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Metastatic relapse is observed in cancer patients with no clinical evidence of disease

for months to decades after initial diagnosis and treatment. Disseminated cancer cells

that are capable of entering reversible cell cycle arrest are believed to be responsible for

these late metastatic relapses. Dynamic interactions between the latent disseminated

tumor cells and their surrounding microenvironment aid cancer cell survival and facilitate

escape from immune surveillance. Here, we highlight findings from preclinical models

that provide a conceptual framework to define and target the latent metastatic phase of

tumor progression. The hope is by identifying patients harboring latent metastatic cells

and providing therapeutic options to eliminate metastatic seeds prior to their emergence

will result in long lasting cures.
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INTRODUCTION

In a significant number of cancer patients considered disease free, metastatic relapses occur. If and
when relapse will occur is a question that is both indeterminate and unanswerable. Depending on
the tumor type, these relapses might occur within a few months or decades after initial diagnosis
and treatment (1–3). Very late recurrences are reported in a subset of breast cancer, head and neck
squamous cell carcinoma (HNSCC), prostate cancer, melanoma and renal cell carcinoma patients
considered disease free, presenting a major treatment follow-up challenge (4–18) (Table 1). In
comparison, small cell lung cancer patients with aggressive disease have no reported latency as
they are diagnosed with metastatic disease and have very poor survival rate (19). Lung cancers
have short metastatic latency spans, with majority of relapses occurring within a year (20). Breast
cancers with high proliferative index, triple negative breast cancers (TNBCs), tend to have shorter
latency periods compared to estrogen receptor (ER) positive breast cancer (21). The frequency
of late recurrence after 5 years is greatly reduced in TNBCs compared to ER+ tumors, where
disease recurrences have been reported in a significant number of patients as late as 20 years after
primary diagnosis (22–24). Human autopsy and transplant studies report existence of disseminated
tumor cells (DTCs; tumor cells that extravasate and reside in secondary organs) or metastatic
lesions that persist as occult disease, highlighting the role of host immune system in limiting
metastatic outgrowth (25, 26). Latency competent cancer cells (LCCs) are slow cycling or quiescent
DTCs that persist in organs after surgery and initial therapy, and are the major source of disease
relapse (2, 3, 27). LCCs reside next to the vasculature and are surrounded by extracellular matrix
(ECM), soluble factors, stromal, and immune cells. LCCs remain unscathed in these sanctuaries,
undergoing genetic/epigenomic adaptations that augment their ability to initiate metastasis and
impede immune surveillance. Metastatic latency therefore depends on the oncogenomic status of
the disseminated tumor cells, their proliferative capacity and the surrounding microenvironment.
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TABLE 1 | Metastatic relapse rate and latency span in cancer patients.

Cancer type Late recurrence

rate

Late relapse

span

References

Breast ∼15–20% 1–22 years (4, 13, 14, 21, 23, 24)

Prostate ∼9.7–44% 1–20 years (9, 13, 15)

Melanoma ∼6.8–11.3% 15–20 years (7, 12, 18)

Renal ∼11–40% 1–25 years (8, 13)

Lung ∼10–24% Months–5 years (13, 20)

Head and neck ∼24–33% 1–4 years (13, 17)

Given that metastasis is the major cause for mortality in
cancer patients, understanding how DTCs stay quiescent and
remain viable for years before initiating metastasis is very
critical (28). Assays to monitor the elusive LCCs and treatment
strategies to effectively restrain or eliminate residual cancer
cells is an unmet clinical need. Incorporating oncogenomic
features of these cells along with tumor staging, presence of
circulating/disseminated tumor cells or cell-free tumor DNA, will
lead to better prediction of disease relapse in cancer patients
with occult disease. Here, we summarize key determinants of
metastatic latency, current concepts and proposed strategies to
target and eliminate residual disease.

