal, regardless of the specific
pattern of the output signal. The elements of the output period set are
compared against the set of target periods [Ot1,1; Ot1,2 …Otk,s]. The fitness
of the network is then determined by the difference between the set of
actual outputs and the target outputs:

Fitness¼
Xk

1

Xs

1

Oti � jOai �Otij

2.1.3. Selection
Selection was performed using a tournament selection with replace-

ment for each parent. This was done by selecting ten individuals at
random. The tournament was performed deterministically, so that the
best individual of each tournament was selected. If there was a tie, the
Figure 2. Representation of the crossover operation used in the model used in this p
population. Crossover is performed by selecting rows from either parent randomly i

4

winner was selected randomly. Once two parents were selected crossover
was performed.

2.1.4. Crossover and mutation
After parental pairs are selected, crossover is used to create two

offspring. Crossover is performed by creating a new adjacency matrix for
the offspring networks. For the new adjacency matrix each row is filled in
using a row from one of the parental networks randomly (Figure 2).

The selection and crossover processes are repeated until one hundred
offspring are created to form the next generation. Each offspring then
undergoes mutation, node duplication/deletion and has its mutation and
duplication/deletion rate modified as described below.

For each offspring, each index in the adjacency matrix has a chance of
being mutated with a probability equal to the mutation rate it has
inherited. This mutation sets the value of the index to either 0, or a
positive or negative value of a functional group. This allows for each edge
to be deleted, added, or functionally modified in the same mutation step.

2.1.5. Node duplication/deletion
After offspring networks were created using crossover and mutation,

they undergo duplication/deletion which allows for networks to modify
their size. Each individual has a duplication/deletion rate associated with
it, which represented the probability that a node may be duplicated or
deleted during the mutation step of the genetic algorithm. For each node
a random number is generated, if it is equal to or less than the duplica-
tion/deletion rate, the node is selected for a “duplication/deletion”
event. There is a 50%probability that the selected node is duplicated,
which creates a new node that is added to the network, with all incoming
and outcoming edges of the node being identical to the duplicated node.
Figure 1 shows a network before and after a duplication event. Dupli-
cated nodes are capable of gaining novel functions by mutation, such as
the mutation shown in Figure 1 where a change from a positive to
negative value changes an input into a “NOT” gate signified by a red edge
between the nodes. If the selected node was not duplicated, then it is
deleted by removing the node and all associated incoming and outgoing
edges.

2.1.6. Mutation and duplication/deletion rate modification
Although the fitness (and therefore chance an individual is selected as

a parent) is not dependent on the mutation rate or duplication/deletion
rate these rates are inheritable and therefore successful individuals will
pass on their rates with greater frequency. If a higher or lower mutation
rate is beneficial (for example if higher mutation rates introduce dele-
terious mutations) then there should be some secondary selection for or
against mutation and duplication/deletion rates. These rates are bounded
between 0 and 1, as there cannot be less than a 0% or greater than a
100% chance of a mutation or duplication/deletion event occurring.
aper. Each table represents the adjacency matrix of regulatory networks within a
n order to create the adjacency matrix of the offspring.



M. Putnins, I.P. Androulakis Heliyon 7 (2021) e06997
Each individual's rate of mutation and duplication/deletion is
adjusted by the following formula, where RAN is a random number from
90 to 110 and Rateg represents the mutation or duplication/deletion rate
for the current generation:

Rategþ1 ¼Rateg*
�
100
RAN

�

This multiplicative random walk was used to represent the genetic
basis of gene fidelity during reproduction: if an individual has a lower
mutation rate there is a lower likelihood the DNA replication machinery
mutates. Because of the bounds and the multiplication used, this pro-
duces a random walk which averages close to 0.5. This was used in favor
of a more standard additive random walk, because a multiplicative
random walk avoids large percentage updates in the mutation rate.

2.1.7. Identification and structural analysis of core networks
Core networks are determined from the final population as a post hoc

analysis after the genetic algorithm run is complete. This is done to
identify the nodes within a network which contribute to the period of the
output signal, as some nodes may be effectively functionless. This is
considered the core network because it is both necessary and sufficient to
describe the behavior of the output of the network and used for later
analysis. A series of attacks on each network was used to identify the
critical components of the network.

