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Endophytes is a kind of microorganism resource with great potential medicinal value.
The interactions between endophytes and host not only promote the growth and
development of each other but also drive the biosynthesis of many new medicinal
active substances. In this review, we summarized recent reports related to the
interactions between endophytes and hosts, mainly regarding the research progress of
endophytes affecting the growth and development of host plants, physiological stress
and the synthesis of new compounds. Then, we also discussed the positive effects of
multiomics analysis on the interactions between endophytes and their hosts, as well as
the application and development prospects of metabolites synthesized by symbiotic
interactions. This review may provide a reference for the further development and
utilization of endophytes and the study of their interactions with their hosts.

Keywords: endophytes, interactive relationships, growth and development, secondary metabolites, biosynthesis
mechanism

INTRODUCTION

Endophytes are special “microorganism” with much value. They can parasitize different parts of
living plants but do not obviously cause symptoms of external infection in host plants or symbiosis
and coevolution with their host (Chen et al., 2022). As an important cooperative “partner” of
plant growth and development, endophytes greatly impact on host physiological metabolism, which
helps or stimulates host plants against various stresses (Koskimäki et al., 2022). More importantly,
during this long-term association, the endophytes and their host form an interactive relationship
of coevolution and mutually beneficial symbiosis. The genetics and metabolism of endophytes
ameliorate and supplement the material metabolic pathway and related gene expression of their
hosts (Mei et al., 2019). Conversely, the host also creates a unique community structure and gene
characteristics of endophytes (Oukala et al., 2021; Li et al., 2022).

Exploring the application of endophytes has become a hot topic with the gradual understanding
of the interaction between endophytes and hosts. Plants were first thought of as individual
organisms that produced metabolites by themselves to completely support their growth and
development. This cannot explain the phenomenon in which plants growing in the wild are “better,”
such as in medicinal characters, than those under artificial cultivation; artificial cultivation of
medicinal plants loses the original effect, etc. It was not until the discovery of endophytes that their
interactive relationship was gradually revealed, especially after the application of omics technology
at the cellular and molecular levels in which the study of the interactive relationship between the
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two progressed rapidly. In recent years, researchers have been
trying to explore the evolutionary relationship between host
and endophytes, and trace the reciprocity mechanism of this
specific evolutionary relationship, in order to provide theoretical
basis for the commercial development of endophytes. At
present, some endophytic bacteria and their active products
have been successfully used in commercial production and
obtained great benefits in the preparation of new drugs
and agricultural protection (Singh and Gaur, 2017; Mishra
et al., 2018b; Sahu et al., 2021). It is of great economic
value to reveal the interactive mechanisms between plants and
endophytes to explore and release the potential for the industrial
development of endophytes.

To provide a reference for revealing the complex interaction
between endophytes and their hosts, this review first discusses
the interaction between endophytes and host plants and then
the effects of endophytes and their secondary metabolites on
plant growth and development. The application of endophyte
resources instead of is also discussed.

INTERACTION BETWEEN ENDOPHYTES
AND HOST PLANTS

Plant Microecology Under Endophyte
Invasion
Many plant biological functions are dependent on endophytes,
and each plant is actually a complex microecosm (Compant
et al., 2021). A broad consensus has been reached that
endophytes and their host plants have had a coevolutionary
history for millions of years. The interaction between them
not only maintains ecological stability but also promotes
the growth and development of both partners (Pérez-Alonso
et al., 2020). With the improvement and application of cell
and molecular science, omics and even “macro-omics,” the
study of the interactions between endophytes and hosts has
made great progress, and related theories, such as “mosaic
theory,” “acquired immune system,” “equilibrium confrontation,”
and “exogenous chemical excitation reaction,” have been
proposed (Cui et al., 2017). In recent years, many studies on
the interactions between endophytes and hosts have shown
that the “balanced antagonism” theory is more accurate in
explaining the relationship between endophytes and hosts.
The core of the theory is that the “confrontation” between
microorganism and plants is different from that of general
pathogenic bacteria, and its essence is the special balance between
the endophytic virulence factor and the plant defense and
immune system; when the virulence factor is too strong, the
plant will become sick. When defense stress is too strong,
microorganisms are killed (Schulz et al., 1998). Actually,
the balance of interaction between endophytes and hosts is
far from a simple “confrontation” between virulence factors
and the defense system, and its regulatory mechanisms
are far more complex and precise than maintaining the
balance between virulence factors and the defense system
(Khaiwa et al., 2021).

Further studies showed that when microbes invade the
host plant tissue, the recognition of the plant self-defense
system will begin the crosstalk of signal molecules to identify
endophytes (Figure 1). For example, the medicinal plant
Camptotheca acuminata kills invading microorganisms by
producing camptothecin, which competitively inhibits the
activity of the microbial topoisomerase I complex (Khaiwa et al.,
2021). Fusarium solani, an endophytic fungus in Camptotheca
acuminata, uses special amino acid residues to bind the relatively
active domain of camptothecin to escape the attack of the
host, while the other endophytes avoid the invasion risk by
encoding a unique topoisomerase. Therefore, the colonization of
endophytes is not easy (Sirikantaramas et al., 2009; Kusari et al.,
2011, 2012a). Robinson’s results showed that the rhizosphere-
dominant bacterium Bacillus mycoides could not colonize wheat
in an aseptic system without competitive bacteria (Robinson
et al., 2016). Further studies found that when competitive
bacteria exist, wheat secretes special root exudates, which are
rich in nutrients and can induce and promote Bacillus mycoides
symbiosis (Robinson et al., 2016). In addition, Wang successfully
colonized rhizobia in the roots of legumes by applying exogenous
metabolites of flavonoids to realize the symbiosis of endophytes
(Wang et al., 2021). Therefore, the formation of the interaction
between endophytes and hosts is far from a simple combination
of heredity and material between them but is accompanied by the
overall cooperation of the “micro niche” formed by the internal
and external environment of their hosts.

