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Abstract: Paracetamol and nonsteroidal anti-inflammatory drugs are widely used in the management
of respiratory viral infections. This study aimed to determine the effects of the most commonly
used analgesics (paracetamol, ibuprofen, and diclofenac) on the mRNA expression of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) entry and arachidonic-acid-metabolizing genes
in mouse lungs. A total of twenty eight Balb/c mice were divided into four groups and treated
separately with vehicle, paracetamol, ibuprofen, and diclofenac in clinically equivalent doses for
14 days. Then, the expressions of SARS-CoV-2 entry, ACE2, TMPRSS2, and Ctsl genes, in addition to
the arachidonic-acid-metabolizing cyp450, cox, and alox genes, were analyzed using real-time PCR.
Paracetamol increased the expressions of TMPRSS2 and Ctsl genes by 8.5 and 5.6 folds, respectively,
while ibuprofen and diclofenac significantly decreased the expression of the ACE2 gene by more
than 2.5 folds. In addition, all tested drugs downregulated (p < 0.05) cox2 gene expression, and
paracetamol reduced the mRNA levels of cyp4a12 and 2j5. These molecular alterations in diclofenac
and ibuprofen were associated with pathohistological alterations, where both analgesics induced the
infiltration of inflammatory cells and airway wall thickening. It is concluded that analgesics such as
paracetamol, ibuprofen, and diclofenac alter the expression of SARS-CoV-2 entry and arachidonic-
acid-metabolizing genes in mouse lungs.

Keywords: COVID-19; lung disease; chronic respiratory disease; acute respiratory distress syndrome;
gene expression

1. Introduction

COVID-19 infection is caused by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2). This viral infection became a global endemic disease in 2019. The SARS-CoV-2
virus infects mainly the respiratory system and enters epithelial cells through interaction
between the viral spike and specific proteins on the host cells [1,2]. SARS-CoV-2 attaches
to the angiotensin-converting enzyme type 2 (ACE2) receptor at the top of host cells [3,4].
This mechanism cannot be completed without a human cathepsin L (CTSL) protease that
cuts the S-glycoprotein at exact locations to let the SARS-CoV-2 attach to the host cell
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surface [5]. In addition, the human transmembrane protease serine 2 (TMPRSS2) stimulates
the entrance of the SARS-CoV-2 virus into the epithelial cells [5,6]. TMPRSS2 works by
splitting the virus, leading to the detaching of the spike piece, and helps in the spread of the
SARS-CoV-2 virus [7]. It was suggested that factors that alter the expression of SARS-CoV-2
entry protein can affect the risk and severity of COVID-19 infection.

The major symptoms of the COVID-19 infection are fever and malaise [8,9]. Therefore,
analgesics and antipyretics, such as nonsteroidal anti-inflammatory drugs (NSAIDs) and
paracetamol, are used to manage fever [10]. Furthermore, these analgesics can alleviate
some COVID-19 infection symptoms, such as body pain [11]. NSAIDs exert their interaction
through the inhibition of arachidonic acid metabolism to prostaglandins. NSAIDs can affect
arachidonic-acid-metabolizing cytochrome P450s (cyp450s), cyclooxygenases (coxs), and
lipooxygenases (aloxs) in different organs, including the liver, kidneys, and heart [12,13].

Clinical observations showed that when some patients with COVID-19 infection and
no other diseases were given NSAIDs, their symptoms worsened. Additionally, another
clinical study reported COVID-19 exacerbation after taking NSAIDS [14].

There is a lack of in vivo studies regarding the influence of NSAIDs and paracetamol
on the expression of SARS-CoV-2 entry genes. We hypothesized that NSAIDs induced the
expression of pulmonary SARS-CoV-2 entry genes. Therefore, we aimed to determine the
effects of paracetamol and the most commonly used NSAIDs, ibuprofen and diclofenac, on
the expression of the SARS-CoV-2 entry gene in the lungs of treated mice. Furthermore,
disturbances in the expressions of mouse arachidonic-acid-metabolizing cyp450, cox, and
alox genes caused by the analgesics in the lungs were determined.