DISSEMINATION: GET OUT OF DODGE

As solid tumors grow, tissue constraints and cellular energy
needs drive genetic or epigenetic changes in cancer cells that
facilitate epithelial to mesenchymal transition and acquisition of
invasive and stem-cell like characteristics (29–32). Key concepts
discussing dormancy and epithelial mesenchymal transition
(EMT) have been recently reviewed (33). Invasive cancer cells
within the primary tumors breach the basement membrane,
permeate the surrounding tissue as single cells or clumps and
migrate into vasculature or lymphatics (31, 34). How and when
tumors become invasive in patients? Are the early or late
disseminated tumor cells from the primary tumor responsible
for initiating metastasis in patients (35, 36)? Do the early
disseminators aid in developing pre-metastatic niche (37, 38)?
And the role of stromal cells in driving invasion (39), are some
of the open questions actively investigated.

Although cancer cells intravasate in large numbers, very few
survive in circulation. Given their prognostic value, circulating
tumor cell (CTC) counts have been used to predict relapse
or metastatic disease in breast, colorectal, small cell lung,
and prostate cancer patients (40–43). Efforts from several
labs have been directed toward improving CTC capture and
enrichment protocols to define surface biomarkers on these
potential metastatic seeds and to predict metastatic incidence
(44, 45). Many ultrasensitive devices that are able to segregate
CTCs from patient blood using size, density, electrical and
compressibility differences have been developed to address
this clinical need (46–50). However, isolating viable CTCs
and performing functional experiments has been a challenge.
With improved protocols and devices, several groups are
now able to isolate, culture and characterize CTCs from

patients (51–53). Such models are indispensable to study and
advance concepts in metastatic evolution (44). CTC clusters
or aggregates have also been isolated from blood stream and
are reported to have greater predisposition to form metastasis
than single cells in animal models (54). How CTC clusters
survive the shear stress in circulation and avoid entrapment
in lung capillaries is unclear (55). Further research is needed
to determine how CTC clusters are dispersed or assembled
in circulation (56, 57); what are they composed of; and what
aspect of clustering aids metastatic competence. It should be
noted that reliable CTC isolation and characterization is feasible
only in metastatic disease and may not be able to identify
patients with minimal residual disease. Nonetheless, diagnostic
leukapheresis may enable reliable detection of CTCs in non-
metastatic patients (58, 59).

METASTATIC LATENCY: IT’S NOT KANSAS
ANYMORE TO MAKE ONESELF AT HOME

Metastatic latency span is both variable and indeterminate as
it is a function of the rate at which the disseminated cancer
cells adapt to and alter the surrounding microenvironment to
initiate a metastatic lesion that impairs organ function. The
composition and architecture of metastatic microenvironment
determines the likelihood of DTC colonization (60). Majority
of CTCs that extravasate into the new cellular milieu face
resistance and perish upon extravasation (61). Cancer cells
therefore have the propensity to reside in precincts that resemble
stroma of the primary tumor (62). Depending on the robustness
of the perceived cues, cancer cells are likely to proliferate,
apoptose, or enter into a quiescent-slow cycling state (Figure 1).
Proliferating DTCs are also more likely to be eliminated by
chemotherapies and adjuvant therapies (22, 63). Slow cycling and
quiescent LCCs, that are adapting to the new microenvironment
remain unaffected by therapies targeting dividing cells and are
enriched for stem cell like characteristics, that are critical to
initiate secondary or metastatic tumors (27, 64, 65). Hypoxic
microenvironments in the primary tumors promotes activation
of dormancy programs and DTCs with these features are likely
to survive better post-extravasation (66). Overall, absence of
proliferating signals or a self-imposed block to these cues may
result in activation of dormancy programs (27).

Extracellular Matrix
The distribution and availability of growth factors and cytokines
is tightly regulated by the ECM surrounding DTCs (37,
67). Non-structural matrix protein such as Thrombospondin-1
(TSP-1) and Periostin through direct interaction with membrane
receptors and fibrous ECM molecules modulate cancer cell
proliferation status (68). Collagen enriched fibrotic environment
leads to activation of myosin light chain kinase through integrin
β1 signaling and promotes proliferation in cancer cells, while
failure to engage proliferative signals results in dormancy (69,
70). Mitogen activated protein kinase (MAPK) activity has
been clearly demonstrated to regulate proliferation status of
human squamous carcinoma, melanoma, breast, and prostate
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FIGURE 1 | Metastatic latency. Upon extravasation, many DTCs perish, few surviving LCCs adapt to and modify the surrounding microenvironment, eventually giving

rise to metastasis. Key molecular determinants of latency and metastatic outbreak are highlighted (Refer text for more details).