Dilemmas in Interaction Mechanisms
Study
Interactive mechanisms between endophytes and hosts are the
material basis for the formation of interactions. Previous work
has mainly explored the interactions between endophytes and
their hosts from superficial aspects, such as morphological
observations and chemical composition analysis. However, this
does not fully explain the pathways of host growth, development
and metabolism under the action of endophytes. At present,
although the action mechanisms of some endophytes have been
described, it is still difficult to accurately reveal the interactive
mechanisms. The dilemmas are mainly manifested in three
aspects: a large number of microorganisms react with plants at the
same time, endophytes have signal interference, and symbiosis is
difficult to simulate.

At present, it is very important to find and understand the
growth mechanism of host endophytes. Studies suggest that
endophytes affect plants mainly in two aspects. On the one
hand, endophytes induced systemic resistance (ISR) production
in the host. ISR differs from traditional system acquired
resistance (SAR) in that its phenotype is similar to that of
pathogen induced SAR, both of which can induce broad-
spectrum resistance to pathogens in plants (Pieterse et al.,
2014; Pozo et al., 2015). In essence, ISR differs from other
induced-resistance mechanisms in that the host usually has
primic defense associated with the jasmonic acid (JA) pathway
under symbiotic association, and can initiate faster, stronger,
and more durable defense expression under adverse conditions
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FIGURE 1 | Signal response mechanisms for promoting (+) or inhibiting (–) plant – microbial interactions. Exogenous microorganisms release action factors to infest
plants, which respond with gene expression and release metabolites such as antibiotics and hormones (SA, JA, GA, ET, and ABA) to interfere with the infestation to
protect themself.

(Martinez-Medina et al., 2016; Teixeira et al., 2019). However, the
mechanism of “priming” state is still unclear, and it is speculated
that transcription factors and related signals play an important
role in it (Bentham et al., 2020; Mengistu, 2020). On the
other hand, endophytes can effectively regulate defense-related
signaling pathways in the host to achieve self-colonization and
thus establish symbiotic links with host plants. After colonization,
endophytes invasion plants, are bound to across the plant
immune system highly complex in the first line of defense,
also known as microbial associated molecular patterns (MAMP),
a process that involves many molecules [such as elongation
factors Tu (EF-Tu), peptidoglycan (PG), superoxide dismutase
(SOD), β-chitosan bacteria cold shock protein (RNP1motif ),
chitin, etc.] and the specificity of the host cell surface receptor
molecules PRR identification (Newman et al., 2013). Under
current conditions, although it is known that symbiosis with
endophytes endows hosts with additional defense mechanisms,
little is known about this aspect (Eid et al., 2021; Roy et al., 2021).
In fact, plant immune system activation and mechanical changes
are the result of ongoing molecular dialogue with endophytes,
a common example of which is the JA pathway discussed
above (Gutjahr, 2014; Pozo et al., 2015; Bastias et al., 2017).
After plant infection with endophytes, the salicylic acid (SA)
pathway is usually inhibited, the JA precursor level is enhanced,
and then the JA reaction gene is upregulated (Wasternack and
Hause, 2013). However, different from the SA pathway, the
JA pathway is not well understood (Zhang M. J. et al., 2021).
Existing studies believe that the increase of JA pathway seems
to be related to the development and function of mycorrhizal
symbiosis, which may be understood and verified in future
studies (Siciliano et al., 2007).

Application of Omics to Elucidate the
Interactions Between Endophytes and
Hosts
Endophytes are important biological resources. It is important to
fully understand the interaction between endophytes and hosts
to fully exploit the value of endophytes. Although research on
endophytes has made great progress, they are still unknown in
regard to many aspects of research value. At present, the rational
use of scientific methods to fully understand the interaction
between endophytes and hosts is helpful for providing more
choices and possibilities in the study of the conversion value
of endophytes. Modern high-throughput genomic technology
provides a technical basis for exploring the potential value
of endophytes. An in-depth analysis of endophytes from
the aspects of sequencing, taxonomic classification, phylogeny
and biological evolution has greatly promoted enthusiasm for
endophyte research (Selosse et al., 2022). Genome-wide analysis
of endophytes directly reflects the colonization preference
and genetic characteristics of endophytes on different hosts.
This greatly promotes the identification of related genes,
such as host growth and development mechanisms, antibiotic
production, insertion elements, endophytic secretory system,
surface attachment and other metabolic processes (Subudhi et al.,
2018). Moreover, genome-wide analysis has also been applied
to explain the survival and evolution of endophytes in hosts
(Singh et al., 2021). For example, whole genome sequencing
analysis revealed the potential of endophytic fungus P. indica
as a plant probiotic preparation. Genome-wide analysis of the
endophytic bacterium Pantoea ananatis revealed the existence of
genes encoding hydrolase, n-acyl high serine lactone synthase,
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TABLE 1 | List of selected endophytes genome sequenced in last 5 years (2018–2022).