Two different stuck-at-fault attacks are then applied to each non-
input/output node in the network. An attack is performed by setting a
node within a network to a value of either 1 or 0, creating 2 possible
attacks per node. The stuck-at-fault value overrides the existing logic of
the node. Our regular assessment of the network was performed: each
potential input was given to the input node, and the resulting output from
the output node was measured. If the resulting output does not equal Oi,
the attack is then considered lethal, regardless of how close the output
may be. If either attack is considered lethal then the attacked node is
considered part of the core network.

2.1.8. A measure of population structural homogeneity
To assess how homogenous a population of networks is, we developed

a measure of Evolutionary Edit Distance (EED). This is the minimum
number of “evolutionary moves” which are required to transition from
one network to another. This is derived from the “graph edit distance”
which describes the number of moves necessary to transition from one
graph to another. An evolutionary move is an addition, deletion, or
modification of an edge between two nodes or the duplication/deletion
of a node.

This distance score was based on the concept of “edit distance” from
graph theory [36]. We can define the “Evolutionary distance” between
two graphs G and G’’ similarly to how the graph edit distance can be
defined [37]:

EEDðG;G0 Þ ¼ min
8ðe1;e2…ekÞ2EðG;G0 Þ

(
CEDðG;G0 Þ

ðe1;e2…ekÞ

)

where CED represents the number of edits for each edit path ei which
would convert the graph G to G’. Because node duplication and node
deletionmay have different amounts of change in information, we cannot
assume EEDðG;G0 Þ ¼ EEDðG0

;GÞ when both graphs have different sizes.
To accommodate for this, we measure the EED from the smaller network
to the larger network only. The edit distance was then calculated by
identifying the node-to-node bijection which had the smallest edit dis-
tance, where node substitutions could be performed by deleting one node
and duplicating another. In the case of size differences, additional nodes
were introduced by duplication rather than introducing null nodes. This
allows us to determine how related two networks are together using only
the moves allowed under our evolutionary algorithms. A standard graph
edit distance may fall short in identifying similarities between networks
5

because of the amount of information that can be added or removed from
gene duplication and deletion events.

2.1.9. Rationale for fitness functions and alternative model
The fitness for the evolved networks is based on an oscillatory

response to a given input signal. This was selected because oscillatory
systems are widely seen in biological systems, with circadian patterns
responding to external signals in nearly every domain of life. In order to
confirm the general concepts demonstrated in this paper a secondary
model was selected for evolution. We evolved networks based on
evolving electronic circuits similar to those described previously [29].
These networks were evolved to replicate a 4 input/1 output truth table.
The logic of each node is fixed to implicate a NAND gate. This model was
modified so that the mutation rate was an inheritable trait andmutable in
the same way as the oscillatory model described in this paper, however
the network size remained fixed as per the original paper

Circuits were represented by an adjacency matrix, with a fixed
number of nodes that encode NAND gates. There were four input nodes
and one output node. The electronic circuit was evaluated with every
possible combination of inputs (i.e. where the input nodes were all
[0,0,0,0], [0,0,0,1], [0,0,1,0] and so forth). The set of inputs and the
corresponding value of the output nodes were compiled into a truth table,
and the fitness of the network was equal to the number of values on the
truth table which corresponded with those of the target Boolean function.
Tournament selection and crossover were performed identically with
how it was done during for the oscillatory regulatory model described
above. Mutation was performed as well, however each node in this model
is limited to two input edges. If a new input edge was formed, one of the
previous incoming edges would be removed. The duplication/deletion
step was not performed, as these networks used a fixed number of nodes.
After this the mutation rate would be modified for the offspring, as
described above, and the process would repeat until sufficient offspring
were created for the next generation.