2. Results
2.1. Physical Observation

Figure 1 shows the change in mice weight of all tested groups. We did not find a signifi-
cant change (p > 0.05) in their weight on the seventh or the last day of drug administration.
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Figure 1. The changes in total body weight of the experimental mice. There was no significant change
(p > 0.05, two-way ANOVA) in the total body weight after 14 days of analgesic treatment.

2.2. Histological Analysis

Figure 2 presents the histological sections of the mouse lungs after administration of
paracetamol, ibuprofen, and diclofenac for 14 consecutive days. We found that 14 injections
of ibuprofen (Figure 2B), and diclofenac (Figure 2C), but not paracetamol (Figure 2D),
induced the inflammatory cell infiltration and airway wall thickening in the lungs of the
treated mice.
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Figure 2. Histopathologic lungs analysis of animals after treatment. (A) Control lung section shows
the normal structure of the bronchiole and adjacent alveoli. (B) Ibuprofen-treated mice representative
lung section showing normal lung histology. (C) Diclofenac-treated mice lung tissue section showing
normal bronchus and adjacent alveoli. (D) Paracetamol-treated mice lung tissue showing normal
bronchial and alveolar tissues. Thick arrows indicate thickening in the alveolar wall; thin arrows
indicate inflammatory cell infiltration. Tissue sections were stained with hematoxylin and eosin (scale
bar 100 µm) and photographed at 40× magnification.

2.3. mRNA Levels of SARS-CoV-2 Entry Gene

We found in this study that Ctsl was the most highly expressed SARS-CoV-2 entry gene
in the mouse lungs. Ctsl was expressed 2.7 times more than ACE2 (p = 0.01), which was
15 times higher than TMPRSS2 gene (p < 0.0001). The relative expression of SARS-CoV-2
entry genes in the mouse lungs is illustrated in Figure 3.
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Figure 3. Relative mRNA expression of SARS-CoV-2 entry genes in the mouse lungs. * indicates a
statistical alteration (p <0.05, one-way ANOVA test).
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The mRNA expression of the ACE2 gene was significantly downregulated in the
mouse lungs after administration of ibuprofen (p = 0.02) and diclofenac (p = 0.02) by
2.6 and 2.7 folds, respectively (Figure 4A). The expression of the mouse TMPRSS2 gene was
significantly decreased (p = 0.008) after paracetamol treatment by 8.54 folds. Although the
NSAIDs ibuprofen and diclofenac upregulated the expression of TMPRSS2 gene by 4 and
2.6 folds, respectively (Figure 4B), this upregulation of TMPRSS2 by NSAIDs failed to reach
statistical significance (p = 0.10–0.27). In addition, paracetamol only downregulated the
expression of the Ctsl gene by 5.59-fold (p = 0.006) (Figure 4C).
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Figure 4. Expressions of SARS-CoV-2 entry genes ACE2 (A), TMPRSS2 (B), and Ctsl (C) in the
lungs of NSAID- and paracetamol-treated mice. The mRNA expression of the targeted genes was
quantified relative to Actin expression. Fold change indicates the ratio of mean expression of the
NSAID- and paracetamol-treated to the control value. Negative values indicate a reduction in fold
change. * indicates a statistical difference (p < 0.05, one-way ANOVA test) in comparison with the
control group.

2.4. mRNA Levels of Arachidonic-Acid-Metabolizing cox Gene

We found that all tested analgesics did not significantly affect (p = 0.7–0.9) the expres-
sion of the lung cox1 gene (Figure 5A). However, all tested analgesics caused a significant
(p = 0.01–0.04) downregulation of the mouse lung cox2 after 14 days of administration
(Figure 5B). The strongest effect on the cox2 gene expression was observed for diclofenac,
which downregulated the mRNA expression of the cox2 gene by 2.7 folds (p = 0.01).
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Figure 5. Expression of cox1 (A) and cox2 (B) genes in the lungs of NSAID- and paracetamol-treated
mice. The target expression was quantified relative to the expression of Actin gene. Fold change is the
ratio of mean expression of the NSAID- and paracetamol-treated to the control value. Negative values
indicate a reduction in fold change. * indicates a statistical difference (p < 0.05, one-way ANOVA
test) in comparison with the control group, while # indicates a statistical difference in comparison of
diclofenac with other analgesics.