Microbial
classification

Microbial endophyte Sources Functions References

Endophytic
actinomycetes

Nocardia Various plants Significantly modulates antibiotic and gene expression associated with plant growth-promoting
compounds.

Nouioui et al., 2022

Streptomyces Various plants Promote plant growth performance, including IAA and aminocyclopropane-1-carboxylate (ACC)
deaminase production.

Worsley et al., 2020

Endophytic fungi Sporisorium, Ceratocystis,
Fusarium

Saccharum officinarum Encodes genes associated with ethylene that regulate phosphate metabolism and produce IAA.
Genes encoding hydrolases and oxidoreductases are involved in biofilm formation and the
metabolism of those secondary metabolites associated with it.

Challacombe et al., 2019

Ascomycota phylum Various plants Interacts with host plants by secreting various proteins that promote symbiotic associations. Baroncelli et al., 2020

Paraphaeosphaeria Various plants — Fn et al., 2021

Endophytic bacteria Pantoea agglomerans ANP Medicago sativa L. Helps to relieve the stress of host plants under drought and salinity stress, and participates in the
dissolution of phosphate and glucose dehydrogenase.

Hameed et al., 2020

Burkholderia sp. LS-044 Oryza sativa Involves hydrolysis of chitin, regulation of gene expression for the preparation of aromatic
compounds, and metabolism of aromatic compounds.

Guo et al., 2020

Enterobacter roggenkampii
ED5

Saccharum officinarum In plant growth, it promotes biological control and stress tolerance, and assists plants in nitrogen
fixation.

Ulrich et al., 2021

Stenotrophomonas sp. Various plants Related to plant colonization, growth promotion and stress protection. Flores et al., 2018

Klebsiella variicola KvMx2 Saccharum officinarum Promote plant nitrogen fixation process, regulate virulence stress. Babalola et al., 2021

Bacillus cereus Helianthus annuus L. Enhance protein-coding gene expression in various metabolic pathways. Singh P. et al., 2021

Pantoea Ananatis NN08200 Saccharum officinarum It can promote the biosynthesis of plant synthesis of IAA and promote the growth of sugarcane. Zeng et al., 2020

Bacillus licheniformis GL174 Vitis vinifera L. Helps grape plants cope with pathogen attacks and reduces the use of chemicals in vineyards. Nigris et al., 2018

Pseudomonas viridiflava Various plants As a pathogen, it can not only cause disease but also defend against biological invasion and reduce
the abundance of host microorganisms. It also plays a role in disease resistance.

Lipps and Samac, 2022

Cronobacter sp. JZ38 Arabidopsis thaliana Increasing tolerance of plants to salt stress plays a role in plant growth promotion and antagonistic
activity against pathogenic microorganisms.

Eida et al., 2020

Bacillus halotolerans Hil4 Various plants By secreting metabolic substances, preventing and controlling plant mildew. Thomloudi et al., 2021

Roseomonas hellenica sp. Alkanna tinctoria — Rat et al., 2021b

Cal.l.30 Calendula officinalis Secretes lipopeptides which are secondary metabolites with anti – microbial activity. Tsalgatidou et al., 2022

Delftia sp. BR1R-2 and
Arthrobacter sp. BR2S-6

Various plants Enhanced expression of pathogen-induced plant defense-related genes (PR-1, PR-5 and PDF1.2) Kurokawa et al., 2021

Rhizobia Phaseolus vulgaris Involved in amino acid and carbohydrate transport and metabolic material enrichment, cofactor
biosynthesis.

Aguilar et al., 2018

Bacillus endophyticus — Reduce the virulence of the environment to which the plant itself is exposed. Lekota et al., 2018

Leclercia adecarboxylata Zea mays L. IAA is produced in vitro to generate auxin and promote plant growth. Snak et al., 2021
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superadhesion factor and fusylic acid resistance protein. This
shows its great biological potential for commercial production
(Wu et al., 2020). At present, the whole genomes of some
endophytes have been sequenced, and the number is increasing
(Table 1). This can not only intuitively reveal the changes in gene
expression and genetic characteristics of plants under interactive
relationships but can also serve as a systematic model for the
study of interactions between endophytes and hosts.

In addition, based on the commonly used single omics
technology, omics has been further developed into “macro
omics,” which provides more powerful technical support
for the study of the interactions between hosts and
endophytes. However, the comprehensive application of
polyrecombinationics in the field of endophytes research can
often yield more comprehensive results. In addition, we should
fully consider the complex “network” system of interactions
between endophytes and hosts. Then, using omics technology
to analyze the composition differences between individuals,
and even the interactions between multiple individuals, in
order to form a new model to reveal the nature of interactions
between endophytes and hosts (Lin, 2015). In recent years, many
researchers have carried out studies on the interaction between
endophytes and hosts by using joint omics, but there is still

a huge gap in the understanding of the interaction between
endophytes and hosts. In the next stage, there is still a long way to
go to realize the perfect combination of information technology
and data and to study the interactions between endophytes and
hosts in a real sense.