cancer cells (71). Increased p38 and decreased ERK activity is
observed in dormant cancer cells. Urokinase-type plasminogen
activator receptor (uPAR) drives activation of ERK through
FAK and Src kinases and promotes proliferation, while loss of
either uPAR expression or FAK/Src activity leads to increased
p38 kinase activity and unleashes downstream quiescence
effectors DEC2, NR2F1, and CDK inhibitors (60, 64, 72–74).
Src activation in response to CXCL12 and IGF1, potentiates
PI3K/AKT activation, and aids survival of latent breast cancer
DTCs independent of their hormone receptor status or cancer
subtype (62). Expression of metastatic suppressor genes (MSGs:
KISS1, KAI1, MKK4/6/7, and NM23) has also been reported
to limit metastasis initiating capacity of DTCs by modulating
the activity of MAPKs through G-protein coupled receptors
and tyrosine receptor kinases (75, 76). Over-expression of KISS1
results in limiting metastatic outgrowth of aggressive human
melanoma cell line (77). Similarly, NM23 and MKK4/6 activate
p38 and inhibit ERK to induce dormancy in ovarian and
breast cancer cells (76). Mitogen and stress-activated kinase
1 (MSK1) functions downstream of p38 and restrains breast
DTCs into a steady micro-metastatic state by promoting luminal
differentiation through GATA3 and FOXA1 in ER+ breast cancer
(78). Along these lines, GATA6 and HOPX have been reported
to limit lung adenocarcinoma metastasis by promoting alveolar
differentiation (79). Integrin α5β3 signaling response can also
promote differentiation of luminal A breast cancer cells and
limit tumor progression (80). L1CAM and YAP signaling enable
the outgrowth of metastasis-initiating cells through integrin-ILK
both immediately following their infiltration of target organs
and as they exit metastatic latency (81). Taken together, altered

ECM and MAPK activity in response to microenvironmental
cues influences the proliferation status of latent DTCs.

Endoplasmic Reticulum (ER) Stress
Transducers of unfolded protein response (PERK and eIF2α)
are also activated in p38 active dormant cells and have been
shown to be essential for cancer cell survival under chemotherapy
induced genotoxic stress (74, 82). CK19 andMHC class I negative
dormant pancreatic DTCs activate PERK and relieving ER stress
pharmacologically or by expression of XBP1 in combination
with T-cell depletion resulted in metastatic outgrowth (83).
Administration of chemical chaperone 4-PBA to relieve ER
stress in DTCs preoperatively has been proposed to drive
DTCs out of quiescence and be cleared by active adaptive
immune surveillance (83). Likewise, Fbxw7, a component
of SCF-E3 ubiquitin ligase complex has been reported to
maintain dormancy in breast DTCs and its ablation led to
increased proliferation in this model system. A combination of
depleting Fbxw7 and chemotherapy has been proposed to limit
residual disease (84). Will these approaches result in reduced
metastatic incidence or worsen survival outcome in patients by
unleashing restrained heterogeneous metastatic clones needs to
be further explored.