The modified genetic algorithm (mGA) is described below.
Start mGA
initialize P
g ¼ 0

while g � gmax
g ¼ gþ1
evaluate fitness of individuals in P
select parents from individuals in P
crossover parents to form offspring
mutate offspring
mutate mutation rate rates

end while
end mGA

2.2. Simulations and computations

In all simulations, a population of “naïve” networks are initialized and
then allowed to evolve toward a certain target function. These in-
dividuals are characterized as naïve because there is initially no logic
associated between any of the nodes of the network within the popula-
tion: all nodes have no inputs or outputs. This removes any possibility of
a network randomly being very close to the target function and quickly
reaching maximum fitness within the first generation. We considered a
genetic algorithm run to be converged if half or more of its individuals
had achieved maximum fitness. Simulations and calculations were per-
formed on the Amarel high performance computing cluster at Rutgers
University.

Two types of experiments were performed: those with a static fitness
function and those with a dynamic target function with 2 epochs
(Figure 3). These experiments were performed to compare populations in
static environments to those in dynamic environments, and how their
evolution may differ. For each condition, 500 genetic algorithm runs
were performed, with each simulation producing a population. This was



Figure 3. The type of evolutionary experiments performed in this paper. The top represent the static experiments, where the fitness will increase and remain relatively
static. The bottom shows the dynamic experiments where there is a shift in the target function, drastically reducing the fitness until the population can re-adapt.
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done to ensure at least 100 converged populations within the time limit,
regardless of how complex the target function was. This provided a suf-
ficient number of populations that achieved the proper target to study
how networks evolve, especially in non-trivial conditions.

2.2.1. Static target populations
A set of control simulations were performed in which the populations

evolved toward a single target function. These control experiments
allowed us to understand the basic behavior of the model, as well as
confirm that the secondary selection of the mutation rate was occurring
within our simulations. These simulations were run for different lengths
of times to understand how long it may take a population to converge to a
new function. For τ ¼ 3 50% of populations had converged by generation
1000, 62% at generation 3000, and 71% at generation 6000, and 89% by
generation 10,000.

2.2.2. Dynamic target simulations
For the dynamic target experiments, the populations were evolved for

a set amount of time with a target function of τ ¼ 3 , however, during the
final 2000 generations, the target function would be changed to τ ¼ 6.
Approximately 1/3 of simulations reached both the first and second
target regardless of if the switch occurred at generation 1000 (29%),
generation 3000 (34%), or generation 6000 (30%). The highest fitness
individuals of converged populations would be used for calculating the
evolutionary distance within and between populations, while individuals
that were maladapted within the population would not be considered for
structural analysis.

To compare evolving populations to fair controls, at the generation at
which the second epoch began the population was replicated. One
replication continued with the first target fitness, while the second
replication continued into the second epoch. This would allow for a
direct comparison between the same population und both static and
dynamic environmental conditions.
6

The modified genetic algorithm, which evolved electronic circuit
networks, were done using dynamic target simulations. One Boolean
equation would be selected for the first epoch a second Boolean equation
was used in the second epoch. The Boolean equations chosen were ran-
domized for each simulation. These simulations were used to confirm
that the secondary selection of mutation rate was not dependent on the
network structure or function in the oscillatory regulatory functions used
in this paper.

3. Results

3.1. Single target populations

The naïve networks show a small increase in mutation rate and a
rapid increase in network size, on average. The initial mutation rate was
set to 0.01, and for τ ¼ 3, the mutation rate had dropped to 4:97e�4 by
generation 1000, a decrease of 95%, while the average network size
increased from 5 nodes to 15 nodes (Figure 4 top and middle). A
population's performance at a given generation is measured by
comparing the oscillatory period of the output node O for each of the 3
different input signals previously described (Figure 4 bottom). The
evolved networks tend to have be dense, with a number of parallel and
nested feedback and feedforward loops. An example core network from
a final population, for τ ¼ 3 in a static environment can be seen in
Figure 5, and the full networks often share similar densities and feed-
back loops.