STUDIES ON THE SECONDARY
INDUCTION ROLE OF ENDOPHYTES IN
INTERACTIONS WITH HOSTS

Endophytes Promote Host Growth and
Development
Endophytes can affect host growth and development by
producing metabolites (Figure 2). Studies have shown that some
endophytes can promote host growth by regulating hormones
such as SA, JA, abscisic acid (ABA), endothelin (ET), and
gibberellins (GA). For example, endophytes can reduce host
ethylene levels by regulating 1-aminocyclopropane-1-carboxylate
(ACC) deaminase activity. At the same time, the ability to
synthesize plant hormone indole-3-acetic acid (IAA) is utilized
to promote host growth and repair host activity during toxic

FIGURE 2 | Endophytes affect host growth. Endophytes release factors that act on host cells, which express RNA-induced silencing complex (RISC) genes and
silence specific genes, thereby regulating the invasion process of endophytes. (A) Under the action of Nod factor, rhizobia formed root nodules and fixed N2.
(B) AMF form clumped mycorrhizae (AM) under the action of Myc factors, which promote host uptake of inorganic ions (C, P, N, etc.) and regulate the root
environment. (C) Some endophytes are able to produce hormones (SA, JA, GA, ET, ABA, etc.) that promote host growth.
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damage (Glick and Stearns, 2011). Besides, some endophytes
affect host growth through their own metabolism. For example,
nitrogen-fixing endophytes in many hosts, such as soybeans
and corn, can reduce free N2 from the atmosphere to NH4

+

for host uptake and promote host growth (Jin, 2014; Guzmán
et al., 2022). Some endophytes isolated from soybean root
nodules promote the absorption of P by their hosts by dissolving
P minerals (Varga et al., 2020). In addition, N, P, C and
other elements were also stronger in soybean plants infected
with endophytic arbuscular mycorrhizal fungi (AMF) than in
uninfected soybean plants. This is mainly due to the rapid
formation of special arbuscular mycorrhizal structures in soybean
root AMF (Khaekhum et al., 2021).

Endophytes Increase Host Stress
Tolerance
Most endophytes enhance host tolerance to stress to some extent,
while some plants may not survive due to lack of endophytes (Wu
et al., 2021). The improvement effect of endophytes on their hosts
is not only in the regulation of abiotic stress, such as tolerance to
temperature, drought, salinity and metal ion stress, but also in the
regulation of biological stress, such as resistance to diseases and
insect pests and herbivorous organisms. Therefore, endophytes
not only show a rich source of stress tolerance to their hosts but
also show a wide range of effects.

Increase Stress Tolerance to Abiotic Stresses
Endophytes can effectively regulate the stress tolerance of hosts
to abiotic stresses (Table 2). Studies have shown that the diversity
of endophytic communities or changes in metabolism have a
significant impact on host adaptability to the environment (Li
et al., 2022). Some endophytes activate membrane receptor
molecular mechanisms and signaling pathways, such as
G-protein-coupled receptors (GPCRs), receptor-like kinases
(RLKs), ion channels, and histidine kinases, when the host is
exposed to salinity, temperature, drought, and heavy metal
toxicity. Change the concentration of Ca2+ in the cytoplasm
and produce corresponding signaling molecules such as
reactive oxygen species (ROS), ABA and inositol phosphates
(IPs). Further kinase responses activate various downstream
transcription factors, such as MYC/MYB, WRKY, DREB/CBF,
AREB/ABF, bHLH, NAC, and bZIP (Sirikantaramas et al., 2009).
Activated transcription factors lead to the activation of different
stress-responsive genes, including the expression of lipid-transfer
proteins (LTPs), heat shock proteins (HSPs), late embryogenesis
abundant protein (LEA), antioxidant response element (ARE)
and osmotic proteins, through reciprocal transformation
of protein phosphorylation and dephosphorylation. Some
endophytes activate pattern recognition receptor (PRR)
membrane receptors under the influence of exogenous signals,
amplify secondary signals through cascade reactions, and then
activate the downstream MAPK signaling pathway, resulting
in NLRs, TFs, HSFA2, RLKs and other related gene expression.
Through the above series of biochemical reactions, endophytes
can regulate host permeability to reduce or even offset the effects
of stress and can finally achieve the purpose of repairing damage
(Wang et al., 2020; Figure 3). Baek et al. (2020) found that salt

stress-related genes were expressed in the shoots and roots of rice
seedlings after infecting them with endophytic bacterium Bacillus
oryzicola YC7007. AMF, an endophytic fungus isolated from
chickpeas, can help the host to relieve drought stress (Hashem
et al., 2019). In addition, under salt stress, some endophytic fungi
can secrete exopolysaccharide to change soil structure, regulate
soil material composition and change host permeability, so as to
relieve stress (Kidd et al., 2021).

