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Imaging of human cells exposed 
to an antifungal antibiotic 
amphotericin B reveals the 
mechanisms associated with the 
drug toxicity and cell defence
Ewa Grela1,2, Mateusz Piet3, Rafal Luchowski1, Wojciech Grudzinski   1, Roman Paduch3,4 & 
Wieslaw I. Gruszecki   1

Amphotericin B is an antibiotic used in pharmacotherapy of life-threatening mycotic infections. 
Unfortunately, the applicability of this antibiotic is associated with highly toxic side effects. In order 
to understand molecular mechanisms underlying toxicity of amphotericin B to patients, two cell lines, 
human normal colon epithelial cells (CCD 841 CoTr) and human colon adenocarcinoma cells (HT-29) 
were cultured in the presence of the drug and imaged with the application of fluorescence lifetime 
imaging microscopy and Raman scattering microscopy. The results of the cell viability assays confirm 
high toxicity of amphotericin B towards human cells. The images recorded demonstrate effective 
binding of amphotericin B to biomembranes. Analysis of the images reveals the operation of a defence 
mechanism based upon the elimination of molecules of the drug from living cells via formation of small 
amphotericin B-containing lipid vesicles. The fact that exosomes formed are devoid of cholesterol, 
as concluded on the basis of the results of Raman analysis, suggests that sequestration of sterols 
from the lipid phase of biomembranes is not a sole mechanism responsible for the toxic side effects of 
amphotericin B. Alternatively, the results imply that molecules of the drug present directly within the 
hydrophobic membrane core disturb the lipid membrane structure and affect their biological functions.

The dramatic increase in mycotic infections, we are facing nowadays, is a challenge for researchers working 
on developing effective antifungal drugs1,2. Amphotericin B (AmB) has been used as a gold standard to treat 
life-threatening, systemic mycoses, despite high toxicity of this drug to patients, owing to the high performance of 
this antibiotic3 (see Supplementary Information Fig. S1 for a chemical structure). According to a current knowl-
edge, biomembranes of human and fungi cells are a primary target of the drug and both the therapeutic and toxic 
side effects of AmB are based upon impairing of physiological processes taking place in membranes. Among the 
possible mechanisms of action of the drug towards biomembranes, a disruption of the physiological ion trans-
port via the pore-like, transmembrane structures of AmB, are considered to be highly effective and probable4–7. 
Alternatively, an effect of AmB on structural properties of biomembranes via destabilization of their lipid phase 
and resulting impairment of the membrane functionality was postulated8–10. Recently, another molecular mecha-
nism has been proposed, which consists in impairing of biomembranes functionality via sequestration of sterols 
from the lipid phase of biomembranes, owing to the formation of extramembraneous AmB-sterol structures11. 
The results of our recent research based on fluorescence lifetime imaging microscopy (FLIM) of single model lipid 
membranes has confirmed the possibility of formation of such structures12,13. On the other hand, the results of the 
present study carried out on human living cell cultures exposed to AmB seem to suggest the operation of differ-
ent mechanisms in natural systems. Owing to the toxicity of AmB to patients, intravenous infusions of different 

1Department of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, Lublin, Poland. 2Department 
of Biophysics, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland. 
3Department of Virology and Immunology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska 
University, Lublin, Poland. 4Department of General Ophthalmology, Medical University of Lublin, Lublin, Poland. 
Correspondence and requests for materials should be addressed to W.I.G. (email: wieslaw.gruszecki@umcs.pl)

Received: 4 July 2018

Accepted: 5 September 2018

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0002-8825-1423
http://orcid.org/0000-0002-8245-3913
mailto:wieslaw.gruszecki@umcs.pl


www.nature.com/scientificreports/

2Scientific REPOrts |  (2018) 8:14067  | DOI:10.1038/s41598-018-32301-9

formulations of the drug are nowadays a recommended delivery mode, in order to bypass a digestive tract. We 
selected human normal colon epithelial cells (CCD 841 CoTr) for the purpose of the present work aimed to inves-
tigate the molecular mechanisms of toxicity of AmB to cells and protection against them. In order to understand 
molecular mechanisms underlying potential toxicity of AmB, also to oncological patients of selected alimentary 
tract tumour, additionally, human colon adenocarcinoma cells (HT-29) were cultured in the presence of the drug 
and imaged with the application of fluorescence lifetime imaging microscopy and Raman scattering microscopy.