The tendency of the network size and mutation rate (and hence the
number of mutations per generation) to increase initially existed
regardless of the period of the target function of the population (τ value),
although larger values of τ tended to have larger final networks. This
would be expected, as more complex oscillatory signals require more
nodes within the Boolean network. Higher mutation rates at this point
would also be expected as a naïve network cannot make deleterious



Figure 4. Top: The median mutation rate
over time. The initial mutation rate starts as
a fixed value and then allowed to adapt over
time. Initially, the population selected for a
higher mutation rate, followed by depression
the mutation rate much lower than the initial
rate. Middle: The median network size over
time. Initially, there is a high network
growth, with most of the network growth
being done within the first 500–1000 gen-
erations. After this, the median size grows at
a slower rate. Both of these graphs show the
phasic nature of these traits: early in the
evolutionary history of the population, there
is a rapid change in mutation rate and size.
As the populations converge to a single
function, changes in these traits slow. Bot-
tom: The median period for each of the three
inputs. This population has a target of [3 6
12] for inputs of a constant 0 (off), constant 1
(on), an oscillating signal. Here we can see
that the mean value of the outputs ap-
proaches the target function within the first
several hundred generations.

M. Putnins, I.P. Androulakis Heliyon 7 (2021) e06997
mutations: there are no functional connections that may be disrupted by
mutations.

We hypothesize that the mutation rate decreased to a lower value in
these more complex tasks because these larger networks are more
vulnerable to being disrupted by changing the connections between
components and further that the lower mutation rate is a response to the
larger network size to decrease the number of mutations per generation.
The mutation rate is partially dependent on the network size because
each cell (potential edge) of the adjacency matrix has a chance to mutate
therefore the larger the adjacency matrix, the greater chance a mutation
will occur. Because of this the “per edge” mutation rate is converted into
a “per generation”mutation rate, which is a function of the mutation rate
and network size. In general, once the target function is found the
number of mutations in each generation will approach 0, regardless of τ
(Figure 6). Compared to the initial population, the average number of
Figure 5. An example core network from a final population, for τ ¼ 3 in a static
environment. The core network includes seven intermediate nodes, an input
node, and an output node. The network is dense, and representative of the core
networks found in the populations. The full networks contain an average of 15
nodes, usually of similar connectivity. The networks consist of parallel and
nested feedback loops, allowing for the creation of different oscillatory output
signals in response to different input signals.
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mutations per generation peaked at 404% (τ ¼ 9), 357% (τ ¼ 6), and
302%(τ ¼ 3). By generation 1000 the number of mutations per genera-
tion is only 58% (τ ¼ 9), 59%(τ ¼ 6), and 54% (τ ¼ 3). The percentages
represent the number of mutations relative to the number of mutations at
generation 1.

3.2. Changing environment simulations

The second set of simulations were used to measure how an evolved
or evolving network would change in response to a new environmental
stressor. These populations evolved with a target function of τ ¼ 3 for
1000, 3000, and 6000 generations before changing the target function to
τ ¼ 6. The populations were given an additional 2000 generations to re-
adapt to the new function to standardize the amount of time a population
would have to re-adapt, regardless of its starting point. Similar to before,
Figure 6. The average number of mutations per generation, which is a function
of the network size and the mutation rate, follows the same qualitative evolution
regardless of function complexity. 95% confidence interval is shown in gray
around the lines. The more complex the function, the more mutations occur at
the maximum, but after the number of mutations peaks there will be a trend to
minimize the number.



Figure 8. The average number of mutations per generation for rapidly adapt-
ing, slow adapting, and non-adapting populations. Generation 0 represents the
generation in which the change in fitness function was performed. Rapid
mutating populations see a significantly higher number of mutations per gen-
eration initially after the switch in fitness function. Slowly adapting populations
see an increase initially, as well, but it is much more modest. All the populations
eventually reach similar number of generational mutations as they adapt to the
new target.
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the fitness of individual networks was based entirely on the period of the
output node, and not on a specific pattern.

We compared the number of unique individuals who were selected
each generation (the effective population size) and saw no significant
difference between populations which adapted to the new function
rapidly (in under 500 generations) and slowly (over 500 generations)
(Figure 7).

We compared three types of populations to understand how the
mutation rate was affected by the environmental change: populations
that retained the original target and had no new environmental stressor
(a control), populations that quickly adapted to the new stressor (within
500 generations), and populations that adapted slower to the new
stressor (over 500 generations). These populations were from separate
simulations and had no interactions with one another. We found that
populations that were rapid adapters would recover higher mutation
rates shortly after the evolutionary target was changed, while pop-
ulations that were slow to adapt would have a mild increase and those
without any change in the evolutionary target would continue to
decrease their mutation rate over time (Figure 8).