2.5. mRNA Levels of Arachidonic-Acid-Metabolizing alox Gene

We found that only paracetamol had a significant (p = 0.009) effect on the expression
of alox12, as shown in Figure 6A,B. Paracetamol downregulated the expression of the alox12
gene by 3.59 folds (Figure 6A).
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Figure 6. Expression of alox12 (A) and 15 (B) genes in the lungs of NSAID- and paracetamol-treated
mice. The target expression was quantified relative to the expression of actin gene. Fold change is the
ratio of mean expression of the NSAID- and paracetamol-treated to the control value. Negative values
indicate a reduction in fold change; * indicates a statistical difference (p < 0.05, one-way ANOVA test)
in comparison with the control group.

2.6. mRNA Levels of Arachidonic-Acid-Metabolizing cyp450 Gene

Figure 7A–C presents the influences of paracetamol, ibuprofen, and diclofenac on the
expression of the arachidonic-acid-metabolizing cyp450 genes in the lungs of the treated
mice. Paracetamol significantly (p = 0.03) downregulated the cyp4a12 gene by three folds
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(Figure 7A). Additionally, paracetamol significantly reduced (p = 0.01) the expression of the
mouse cyp2j5 gene in the lung by 4.2 folds (Figure 7B).
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Figure 7. Expressions of cyp4a12 (A), cyp2j5 (B), and cyp2c29 (C) genes in the lungs of NSAID- and
paracetamol-treated mice. The target expression was quantified relative to the expression of the actin
gene. Fold change is the ratio of mean expression of the NSAID- and paracetamol-treated to the
control value; negative values indicate a reduction in fold change; * indicates a statistical difference
(p < 0.05, one-way ANOVA test) in comparison with the control group.

Regarding cyp2c29 gene expression, only diclofenac significantly induced (p = 0.009) its
mRNA expression, by 4.8 folds (Figure 7C). Although the other NSAID, ibuprofen, showed
a slight increase in the mRNA levels of the cyp2c29 gene (2.3 folds), this induction failed
to reach statistical significance (p = 0.27). Lastly, we found that the cyp3a11 gene was not
expressed in the mouse lung when tested using a RT-PCR assay.

3. Discussion

Analgesics are widely used in the management of fatigue and fever, which are the
symptoms of viral infections, including COVID-19. However, there are controversial
reports regarding the use of NSAIDs in the management of COVID-19 symptoms, and it
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is recommended to replace NSAIDs with paracetamol [15,16]. In this study, we showed
that NSAIDs and paracetamol significantly affected the mRNA expression of the SARS-
CoV-2 entry gene, and caused an imbalance in the mRNA expression of arachidonic-acid-
metabolizing genes. The pattern of paracetamol’s effect on the expression of SARS-CoV-2
entry and arachidonic-acid-metabolizing genes was different than that of ibuprofen and
diclofenac. These differences between paracetamol and NSAIDs, regarding their influence
on the mRNA expression of SARS-CoV-2 entry genes, may explain, at least partly, the
differences between paracetamol and NSAIDs in the clinical management of COVID-19
symptoms. Further clinical studies are needed to confirm the findings of this study.

Toxicological studies used body weight and pathohistological examinations as markers
of drug-induced toxicity on the animals and organs [16]. In this study, we found that 14 days
of treatment with all drugs did not change the body weight. However, ibuprofen and
diclofenac caused toxicological changes, as indicated by the results of the histological
examination of the mouse lungs, where both NSAIDs caused infiltration of inflammatory
cells and increased the thickness of the wall of the bronchioles. It was reported that
NSAIDs have the capacity to induce oxidative stress in the cells [16]. Accordingly, the
molecular alterations in the mRNA expression of arachidonic-acid-metabolizing genes,
Ctsl, TMPRSS2, and ACE2, were associated with the toxicological effects of NSAIDs on
the mouse lung TMPRSS2ACE2. Our results showed that paracetamol did not induce
pathohistological alterations in the mouse lungs after 14 days of administration. We
concluded that paracetamol is relatively safer than NSAIDs on the lungs, and that these
findings support the use of paracetamol, rather than NSAIDs, for patients suffering from
pulmonary diseases.