Increasing Stress Tolerance to Biotic Stress
Endophytes can enhance host resistance to biological stresses
such as diseases and insect pests in a variety of ways (Table 3).
On the one hand, some endophytes can avoid the competition
of pathogenic microorganisms by producing lipopeptides,
chitinases, pyrrolidine, glucanase, and other antibiotic
metabolites (Mishra et al., 2018a). Baek et al. (2020) isolated
the endophytic bacterium Bacillus oryzicola YC7007 from
the rhizosphere of rice (Oryza sativa), which can induce
systemic resistance and antibiotics, inhibit rice bacterial
diseases and promote rice growth and development. The
endophytic bacterium Bacillus subtilis EDR4 isolated from wheat
competitively inhibited the growth of pathogens Fusarium
oxysporum by producing the antifungal protein E2 (Liu et al.,
2010). Bacillus triticum JC-K3, an endophytic bacterium isolated
from wheat, can regulate local IAA concentration and then
regulate the absorption of inorganic ions to promote the
growth of host, thus alleviating the biological diseases under
salt stress (Ji et al., 2021). On the other hand, endophytes can
colonize hosts in a manner similar to the invasion of pathogens,
which creates niche competition with pathogens (Ahmed et al.,
2020). Therefore, plants can recruit endophytes and reduce
the possibility of colonization of their own pathogens by
giving priority to occupying the niche. Researchers isolated the
endophytic bacterium Stenotrophomonas from Pistacia chinensis,
which can preferentially occupy the niche by producing iron
carriers, thus reducing the colonization of pathogenic bacteria
and further relieving the iron stress environment of Pistacia
chinensis (Etminani and Harighi, 2018). In addition, endophytes
can also help hosts to cope with insect feeding. The endophytic
alkaloid metabolites and neurotoxins may lead to disordered
behavior, hindered growth and development, and even death
of insects (Song et al., 2020; Tooker and Giron, 2020; Grabka
et al., 2022). For example, Bacillus in sugarcane can induce the
abnormal development of giant borers, thus reducing diseases
and insect pests (Rocha et al., 2021).

Endophytes Promote the Production of
Host Secondary Metabolites
The production of active substances in endophytes seems to
be inseparable from the role of endophytes. Recent studies
have shown that when endophytes promote the production of
host secondary metabolites, their hosts do not simply increase
substances but the endophytes trigger a series of biochemical
processes in their hosts, such as host growth and stress resistance
regulation. There are two main ways for endophytes to promote
the host. One way is that endophytes generate the same signal
pathway as their hosts by during gene mutation or information
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TABLE 2 | Effect of endophytes on host abiotic stress tolerance.

Endophytic strains Sources Changes in matter Functions References

Fusarium, Alternaria Glycine max (Linn.)
Merr.

Triterpenoids, phenols and polysaccharides
increased

Resistant to acid and alkali and other abiotic stress. Xiao et al., 2021

Bacillus cereus SA1
Rhizobium

Glycine max (Linn.)
Merr.

Increased SA, ascorbate peroxidase, superoxide
dismutase, and glutathione

Resistance to high temperature. Khan et al., 2020

Burkholderia cepacia J62,
Microbacterium JYC17

Brassica napus L. The contents of non-enzymatic antioxidants such
as Ascorbic Acid(ASA) and Glutathione(GSH) were
up-regulated

It inhibited heavy metal stress and increased the growth, antioxidant activity
of copper absorption and microflora structure of BRassica napus l.

Ren et al., 2019

Bacillus subtilis (BERA 71) Cicer arietinum
Linn.

Increased levels of reactive oxygen species and
lipid peroxidation

Under salt stress, increased chlorophyll synthesis in AMF treated plants was
obvious, which lead to significant enhancement in the net photosynthetic
efficiency.

Hashem et al., 2019

Piriformospora indica Artemisia carvifolia Flavonoids, ammoniated protein, superoxide
dismutase and peroxidase activase were
significantly increased

It can resist arsenic stress and improve the transcription level of genes and
signal molecules in the biosynthesis pathway of isoprenodiol, terpene and
flavonoids.

Rahman et al., 2020

Sinorhizobium
meliloti CCNWSX0020

Medicago lupulina — It can resist nickel and cobalt stress and promote the growth of alfalfa in
nickel and cobalt contaminated soil.

Li et al., 2018

Bacillus spp.
Arthrobacter sp.

Piper nigrum L. Pro accumulation The growth of pepper under drought stress was promoted by Pro
accumulation and ACC deaminase activity.

Saikia et al., 2018

Bacillus megaterium H3 Oryza sativa L. — It can resist arsenic stress and improve the ability of resisting bacterial
invasion.

Cheng et al., 2020

Bacillus BM18-2 Pennisetum
purpureum

Plant chlorophyll increases It can resist cadmium stress, improve plant growth and repair soil health. Kamal et al., 2021

Aspergillus flavus CHS1 Chenopodium
album

Dissolution of phosphate, production of IAA and GA Resistance to salt stress, promote chlorophyll, root length and other
different plant growth characteristics.

Lubna et al., 2018

Pseudomonas Arabidopsis
thaliana

The contents of antioxidant enzymes and proline
increased

Alleviate salt stress and repair plant growth conditions. Fan et al., 2020

P. indica Nicotiana tabacum
L.

Peroxidase activity and glutathione content
increased

Reduce the phytotoxicity of cadmium and enhance the activity of
antioxidant enzymes.