We see evidence of the mutation rate being selected for through
secondary selection, due to the increase of the mutation rate after fitness
increases, rather than the two increasing simultaneously. Figure 9 top
shows the evolution of a naïve network, and the fitness sharply increased
preceding an increase in the mutation rate. Figure 9middle and bottom
show the functional switch and generation 3000 and 6000, and the
fitness recovers sharply at the same time as the change in the number of
mutations. The populations do not start to suppress the number of mu-
tations until after the fitness has begun to approach an asymptote, indi-
cating that the population has reached a relatively stable state.

Sensitivity analysis of the networks allowed us to identify the core
networks, which are the subnetworks necessary and sufficient to create
the output of the network. These are considered “core” as the rest of the
network had no impact on the output of the network even when they
were disrupted. We used this to study the diversity of networks within
populations, as many different networks may achieve the same signal
transduction. Figure 10 top shows the number of unique cores in a
population with a target function of τ¼ 3 at generation 1000. In this case,
half of all populations have 90% or more of their individuals represented
Figure 7. The number of individuals selected for reproduction for the next
generation, which is the effective population size of the model. If all fitness was
equal this would be approximately 63 individuals per generation on average.
When an environmental shift occurs a smaller number of individuals are
selected because the fitness gradient causes some individuals to be selected
multiple times while others are not selected. The effective population size here
is driven only by random chance in the selection stage and the relative fitness of
individuals.
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by 4 or fewer core networks, and half of all populations have 10 or fewer
unique core networks within the population.

Once the core networks are identified, we used the EED to calculate
how similar the core networks were within a population (the intra-
population distance). This was compared to the evolutionary distance
between of core networks between different populations (the inter-
population distance). We found that populations were more consistent
with themselves than they were with other populations with the same
target τ (Figure 10 bottom). Populations should tend to have related
networks because cross over and recombination will intermix networks
within the population. We assume that populations will become ho-
mogenous over time because recombination between different networks
is less likely to produce the same network output, while recombination
between two identical networks should produce the same network and
same phenotype.

Populations from both types of simulations (those with a static target,
and those with a dynamic target) were compared for their diversity. Over
time the number of core functions that exist within a population
decreased if there was only a single target. Populations that changed
target functions maintained their population diversity of network struc-
ture, with an average of 53% of all networks sharing the same functional
structure (Figure 11 top). However, if the target function remains the
same, the number of unique structures drastically decreases, with an
average of 67% of all networks sharing the same core structure (Figure 11
bottom).
3.3. Electronic network evolution

In order to confirm that any type of secondary selection of mutation
rate originate from evolution, and not from the evolution of specific
functions, the dynamic functions were repeated using evolution of elec-
tronic circuit networks. Each of these networks had 2 target Boolean
functions which were selected randomly for the first and second target, as
described before. We found a delay and secondary selection of mutation
rate within these simulations as well (Figure 12). The fitness function of
this model (Boolean equations formed from NAND gates) as well as
general network structure (electronic circuits) were radically different
from the oscillatory populations, but the apparent secondary selection of
the mutation rate remains.



Figure 9. The average population fitness compared to the average number of
mutations during naïve evolution (A) and during evolution between two targets
at generation 3000 (B) and 6000 (C) in all cases, the slope of the fitness function
is steeper initially than the slope of the number of mutations, and the number of
mutations does not decrease until after the average fitness has begun to reach
an asymptote.
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4. Discussion

4.1. Single target populations

To understand how a population evolves in response to a changing
environment, we need to compare it to a control condition: populations
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that are in truly static environments. Even in these conditions, the pop-
ulation does not remain static, with the network structures and mutation
rates capable of evolving even after the population has achieved
maximum fitness. Even as the phenotype of the population remains sta-
ble, the mutation rate will be depressed via secondary selection
(Figure 4). The resulting networks often consist of nested and parallel
feedback loops in order to produce the necessary oscillations, an example
core network can be seen in Figure 5 showing the complexity of the
networks capable of different oscillatory signals.