Supportive Niches
Specialized microenvironments surrounding LCCs limit
proliferation and facilitate cancer cell survival and quiescence.
For example, perivascular niche (PVN) supports survival of
hematopoietic stem cells (HSCs) as well as disseminated lung,
melanoma, breast and prostate cancer cells in the bone marrow
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(85–87). TSP1 secreted by the microvascular endothelium in the
bone and lung induce growth arrest in breast DTCs, while high
Periostin and TGF-β1 expression in the neovascular tip cells
triggers metastatic relapse (68). Inhibition of integrin-mediated
interactions between DTCs (either quiescent or proliferating)
and PVN sensitizes them to chemotherapy (88). Several stromal
derived factors have inhibitory effect on LCC proliferation.
For example, leukemia inhibitory factor (LIF) secreted by
osteoblasts and bone marrow stromal cells limit growth of breast
cancer DTCs in bone by activating LIFR: STAT3 signaling (89).
Prostate cancer DTCs and drug resistant dormant myeloma
cells in the bone marrow respond to osteoblast derived growth
arrest specific 6 (GAS6), through Axl, a receptor tyrosine
kinase and remain dormant (73, 90, 91). HSC driving factors
such as osteoblast secreted stromal cell-derived factor 1 (SDF-
1/CXCL12) binds to CXCR4 on cancer cells and retains them
in the HSC niche (87). SDF-1 CXCR4 interaction plays an
important role in keeping chronic myeloid leukemia stem cells
dormant. Depletion of CXCL12 in mesenchymal stromal cells led
to increased proliferation of these dormant cells while deletion
of CXCL12 in endothelial cells resulted in reduced proliferation
(92). Dormant breast cancer cells are predominantly found in
the E-selectin and SDF-1 rich perisinusoidal vascular regions.
Simultaneous blockade of CXCR4 and E-selectin in patients
could release dormant micro metastases from the protective
bone microenvironment and also prevent adhesion in the first
place (93).

TGF-β2 rich bone microenvironment promotes quiescence
in HNSCC DTCs by inducing cell cycle inhibitor p27,
metastatic suppressor DEC2 and SMAD1/5 activation, while
the TGF-β2 low lung microenvironment permits metastatic
outgrowth. Removing this break by inhibiting TGF-βRIII
increased metastatic burden in mice (94). BMP7, another TGF-β
family member secreted by bone stromal cells induces senescence
in prostate DTCs through BMPR2 dependent activation of p38
and p21. Withdrawal of BMP7 in this mouse model of prostate
cancer induces recurrent metastatic growth in the bone (95).
Similarly, BMP4 supports breast cancer dormancy in the lung,
while its antagonist, Coco, drives metastatic outgrowth (96).
Cancer cells have also been reported to either cannibalize bone
marrow derived mesenchymal stem cells or prime them to
secrete microRNA packed exosomes that promote quiescence
(97, 98). WNT5a from the osteoblastic niche induces dormancy
in prostate cancer cells by activating non-canonical ROR/SIAH2
signaling and repressing canonical WNT/β-catenin signaling
(99). In an autocrine fashion, breast and lung cancer DTCs can
also enforce a slow cycling state by inhibiting WNT/β-catenin
signaling (27).

Innate and Adaptive Leukocytes
Host immunity plays an important role in shaping and limiting
tumor growth and progression (100–106). Neutrophils are the
most abundant circulating immune cells and among the first
ones to infiltrate the lung metastatic niche. Their role in either
promoting or inhibiting metastasis is highly debated (107).
MET expressing neutrophils secrete reactive oxygen species
and are reported to be anti-metastatic (108, 109). In contrast,

several studies identify a pro-metastatic function for neutrophils
(110). Neutrophils inhibit natural killer (NK) cell function and
facilitate extravasation of tumor cells by secreting IL-1β and
matrix metalloproteinases (111). Neutrophil derived leukotrienes
further support early colonization of breast cancer cells (112,
113). Depletion of neutrophils or genetic ablation of CXCR2,
suppressed metastasis in pancreatic cancer models and lead
to increased T-cell infiltration and extended survival (114).
Recent reports highlight the role of neutrophils in metastatic
outbreaks induced by sustained lung inflammation caused by
tobacco smoke or bacterial derived lipopolysaccharide (115).
Systemic inflammatory response induced after surgery can also
promote the re-emergence of tumors that were kept in check
by a tumor-specific T-cell response (116). Inflammation in lung,
induced formation of neutrophil extracellular traps (NET) that
resulted in cleavage and remodeling of laminin. Remodeled
laminin activated integrin signaling and induced proliferation
in otherwise dormant lung DTCs. This escape from latency
is reported to be dependent on expression of Zeb1, a key
modulator of EMT (117). Antibodies against NET-remodeled
laminin prevented awakening of dormant cells and has been
proposed as an approach to prevent metastatic outbreaks and
prolong survival of cancer patients (115). Of note, obesity causes
lung neutrophilia and the increase in neutrophils favors breast
cancer metastasis to lung (118, 119).