Our findings indicated that Ctsl is the most highly expressed SARS-CoV-2 entry gene
in the mouse lungs. This indicated that the Ctsl protein can be considered as an important
target for the prevention of SARS-CoV-2 entry into epithelial lung cells. It was reported that
the inhibition of Ctsl prevents severe respiratory infections caused by viral infections [17].

Although the TMPRSS2 gene is expressed in lower amounts than ACE2 and Ctsl,
inhibitors of TMPRSS2 protein, such as ambroxol, can clinically reduce the severity of
SARS-CoV infections [18]. In this study, we found that paracetamol downregulated the
mRNA expression of the Ctsl and TMPRSS2 genes. Our findings are in line with those of
Sharif-Askari et al.: paracetamol can reduce the expression of the human TMPRSS2 gene
using in silico methods [19]. This finding indicated that paracetamol has a favorable effect
over ibuprofen and diclofenac in decreasing the entry of SARS-CoV-2 into the epithelial
cells. Interestingly, it was found that paracetamol has an antiviral effect [20], and that
decreasing TMPRSS2 and Ctsl expressions might be a mechanism of paracetamol against
the entry of viruses into the host cells.

There is a controversial report regarding the correlation between human ACE2 expres-
sion and the severity of COVID-19 infection. It was suggested that patients with increased
susceptibility to COVID-19 complications have reduced levels of human ACE2 [18]. The
current study reported that NSAIDs, but not paracetamol, decreased the mRNA expression
of the mouse ACE2 gene in the lungs. In agreement with the findings reported by Sharif-
Askari et al., ibuprofen can reduce the expression of the human ACE2 gene using in silico
methods [21]. This finding may explain, at least in part, the harmful effects of NSAIDs on
COVID-19 patients.

In this study, we found that all tested analgesics decreased the expression of the mouse
cox2 gene, which plays a major role in inflammation [22]. Therefore, this finding may
explain the anti-inflammatory effect of all tested analgesics, including paracetamol [23].
Furthermore, we found that diclofenac decreased the expression of the cox2 gene more than
ibuprofen and paracetamol. Interestingly, diclofenac is considered a stronger analgesic
than ibuprofen and paracetamol [24,25].

Alox12 causes bronchoconstriction by producing leukotrienes [26,27]. Some bron-
chodilator drugs target the formation of leukotrienes, and hence can be used in the treat-
ment of asthma and chronic obstructive pulmonary diseases [28]. It was reported that
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NSAIDs are contraindicated in patients with asthma disease because that NSAIDs increase
the synthesis of leukotrienes [29]. On the other hand, paracetamol is considered safer than
NSAIDs as an analgesic and antipyretic for asthmatic patients [30]. We found that paraceta-
mol decreased the mRNA expression of the mouse alox12 gene. Therefore, we postulated
that paracetamol can decrease the synthesis of leukotrienes through the downregulation of
the expression of the alox12 gene, which may explain the safety of paracetamol use among
COVID-19 patients [31].

20-Hydroxyecostarionic acid (20-HETE) is synthesized by mouse cyp4a12. It was
noticed that 20-HETE is overexpressed in hypoxia and vasoconstrictive pulmonary dis-
eases [32,33]. Arachidonic acid is metabolized by mouse cyp2j5 and cyp2c19 to epoxye-
icosatrienoic acids (EETs), which cause pulmonary vasoconstriction and hypoxia [33].
Paracetamol, but not NSAIDs, significantly downregulated the expression of cyp4a12 and
cyp2j5 genes in the mouse lungs. On the other hand, we found that the cyp2c29 gene
expression was induced by the administration of diclofenac. Collectively, paracetamol
decreased the mRNA expression of arachidonic-acid-metabolizing cyp450s.

In addition to arachidonic acid metabolism, cyp2c29 is a phase I drug-metabolizing en-
zyme, which metabolizes many drugs, including warfarin [12]. Induction of the pulmonary
cyp2c29 enzyme by diclofenac may result in an increased drug metabolism in the lung. It
was reported that diclofenac decreased the expression of the hepatic cyp2c29 gene, which
was associated with hepatotoxicological alterations in the liver [34]. This indicated that
diclofenac has a tissue-dependent effect on the mRNA expression of the cyp2c29 gene [34].