In our simulations all networks began as naïve networks: there were
no logical connections between nodes that may influence the final
structure of the network. All networks were given an initial evolutionary
target. During this initial period, all populations appeared to have two
general phases: one where the phenotype of the population exists on a
gradient and the population is getting closer to the target function and
another phase where the majority of the population has reached that
target function. During the active phase, the fitness of individuals within
the population are changing as the Boolean networks form into func-
tioning systems. During the second phase, functional networks are pre-
sent within the population however offspring may lose fitness due to
deleterious mutations or recombinations between different networks
present within the population.

This is important to understand because the average mutation rate
across multiple populations should be determined in part by the proba-
bility of beneficial or deleterious mutations occurring within the
offspring of the next generation. When the networks are initialized, the
fitness of the entire population is at a minimum, and therefore no dele-
terious mutations may exist: all mutations will either be neutral or
beneficial. In turn: as the population approaches maximum fitness, all
mutations will be either neutral or deleterious. Within the context of
these simulations, in addition to deleterious mutations, recombination of
different network structures may result in a network with a different
network output. This will limit the ability of every single offspring to
maintain maximum fitness. We can see from these static environment
experiments there will be secondary selection against both mutation rate
as well as diversity. This serves primarily as a control for our changing
environment simulations, as it is clear that there are no truly static
evolutionary conditions in nature [38].

As would be expected the mutation rate appears to rise slightly on
average during the first phase, when the population is starting to adapt to
the target function, but not by a significant amount. Toward the end of
this adaptation phase, the mutation rate goes down, asymptotically
approaching 0. During this portion of the population's evolution, not
every single individual will achieve maximum fitness. At this point, there
is no new genetic variation which is necessary, although genetic varia-
tion can reduce the fitness of these individuals. Because of this, there is
selection against high mutation rate individuals during this second
phase, as those individuals will only have either neutral or deleterious
mutations.

We performed these experiments with different target functions for
populations, with increasing complexity and found that the expected
mutation rate for each level of complexity was approximately the same.
Regardless of the target period, every population had a decreasing mu-
tation rate over time when there was a single target function. At gener-
ation 1000, the average number of mutations per generation was 58% (τ
¼ 9), 59%(τ ¼ 6), and 54% (τ ¼ 3), Figure 6.

This decrease in mutation rate exists in populations that reach their
target phenotype slowly: if an individual has a high fitness, but not
maximum fitness, phenotype but does not have any beneficial mutations
then deleterious mutations will still cause a loss of fitness. These dele-
terious mutations will cause maladapted populations to decrease their
mutations rates to be protective of the fitness they did gain (Supple-
mental Figure 1). These maladapted populations had an average decrease
of 70% from the start of the simulation through generation 1000, much
greater than the decrease of any on-target population. This decreasing
mutation rate is a protective mechanism that allows a population to
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maintain the fitness gains it has made, and so populations which have
found second, or third best solutions would often see a decrease in mu-
tation rate as well until a better solution was found. The maladapted
populations have a larger decrease in the number of mutations compared
to the populations which reach their target functionwithin the time limit.
This may indicate that the maladaptation is related to an overprotection
of the population where higher mutation rates are overly selected against
which slows the ability of the population to improve.

Fundamentally evolution is an inefficient process, and the interaction
between adaptation and the mutation rate shows this. A depressed mu-
tation rate may limit the ability of a population to adapt to a new envi-
ronment, but a higher mutation rate may lead to an accumulation of
deleterious mutations.
4.2. Changing environment simulations