Su et al., 2021

Piriformospora indica Arabidopsis
thaliana

The content of Pro, ascorbic acid and ABA
increased, and the transcription level of related
genes increased

Resistance to low temperature stress, improve the survival vitality of
Arabidopsis thaliana under low temperature.

Jiang et al., 2020

Bacillus subtilis NUU4,
Rhizobium ciceriic53

Cicer arietinum — Resistance to salt stress. Lastochkina, 2019

Meyerozyma caribbica Zea mays L. IAA, phenols and flavonoids increased Salt stress resistance, significantly increase root and stem length, plant
fresh and dry weight, promote growth.

Jan et al., 2019

Bacillus subtilis Glycyrrhiza
uralensis Fisch

Flavonoid, polysaccharide and glycyrrhizic acid
content increased

It can resist drought stress, improve the expression of HMGR, SQS and β

-galactose glycyrase as the key enzymes of glycyrrhizic acid synthesis, and
promote the accumulation of glycyrrhizic acid.

Zx et al., 2019
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FIGURE 3 | Endophytes regulate the tolerance of plants to stress. (A) Under stress environment, endophytes can produce exogenous signals and quickly activate
plant PRRs membrane receptors. On the one hand, they activate the downstream MAPKs level connection On the other hand, they regulate the intracellular Ca2+

concentration. (B) Under the action of exogenous signal of endophytes, membrane receptors such as CPCRs and RLKs are activated to induce downstream
reaction. Cascade signaling is transmitted in the nucleus to promote the expression of relevant response genes, so as to improve the ability of host in immune
response, repair damage and reduce stress.

exchange and then produce secondary metabolites similar to
their hosts. For example, endophytes isolated from marigold can
produce the same hydrolytic enzymes and IAA as their host
(Shurigin et al., 2021). Another way is that endophytes cooperate
with their hosts to complete a process of the same signal pathway,
which may produce key enzymes in the pathway, or change a
reaction direction in the process of host metabolism to make their
hosts produce specific metabolites (Khattab and Farag, 2021).

APPLICATIONS AND RESEARCH
PROSPECTS OF ENDOPHYTES AND
SECONDARY METABOLITES

As reliable companions of hosts, endophytes play an important
role in the growth and development of hosts and the
accumulation of secondary metabolites (Singh et al., 2022).
In recent years, with the rapid increase in endophyte-related
research, endophytes have gradually become the focus of
attention. The study of abundant endophytic species and their
response genes suggests their important role in symbiosis systems
and mechanisms (Tariq et al., 2022). Studies have shown that
under the interaction between hosts and endophytes, hosts can
use their own defense system to “screen” specific microorganisms
to form a symbiotic system. Conversely, successfully “recruited”

endophytes can also make their hosts better adapted to the
environment during growth (Wu et al., 2021). Therefore,
endophytes are not only natural drug substitutes for promoting
host growth and development but also seed banks of new active
metabolites. However, due to the complexity of the interactions
between species, there are still many unknown fields in research
on the lifestyles and action mechanisms of endophytes.

Currently, Endophytic effects have been studied in only a
small number of plant species, the vast majority of which come
from land plants (Nasiruddin et al., 2020). Studies based on
metabolomics have also shown that endophytes are repositories
of bioactive metabolites that can produce many active products
with pharmacological effects, such as antimicrobial, antitumor,
antibiotic, antioxidant, and immune agents (Gupta et al., 2020;
Table 4). Although endophytes can continuously and effectively
produce several bioactive compounds, it is not realistic to obtain
these active substances only from endophytes. Further studies
have shown that the acquisition of beneficial active products
from endophytes is affected by many internal and external
factors, such as the living state of the host plants, species,
geographic location, climatic conditions and even the season of
sample collection (Li et al., 2020). In fact, the active products
of endophytes can solve the shortage of natural resources and
provide new age ideas for the development and preparation
of new drugs, but current research on endophytes is far from
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TABLE 3 | Effect of endophytes on host biotic stress tolerance.

Endophytic strains Sources Changes in matter Functions References

Neotyphodium lolii Lolium perenne — Reduces aphid damage while reducing insect feeding. Agriculture et al., 2018

Bacillus subtilis
(BERA 71)

Cicer arietinum Linn. Increased lipopeptides. Promote plant growth and antifungal. Abd-Allah et al., 2018

Bacillus velezensis JC-K3 Triticum aestivum L. Produce IAA. IAA increased, root biota increased, stem and leaf abundance
decreased, and promoted inorganic ion uptake.

Ji et al., 2021

Bacillus, Pseudomonas,
Stenotrophomonas,
Pantoea, and Serratia

Pistacia atlantica Siderophores, proteases, Hydrocyanic
acid.

Competitive niche competition reduced the success rate of
pseudomonas infection.

Etminani and Harighi, 2018

Bacillus subtilis Mangifera indica — Bactericide (Bacillus subtilis) and increase the number of fruits. Feygenberg et al., 2021

Bacillus sp. Triticum aestivum L. Chitinase, β- Glucanase, cellulase,
lipase, and protease.

Regulate the up regulation of pathogenic related genes and inhibit
the growth of pathogenic bacteria.