Tissue resident macrophages or infiltrating monocytes are
also reported to play an important role in either limiting
or promoting early colonization of DTCs post extravasation
(105, 120). Monocyte chemotactic and activating factor (CCL2)
secreted by cancer cells and stroma recruits CXCR2+ positive
monocytes and macrophages to enable seeding, colonization
and outgrowth (121, 122). VCAM1 on breast cancer cells in
leukocyte rich lung microenvironment binds to α4β1 integrin
on macrophages and activates Ezrin-AKT survival pathway
in cancer cells (123). In the bone, aberrant expression of
VCAM1 promotes transition from indolent to overt metastasis
in breast DTCs. VCAM1 expressing DTCs attract and tether
to integrin α4β1 expressing osteoclast progenitors and give rise
to osteolytic metastasis. Antibodies against α4 integrin block
this prosurvival function of VCAM1 and metastatic burden
(124). NR4A1 positive patrolling monocytes that are enriched
in the microvasculature of the lung, engulf melanoma, and
breast tumor cells and reduce lung colonization and metastasis
(125, 126). They also promote recruitment and activation of NK
cells. Administration of selective class IIa histone deacetylate
(HDAC) inhibitor, in MMTV-pyMT mouse model, resulted in
reduced tumor burden and spontaneous pulmonary metastasis.
HDAC inhibition reverts the pro-tumorigenic phenotype of
tumor associated macrophages, recruits anti-tumor phagocytic
macrophages and stimulates the adaptive immune response
(127). Selective inhibition of histone deacetylase may unleash the
antitumor potential of macrophages and keep DTCs in check.

NK cells play an important role in surveilling and eradicating
cancer cells in circulation and upon extravasation (106, 128).
By releasing cytolytic granules and pro-apoptotic factors or
cytokines, NK cells kill tumor cells. They also release chemokines
that attract T-cells, dendritic cells, and monocytes promoting
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TABLE 2 | Metastatic latency preclinical models.

Cancer type Preclinical model Mechanistic insights into DTC biology References

Breast HCC1954 NK cell mediated immune evasion, self-imposed quiescence, SOX9, DKK1, p-p38 (27)

4T07 BMP signaling (96)

MDA-MB-231 VCAM-1 mediated osteoclastogenesis, chemoresistance by Fbxw7 (84, 124)

MMTV-HER2 Early dissemination of DTCs, parallel evolution of metastatic cancer (35, 36)

PDX Stem cell program - OCT4, SOX2, DKK1 (27, 65)

BT549 p-p38, relieving ER stress by PERK and EIF2a (82)

D2A1 anti-inflammation, integrin signaling (69, 70, 117)

Prostate PC3 GAS6/Axl, Wnt5a signaling, BMP7 (90, 95, 99)

DU145 GAS6/Axl (90)

Melanoma RET.AAD Early dissemination of DTCs, restrained outgrowth by CD8 T-cell (137)

Lung H2087 NK cell mediated immune evasion, self-imposed quiescence, SOX2, DKK1 (27)

Head and neck HEp-3 Epigenetic repression by NR2F1, low p-ERK, high p-p53/p-p38, SOX9, TGFβ2 (64, 72, 94)

Pancreas mM1 Immune evasion by relieving ER stress (83)

Fibrosarcoma GR9 Low MHC-I (138, 139)

adaptive immune response (129, 130). NK cell cytotoxicity has
been negatively correlated with metastatic burden in several
cancer types (131, 132). Depletion of NK cells aid metastatic
outbreaks in disseminated cancer cells from breast and lung
cancers (27, 111, 133). As tumors become invasive and acquire
mesenchymal traits, they upregulate expression of cell surface NK
cell activating ligands and are more susceptible to elimination
by NK cells (134). DTCs are therefore more susceptible to
immune recognition in circulation and upon extravasation
(106). Nonetheless, cancer cells evade NK mediated immune
surveillance by either down regulating NK cell activating
ligands and death inducing receptors (135, 136). For example,
extravasated breast and lung cancer DTCs in lung, brain, liver,
and kidneys evade immune attack by NK cells by entering into a
slow cycling or quiescent state enforced by autocrine inhibition
of WNT signaling pathway (27, 133). Through mechanisms yet
to be defined, these slow cycling DTCs downregulate expression
of several NK cell activating sensors (27).