To understand how populations, adapt under changing conditions we
compare three population: Populations which rapidly adapted to the new
target function, populations which slowly changed, and populations
which did not have a change in environment. Here we see that pop-
ulations with a change in environment underwent subpopulations se-
lection very soon after the environment changes. This is represented by a
decrease in the number of unique individuals selected to create offspring
for the next generation (Figure 7). This may be thought of as a change in
the effective population size of the populations, which may increase the
drift within the populations shortly after the change in target. The
effective population size of both rapid and slow adapting populations are
similar, but the number of mutations in both groups is very different. This
indicates that drift alone does not explain the mutation rate recovery in
the rapidly adapting populations.
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Interestingly, the number of mutations within each population before
the environmental shift does not affect whether or not the population
rapidly adapts (Supplemental Figure 2). Populations that have hyper-
mutators or which have higher average mutation rates do not appear
more likely to become rapidly adapting populations. The only common
trait in rapidly adapting populations is the recovery of the mutation rate,
not the initial mutation rate (Figure 8). Our populations see hitchhiking
of high mutation rates with environmentally relevant mutation rates, and
it appears that when higher mutation rates hitchhike with these traits
there is faster adaptation. Secondary selection and hitchhiking, in this
case, is entirely reliant on high mutation rate individuals consistently
outperforming their low-mutation rate contemporaries. The hitchhiking
effect is likely enhanced by the polygenic nature of our networks. Certain
mutations will only be beneficial for certain network structures and not
others, and therefore beneficial mutations from high mutation rate sub-
populations may only be beneficial in the offspring of two individuals
from the same sub-population. This further improves the relative fitness
of the high mutation rate subpopulation, while limiting the ability of the
mutator gene to be purged via recombination with the low mutation rate
subpopulation. This effect seems to be independent as to when the
environmental shift occurs there is always a delay in the evolution of
mutation rate, a secondary selection of the high mutator population
(Figure 9). We saw similar results for the delay in the evolution of mu-
tation rate in the evolution of electronic circuit networks as well
(Figure 12) and given the ubiquitous nature of oscillatory networks in
biological systems we believe these results are not model or fitness
specific.

The adaptive pressure, regardless of the speed of adaption, also drives
diversity. Unlike static environments, where diversity decreases, di-
versity is maintained after the environmental shift. This is due to a
combination of factors including a higher mutation rate as well as recent
Figure 10. Top: The distribution of the
fraction of individuals whose function is
characterized by a certain number of
cores for τ ¼ 3 at generation 1000. For
each box plot, the fraction of individuals
within a population who have that
number of the most common cores are
plotted. At 1 on the x-axis, the number of
individuals within a population who
share the most common core are plotted,
at 5 the fraction of individuals who have
the 5 most common cores are plotted.
Over half of all populations have 90% or
more of their networks represented by
only 4 cores. While having a small
number of cores is not a unique strategy,
it is far more common than having a
unique structure for each individual.
Bottom: A histogram showing the distri-
bution of evolutionary distances between
individuals within the same population
(red) and individuals from other pop-
ulations (blue). We can see here that
networks within the same populations
are generally highly related, generally
requiring 5 or fewer evolutionary moves
to convert between the two individuals.
In contrast, individuals from different
populations have more differences. This
implies that while there is a purifying
selection within a population for highly
related structures, different populations
have not converged toward the same
structure. The distributions were
compared using a Kolmogorov–Smirnov
test and determined to be different with
a p-value < 0.01.



Figure 11. The diversity of network structures within a population with (top) an environmental shift and without (bottom) an environmental shift. This shows that
the average number of unique, functional network structures within a population decreases while an environment remains static, but that the diversity of network
structures may remain higher with a changing environment.

Figure 12. The fitness and average number of mutations during the second
epoch using the alternative electronic network model. Under this paradigm
there is still a clear delay in the rise of the mutation rate.
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phenotypic diversity due to the fitness gradient within each population.
Similar to the mutation rate, crossover and recombination may bring
together beneficial genes that increase fitness or bring together incom-
patible mutations. In this sense, while there is active adaption toward a
new phenotype, crossovers will increase network diversity and increase
fitness. Once a population has converged, however, a crossover between
distinct networks can only be neutral or deleterious and therefore di-
versity will be selected against.