Diabankana et al., 2021

Bacillus subtilis EDR4 Triticum aestivum L. Antifungal protein E2 Inhibiting the growth of pathogenic fungus Fusarium oxysporum. Liu et al., 2010

Bacillus
subtilis strain 1-L-29

Camellia oleifera — Anti-fungal infection. Xu et al., 2020

Bacillus subtilis DZSY21 Lycopersicon esculentum Hydrolase, IAA. Anti black mold infection. Masmoudi et al., 2021

Curtobacterium, Paenibacillus,
Pantoea, Sanguibacter and
Saccharibacillus

Triticum aestivum L. Resist fungal infections and reduce the use of pesticides. Bziuk et al., 2021

Streptomyces hygroscopicus
OsiSh-2

Oryza sativa L. Expression of related proteins and
chloroplasts.

Control the infection of pathogenic bacteria, regulate the plant
defense system, and optimize the growth and development of rice.

Gao et al., 2021

Pantoea, Enterobacter,
Pseudomonas, Achromobacter,
Xanthomonas, Rathayibacter,
Agrobacterium,
Pseudoxanthomonas, and
Beijerinckia

Calendula officinalis L. Hydrolase and IAA. Antifungal activity, resist the invasion of pathogenic microorganisms. Shurigin et al., 2021

Clonostachys rosea Blumea balsamifera Antibiotics. Resist the invasion of pathogens. Shu et al., 2020; Kurokawa
et al., 2021

Trichoderma afroharzianum Ficus elastica Antibiotics. Resist the invasion of pathogens. Ding et al., 2020

Alternaria alternata, Bacillus
amyloliquefaciens, Pseudomonas
fluorescens

Withania somnifera SA, JA, ROS Enhanced the expression of salicylic acid- and jasmonic
acid-responsive genes in the stressed plants.

Mishra et al., 2018a

Streptomyces spp. viz. Cicer arietinum Linn. The contents of phenylalanine ammonia
lyase (PAL), polyphenol oxidase (PPO),
total phenol and total flavonoids
increased

Resistance to pathogen stress, enhance the survival ability of the
host, reduce the degree of lipid peroxidation.

Singh and Gaur, 2017

Streptomyces fradiae,
Streptomyces olivochromogenes,
Streptomyces collinus,
Streptomyces ossamyceticus and
Streptomyces griseus

Cicer arietinum Linn. chitinase Antifungal (Sclerotium rolfsii) Singh and Gaur, 2016

Bacillus tequilensis (PBE1) Lycopersicon esculentum The contents of IAA, hydroxymate type
siderophore increased

Antifungal Bhattacharya et al., 2019

Bacillus subtilis Glycine max (Linn.) Merr. cell wall degrading enzymes, IAA, etc. Antifungal (Macrophomina phaseolina) Chauhan et al., 2022
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TABLE 4 | Endophyte induced secondary metabolites and their biological activities during plant–endophyte interaction.

Microbial classification Endophytic strains Sources Secondary metabolite instead of
product

Functions References

Endophytic actinomycetes Streptomyces sp. Allium tuberosum 6-prenylindole Antifungal activity, antitumor. Singh and Dubey, 2018

Streptomyces sp. Bruguiera gymnorrhiza Sedecamycin Anti-HIV activity. Ding et al., 2010

Streptomyces sp. YINM00001 Peperomia dindygulensis Miq. Antimicrobial and/or anticancer
compounds cycloheximide, dinactin,
anthracimycin

Antibacterial, anti-tumor. Liu et al., 2022

Endophytic fungi Pyricularia oryza Oryza sativa L. Melanin Antifungal activity. Motoyama, 2020

Alternaria sp.,Metarhizium
anisopliae,Mucor
rouxianus,Pestalotiopsis
quepinii,Aspergillus fumigatus

Taxus brevifolia Paclitaxel Anticancer activity. Naik et al., 2019

Entrophospora infrequens Nothapodytes foetida Camptothecin Antifungal and cytotoxic. Munir et al., 2020

Paenibacillus — Huperzine Cholinesterase inhibitors Kuźniar et al., 2020

Nigrospora sp.,Chaetomium
globosum

— Chaetoglobosin A Activity against root-knot
nematodes.

Chowdhary and Sharma, 2017

Eupenicillium parvum Azadirachta indica Nimbin Anti-feedant Kusari et al., 2012b

Endophytic bacteria Pseudomonas, Xanthomonas,
Variovorax, Bacillus, Inquilinus,
Pantoea, and
Stenotrophomonas

Alkanna tinctoria Alkannin and shikonin (A/S) Antibacterial, anti-tumor, promote
wound healing, plant growth.

Rat et al., 2021a

P. aeruginosa CP043328.1 Anredera cordifolia CIX1 Diisooctyl phthalate and oxadiazole,
5-benzyl-3

Antibacterial and antioxidant
activities.

Nxumalo et al., 2020

Acinetobacter baumannii Capsicum annuum L. Phenol, 2,4-bis(1,1-dimethylethyl)- and
phenol, 3,5-bis(1,1-dimethylethyl)-

Antioxidant. Monowar et al., 2019

Bacillus atrophaeus Licorice 1,2-benzenedicarboxylic acid, bis
(2-methylpropyl) ester;
9,12-octadecadienoic acid (Z,Z)-,
methyl ester; 9-octadecenoic acid,
methyl ester, (E)-; and decanedioic
acid, bis(2-ethylhexyl) ester

Antibacterial activity. Mohamad et al., 2018

Microbacterium sp. Catharanthus roseus Vindoline Hodgkin’s disease and acute
leukemia.