In a spontaneous mouse model of melanoma, early
dissemination of tumor cells to the lung was observed and
the DTCs remained dormant for varying periods of time.
Depletion of CD8+ T cells in these metastasis models resulted
to increased metastatic out breaks (137). Similarly, depletion
of CD4+ and CD8+ T cells 5 months after surgical removal of
methylcholanthrene-induced fibro sarcoma tumor results in
lung metastasis, highlighting the role of T cells in eliminating
proliferative DTCs (138). In this model, intratumoral MHC-I
heterogeneity dictates metastatic capacity and is proposed to
predict response to immunotherapy (139). It is possible that
the immune equilibrium at the metastatic site is maintained by
the immune suppressive (MDSCs, Treg) and tumor inhibiting
(T cells, NK cells) cells. Taken together, all these studies reinforce
the role of innate and adaptive immune system in either
delaying or limiting metastatic incidence. They also provide a
framework to investigate the effect of host microenvironment
on metastatic latency. Given that mouse and human immune
systems are different, development of reliable preclinical models
that replicate human immune surveillance are desired.

TARGET RESIDUAL DISEASE: HOW TO
ELIMINATE THE VEILED THREAT?

Tracking residual disease in patients with no obvious symptoms
is challenging. In order to accurately predict relapse, genomic and
epigenomic characteristics of divergent disseminated cancer cells
at the metastatic site and their associated phenotypic information
is needed. Disease predictions depend on preclinical models, that
are imperfect as they are based on assumptions that change with
novel insights and discoveries. Nonetheless, every model, in spite
of its limitations, has advanced our understanding of this phase
of tumor progression (140, 141) (Table 2).

Keeping DTCs in a quiescent non-proliferative state is an
attractive viable approach to limit delayed metastatic incidence
(115, 142, 143). Adjuvant anti-estrogen therapy with the ER
antagonists is a standard of care for patients with ER+ breast
cancers for years after initial diagnosis and this approach has
significantly improved survival outcomes (22, 63). FDA approved
CDK4/6 inhibitors for ER+ breast cancers, block cancer cell
proliferation and induce dormancy or senescence in various
models (144). Such inhibitors have potential to limit relapse
in cancers with prolonged metastatic latency phase. Inhibition
of integrin β1, uPAR, ERK, and Src driven signaling might
prevent metastatic breakouts. Activation of p38, NR2F1, or
administration of GAS6, BMP4/7, WNT inhibitors, and TGF-β2
might be effective in limiting relapse. Themajor challenge for this
approach is identifying enforcers of quiescence that are effective
in all tissues and specific for cancers with distinct oncogenomic
features. Also unknown is how well tolerated these extended
therapies will be in patients and how effective this approach will
be on slow cycling DTCs. Nevertheless, the threat of disease
relapse will still remain.

Removing the proliferative break or mobilizing DTCs from
their niches and allowing anti-proliferative drugs or immune
surveillance to target DTCs is an alternative strategy (83, 84,
94, 95, 145, 146). Unleashing the proliferative potential of
quiescent population has disease management concerns. In
order to be effective, this approach would have to drive all
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DTCs out of quiescence and the subsequent treatment has
to effectively eliminate all proliferating cancer cells, which
is unlikely. Moreover, this approach may result in selection
of clones that don’t respond to available therapies and can
be detrimental to patient health. Eliminating quiescent DTCs
by targeting intrinsic or extrinsic enforcers of this state is
an attractive approach that needs to be further explored in
clinic (142, 143).

CONCLUDING REMARKS

Early detection of disseminated disease with improved
understanding of cellular and molecular mechanisms driving
metastatic latency in an organ with distinct tissue architecture is
critical to provide effective therapeutic interventions. Designing
a clinical trial to assess the benefit of proposed strategies is
a major challenge. Some obvious questions apart from the
cost being: how to define patients with likelihood of disease

relapse, trial duration and endpoint criteria. Further research
with preclinical models that faithfully represent this phase
of tumor progression will provide risk prognostication tools,
novel targets and treatment strategies to eliminate minimal
residual disease.
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