This study, for the first time, revealed that analgesics such as paracetamol, ibuprofen,
and diclofenac induced alterations in the expressions of the ACE2 receptor, Ctsl, TMPRSS2,
and arachidonic-acid-metabolizing genes in mouse lungs. However, this study also had
some limitations. For example, the in vivo model employed Balb/c mice, which were
not infected with SARS-CoV-2. However, our focus was the molecular effects of NSAIDs
and paracetamol on the mouse ACE2, TMPRSS2, and Ctsl genes, which have nucleic
and amino acid sequences that are close to those of humans. Another limitation is that
we did not analyze the protein expression to confirm mRNA results. Furthermore, we
did not analyze the levels and concentrations of arachidonic acid metabolites, which can
indicate the influence of analgesics on the production of arachidonic acid metabolites in the
lungs. To verify our findings, we need more in vivo experiments on humanized ACE2 and
TMPRSS2 mice. Additionally, further clinical studies are needed to confirm the findings of
this study.

4. Material and Methods
4.1. Chemicals

Diclofenac sodium, ibuprofen, paracetamol, isopropyl alcohol, PEG400, and 75%
alcohol were obtained from Sigma-Aldrich (St. Louis, MO, USA). Diclofenac sodium salt
was solubilized in PEG400. TRIzol solution and a cDNA synthesis kit were purchased from
ZYMO RESEARCH (Irvine, CA, USA). TB Green® Fast qPCR Mix was purchased from
Takara Bio (Kusatsu, Japan). The oligonucleotides, for PCR reaction, were bought from
Integrated DNA technologies (Coralville, IA, USA).

4.2. Experimental Animals

Twenty eight male Balb/c mice (Mus musculus) of the same age and weight were col-
lected from the animal house of Jordan’s Al-Zaytoonah University (Amman, Jordan). The
mice were handled according to the Canadian Council on Animal Care’s guidelines [35],
and the study methodology was approved by Jordan’s Al-Zaytoonah University’s ethical
committee with a reference number of 04/07/2020-2021. The mice were kept at a temper-
ature of 23 ± 1 ◦C with a 12 h light/12 h dark cycle. All mice were fed ad libitum with
standard laboratory animal diet pellets.
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4.3. Experimental Protocol

After a 7-day stabilization period, the twenty eight mice were divided into four groups
with seven each, as follows:

(1) Control group: the mice received a once-daily intraperitoneal dose of 50% polyethy-
lene glycol 400, the vehicle used for the solubilization of analgesic drugs.

(2) Paracetamol group: the mice were administered a once-daily intraperitoneal injection
of 50 mg/kg paracetamol.

(3) Ibuprofen group: the mice were administered a once-daily intraperitoneal injection of
19.68 mg/kg ibuprofen.

(4) Diclofenac group: the mice were treated with a once-daily intraperitoneal injection of
10 mg/kg diclofenac.

The drugs were administered to the animals for a continuous 14 days. The used
doses of NSAIDs corresponded to the daily dose for humans, which depend on the surface
area of the animal body [12]. This period of analgesic treatment mimicked the period of
disease symptoms that were used in humans and found to be able to alter the expression of
arachidonic-acid-metabolizing enzyme genes [12,36]. The mice were euthanized by cervical
dislocation, as suggested by the Canadian Council on Animal Care [35].

4.4. Physical Observation

Throughout the investigation, the mice’s weights were measured three times. The first
weight measurement was taken on the first day of drug administration, the second was
taken one week later, and the final was taken on the last day of drug administration.

4.5. Histological Analysis

The histological investigation was carried out according to the previously described
protocol [12]. After the mice were sacrificed, the lung samples were dissected and cleaned
with 0.9% normal saline before being fixed in 10% formalin for more than one day. The
samples were next dehydrated by putting them through a graded series of alcohol, followed
by xylene. The lung tissues were then embedded in paraffin wax. Hematoxylin and
eosin were used to stain the obtained lung sections. Lastly, a Leica® (Wetzlar, Germany)
microscope attached to a digital camera was used to photograph the prepared sections.