The cause of the inter- and intra-population differences lies with
adaptive processes and non-adaptive processes. Each population adapts a
small number of strategies that fulfill the target function, and the selec-
tion of these strategies varies from population to population. For τ ¼ 3 at
generations 1000 there was an average of 53% of networks sharing the
same core structure, and 50% of populations having 10 or fewer unique
core structures (Figure 10 top). These structures appear to be divergent
between populations. Within a single population, each core network has
a median EED of 6, while between populations there is a median
evolutionary distance of 15 (Figure 10 bottom). This divergence is
strengthened over time as purifying selection and decreasing mutation
rates limits the ability of conserved components to easily shift from one
strategy to another. We can utilize the switched evolution simulations to
see how time affects the diversity of structure. Comparing the structure of
the networks before switching at generation 1000 to the structures of
networks before switching at generation 3000 allows us to see this pur-
ifying selection in action. Over the course of 2000 generations, the per-
centage of the population which shared the identical functional network
rose from 53% to 67% for τ ¼ 3. The median number of unique core
networks within an average population also decreased from 10 to 5,
representing a nearly 50% decrease in the diversity of the populations.
This highlights the importance of environmental stressors and competi-
tion in maintaining the diversity of a population. For the populations
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whose target switched from τ ¼ 3 to τ ¼ 6, there was no significant
change in the fraction of networks with a single core network (53%), and
50% of networks had a median of 9 unique structures or fewer
(Figure 11).

Rapidly changing environments are common: whether bacteria
adapting to novel antibiotics or animals and plants adapting to changing
environments due to climate change. The mechanisms and behaviors
which drive adaption to changing environments may help understand
why certain species thriving due to environmental changes, but many
others go extinct as changing conditions become unsuitable for their
survival [39, 40, 41, 42, 43]. We hope to expand this work to better
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understand not only how species adapt to stressors, but how multiple
species and populations may interact and adapt to one another under
stressful conditions.

Changes in the non-adaptive processes are seen as critical to over-
coming stressors [2, 27, 28]. The flexibility of these non-random pro-
cesses are also seen as important: bacteria with high mutation rates do
not have better rates of survival in response to environmental stressors,
but when wild type bacteria are exposed to environmental stressors their
mutation rates will rapidly increase [2, 3, 4, 28].

5. Conclusions

Evidence of evolutionary advantage of mutation rates is often mixed:
under certain circumstances, populations achieve higher mutation rates,
or mutator populations attain higher fitness, although in other circum-
stances it is found that high mutation rates limit growth [2, 5, 14, 34, 42,
44, 45]. Our model shows that while a population is undergoing a
“hill-climbing” behavior, with the fitness of the population increasing,
there may be less selective pressure limiting the mutation rate.

Our model shows that even a sexually reproducing population may
select for higher mutation rates while a population is moving along a
fitness gradient, especially when undergoing rapid phenotypic adap-
tion. This may be driven in part by the selection for functional net-
works, where networks with different features within the same
population may undergo recombination and lose fitness similar net-
works undergoing recombination are more likely to retain the fitness
gains of any de novo mutation. This does not directly contradict
Lynch's drift barrier hypothesis: under conditions where novel muta-
tions or novel phenotypes are beneficial the selection pressure against
mutation rates will likely decrease as there are more theoretical
beneficial mutations.

Our model has a limited number of mechanisms in terms of muta-
tions, selection, and recombination. Despite this, we see both rapidly
adapting populations as well as slowly adapting populations. In a theo-
retical case where an environmental shift may lead to extinction, we
would only see a select few populations: a survivorship bias of those
population which survived the extinction. We also hypothesize that there
should be some survivorship bias in real-world populations: If we were to
introduce an antibiotic to an agar plate then we could imagine a hypo-
thetical population of bacteria that do not have any beneficial mutations.
In this case, we would expect the mutation rate to remain primarily
controlled by the effective population size, but the population would
likely die off.

In contrast, if a beneficial mutation is found we expect the subpop-
ulation which has created it to thrive. In the case of bacteria, this is often
a hypermutator subpopulation [5, 46]. Although it may be easy to
dismiss this as due to random genetic drift as the effective population size
decreases it is difficult to ignore the fact that populations without hyper
mutators will often fail to thrive even though their population size de-
creases. This means that even though increased mutation rates may be
predicted only as a statistical anomaly under the neutral theory, it may
become a statistical certainty when looking at a certain subset of pop-
ulations (such as rapid phenotypic adaptions and evolutionary rescue),
not due to a novel mechanism but rather due to chance and a survivor-
ship bias. Due to this survivorship bias, it may be easy to mistake a sta-
tistical anomaly as a novel mechanism of adaption. Although, this may
only be one factor in the rescue of a population which is stressed: in
real-world populations other factors such as migration and gene-flowwill
play a role.
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