Anjum and Chandra, 2019

Pseudomonas fluorescens Atractylodes lancea IAA Promote root development and
carbohydrate uptake.

Zhou et al., 2018

Microbacterium, Burkholderia Coptis teeta Berberine Anti - inflammatory, anti - tumor,
reduce blood sugar activity.

Liu et al., 2020

Bacillus subtilis Ligusticum chuanxiong Ligustrazine Treatment of ischemic vascular
diseases.

Yin et al., 2019

Bacillus velezensis Bvel 1 Vitis vinifera L. Iturin A2, surfactin-C13 and -C15,
oxydifficidin, bacillibactin,
L-dihydroanticapsin, and azelaic acid

Antifungal activity, promote plant
wound healing.

Nifakos et al., 2021
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reaching this goal (Yan et al., 2019). At present, although some
endophytic strains that can produce host active metabolites
have been isolated, almost none of them can be used in
production due to the difficulties of in vitro culture. Therefore,
the problem of in vitro propagation of endophytes from hosts
and mass production of active ingredients is a key problem
faced by current applied research, which is also the premise of
endophytes replacing medicinal plants to achieve commercial
production of good pharmacodynamically active ingredients
(Shao et al., 2021).

Overall, the active metabolites produced from the interactions
between endophytes and host plants have great potential in
future, and there is a large demand in the fields of medicine,
agriculture, biodegradation and bioremediation. In recent years,
with the improvement and application of HPCE, HPLC–MS and
other technologies, the rapid identification of active metabolites
of plant endophytes has become possible, and endophyte based
nanoparticles are expected to play an important role in drug
development in future (Pentimone et al., 2020). For instance,
Zhang D. et al. (2021) isolated and identified a new endophytic
bacterium, Bacillus altitudinis SB001, from wild sweet grass in
China. Transcriptome sequencing showed that mature enzyme
K, Tetratricopeptide repeats (TPR)-like superfamily proteins,
Lateral organ boundaries (LOB) domain proteins and Broad-
complex (BTB)/pox virus (POZ)/PDZ-binding motif (TAZ)
domain proteins may play a role in the growth promotion of wild
Chinese sweet grass (Zhang D. et al., 2021). In addition, the main
promoters in the interactions with their host, the MFS transporter
and DNA rotase subunit B, were also found in Bacillus altitudinis
SB001. These findings suggest that endophytes may be useful
candidates for host growth promotion.

PERSPECTIVES

Endophytes are a kind of microbial resource with abundant
species and wide host. Most endophytes can regulate the
growth, development and metabolism of their host. Therefore,
a comprehensive and in-depth study of endophytes is of
great significance. At present, research on endophytes is
still in an early stage of relative development, and the
embodiment of their application value still needs in-depth
research and improvement. Although the whole genome of some
endophytes has been deciphered, there are still many aspects
to be clarified in endophyte research, especially the symbiotic
mechanisms between endophytes and hosts, which remain to be
further explored. Only by deeply understanding the interactive
mechanisms between endophytes and their hosts can we further
explore the potential value of endophytes in improving the
growth and development of their hosts and the production of
active metabolites. Currently, research on endophytes faces four
major problems. In terms of endophyte invasion of their hosts,
their mode of action still needs to be discussed, such as invasion
site and invasion form (spores, hyphae, etc.). The study of the
mechanisms of interactions between endophytes and their hosts,
such as the specific ways of endophyte colonization, whether
the endophyte can achieve proliferation after colonization and

whether their host has antagonistic reactions, is still unclear.
In terms of host growth and development, how endophytes
regulate host metabolism, such as producing new metabolites
and “reprocessing” host metabolites, still needs to be further
revealed. In terms of production and application, problems such
as difficulty in breeding on a large scale in vitro and the sharp
decline of the effects in vitro are still serious.

Solving the above problems will not only help to tap into
the ecological functions of endophytes but will also further
improve the application potential of endophytes and will provide
a base for the further development and utilization of endophytes.
At present, although there have been an increasing number
of studies on endophytes, there have been few reports on the
large-scale application of endophytic preparations and their
active metabolites in commercial production. The utilization of
endophyte biological resources is still difficult, and there is no
effective detection technology to directly identify endophytic
bacteria in vivo from their host. In vitro endophyte isolation,
culture and even fermentation cannot accurately obtain the
corresponding strains or even metabolites. In addition, there are
interactions between endophytes in the host, which undoubtedly
adds difficulties in endophytes study. The mystery of endophytes
is gradually being revealed. In future, on the basis of ensuring
the biological activity of isolated and cultured endophytes, the
improvement of their characteristics and application in basic
research and commercial production will be of great significance.
For example, new drugs can be created to treat diseases and
for agricultural production. Regulating host gene expression and
pathways improves the growth of valuable medicinal plants,
realizing transgenic breeding and improving crop quality. Now
is the time to elevate endophyte research from traditional
physiological and biochemical research to higher cellular- and
molecular-level research. Combined with omics technology, a
database of endophytes and their active metabolites should be
established. Then, the database should be used to understand
the unknown field of endophytes and host interactions and to
benefit from it.
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