4.6. RNA Extraction and cDNA Synthesis

After mouse sacrifice, about 200 mg of lung was isolated from each mouse. Then,
triazol, isopropyl alcohol, and 75% alcohol were used to extract the pulmonary RNA,
according to the manufacturer’s instructions. Next, a cDNA Synthesis Kit® was used to
convert the extracted mRNA to cDNA. Briefly, 1 mg of RNA was added to a reaction
mixture containing 100 pmol oligo deoxythymine, 2.5 mM dNTP, 0.1 M DTT, 1 × reverse
transcriptase buffer, and 100 units of Moloney Murine Leukemia Virus reverse transcriptase,
and incubated for 60 min at 37 ◦C.

4.7. Gene Expression Analysis

The expressions of mouse ACE2, Ctsl, TMPRSS2, cox1, cox2, lox12, lox15, cyp4a12,
cyp2j5, cyp2c29, and cyp1a1 genes were examined in this research. Table 1 shows the
oligonucleotides sequence, amplicon size, and annealing temperature for each amplified
gene. The expressions of these targeted genes were analyzed using quantitative real-time
polymerase chain reaction (qRT-PCR), as prescribed previously [37]. Briefly, 10 ng of the
synthesized cDNA was added to a reaction mixture containing qPCR Master Mix and
10 pmol of forward and reverse oligonucleotides. The PCR conditions used were as follows:
denaturation at 95 ◦C for 3 min was followed by 40 cycles of denaturation at 95 ◦C for
10 s and annealing at 53–58 ◦C for 30 s (Table 1). The mouse Actin gene was used as a
housekeeping gene in this study, and the expression of the genes was calculated using the
∆∆CT method [38].
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Table 1. The oligonucleotide sequence, amplicon size, and annealing temperature of mouse ACE2,
Ctsl, TMPRSS2, cox1, cox2, lox12, lox15, cyp4a12, cyp2j5, cyp2c29, and cyp3a11 genes.

Gene Name Forward Reverse Size Annealing
Temp. (◦C) Reported in

ACE2 ATTCACCCAACACTTGAGCC TGTCCATCGAGTCATAAGGGT 213 55 This study

Cts l AGGAAAATGGAGGTCTGGACT GCAACAGAAATAGGCCCCAC 205 58 This study

TMPRSS2 CGTTCCCGTATACTCCAGGT CGTTCCCGTATACTCCAGGT 221 58 This study

cyp3a11 ACAAACAAGCAGGGATGGAC GGTAGAGGAGCACCAAGCTG 250 53 [38]

cyp2c29 AGGAGTTTCCCAACCCAGAG TTCTTTTGGGTGGACCAGAG 203 53 [38]

cyp2j5 GGGCCACTCCAGAAGTGTT CTGGCTGGAGAAAGGATGAG 235 53 [38]

cyp4a12 GCCTTCATCACAACCCAACT GGTATGGGGATTGGGACTCT 226 53 [39]

alox12 TGACGATGGAGACCGTGATG GCT TTGGTCCTTGGGTCT GA 223 58 [39]

alox15 AAA GGCACTCTGTTTGAAGCG CACCAAGTGTCCCCTCAG AAG 204 59 [38]

cox2 CCTCCATTGACCAGAGCAGA GTGCTCGGCTTCCAGTATTG 247 58 [40]

b-Actin CCCCTGAGGAGCACCGTGTG ATGGCTGGGGTGTTGAAGGT 106 53 [41]

4.8. Statistical Analysis

The change in the mRNA expression of the examined genes following analgesics
administration is expressed as a number of fold changes in comparison with the control
group. The mRNA expression of the tested genes, in each group, was normally distributed
according to the Kolmogorov–Smirnov test. The comparison between the control and other
groups was carried out using a two-way (for the body weight) and one-way (for the gene
expression) analysis of variance (ANOVA) test and Tukey’s HSD post hoc test. The change
in expression of the examined genes was considered significant when p was less than 0.05.
Statistical analyses were performed using the Statistical Package for Social Sciences (SPSS
Inc., Chicago, IL, USA) version 23 for Windows.

5. Conclusions

The most commonly used analgesics (ibuprofen, diclofenac, and paracetamol) had
a significant effect on the mRNA expression of SARS-CoV-2 entry and arachidonic-acid-
metabolizing genes in the mouse lung. These findings can explain, at least in part, the
favorable use of paracetamol over NSAIDs in the management of pulmonary inflammation
caused by viral infections, including COVID-19.
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