Results
Two human cell lines, CCD 841 CoTr and HT-29, were cultured in the presence of AmB in a concentration 
range of 0.05 to 25 μg/ml in the growth medium. As expected, higher concentrations of the antibiotic are toxic to 
human cells (above 5 μg/ml, see Fig. 1). Both CCD 841 CoTr and HT-29 cells were susceptible to AmB, but up to 
a concentration of 5 μg/ml the cytotoxic effect did not exceed 15% compared to the control (viability inhibition to 
88.4 and 86.8% in CCD 841 CoTr and HT-29 cell cultures, respectively). At concentrations higher than 5 μg/ml  
the drastic fall of cells viability was noted and the effect towards normal cells (viability decreased to 3.6% com-
pared to the control) was more severe than on cancer cells (inhibition to 41.8% of the control). IC50 values were 
8.7 μg/ml for CCD 841 CoTr and 21.2 μg/ml for HT-29 cells. Cells cultures were imaged with the application of 
FLIM and Raman scattering microscopy. Figure 2 presents FLIM images of CCD 841 CoTr and HT-29 cells, 
control and cultured in the presence of AmB (2.5 and 10 μg/ml). As can be seen, the cells from both the cell lines 
demonstrate auto-fluorescence characterized by two fluorescence lifetime components: 1.1 ns and 3.3 ns, very 
close to the fluorescence lifetime components reported previously14. Exposition of cells to AmB present in the 
growth medium results in binding of the drug molecules to cells, manifested by the appearance of additional 
fluorescence lifetime component τ = 0.6 ns. A fluorescence lifetime level of this component (below 1 ns) suggests 
that AmB in the cells imaged appears in the form of small supramolecular structures12,13,15. Interestingly, apart 
of AmB distributed homogenously in the cells imaged and represented by the pixels coded with blue colour, the 
numerous nanoscale structures can be resolved, visible particularly at higher concentrations of the drug (Fig. 2). 
Such distinct structures, selected on the large-scale images, additionally were imaged with higher resolution. 
Examples of such images are presented in Figs 3 and S2. The AmB-containing nanostructures observed in the 
images can be concluded to be created in a process of a secretion by budding cell membrane fragments. Several 
subsequent phases of this process can be distinguished in the images. Figure 3 presents the images of a mature 
exosome being still attached to the cell membrane. A distinctly blue colour of the FLIM image of the exosome, 
representing short fluorescence lifetime component assigned to AmB, with a minimum contribution from a green 
colour-coded and red colour-coded autofluorescence of the cell, is a manifestation of different composition of the 
plasma membrane and the newly formed lipid vesicle. The fact that the fluorescence intensity in the cross-section 
of the AmB-containing vesicle is more intensive in the left-hand and right-hand parts than in the upper and 
lower parts is a clear demonstration that fluorophores of the antibiotic are oriented vertically with respect to the 
membrane plane12,13,16. Such a conclusion is based on the photoselection and has very strong support from the 
distribution of fluorescence anisotropy values in the structure imaged in Fig. 3 (see Fig. S3 for interpretation of 
fluorescence anisotropy values). This means that molecules of AmB are loaded into the hydrophobic core of the 
lipid vesicles and that they are oriented perpendicular with respect to the membrane plane. Virtually the same 
fluorescence lifetime values of AmB were recorded in the cells and in the exosomes which implies the same 
molecular organization of molecules of the antibiotic before and after an exosome formation. A level of AmB 
fluorescence lifetime (below 1 ns) and fluorescence emission spectra recorded based on a micro-spectroscopy 
approach (Fig. S4), confirm that molecules of the antibiotic accommodated into the membranes and localized 
in the exosomes are associated in small supramolecular structures. In order to check whether the AmB-carrying 
exosomes are also rich with cholesterol (Chol) extracted from cell membranes, the samples were imaged with 
the application of Raman microscopy. Figure 4 presents the results of Raman imaging of cells cultured under 
exposure to AmB present in the growing medium. The collections of the Raman spectra recorded during cell 
imaging were deconvoluted based on the template spectra of pure AmB and Chol. This enabled to selectively 
image a distribution of AmB (Fig. 4B) and Chol (Fig. 4C). Interestingly, the Raman imaging results reveal that 

Figure 1.  Results of viability assays of cells cultured under presence of AmB. AmB concentration profiles of cell 
viability from the cell lines CCD 841 CoTr and HT-29, determined according to the Neutral Red method (one-
way Anova, post-hoc: Dunnett test; *p < 0.05, **p < 0.01; ***p < 0.005).
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AmB-containing exosomes are devoid of Chol. The same phenomenon could be observed both in the case of 
HT-29 cells (Fig. 4) and CCD 841 CoTr cells (Fig. S5).

Discussion
In the present work, we analysed binding of molecules of antifungal antibiotic AmB to human cells from two 
cell lines, normal colon epithelial cells and colon adenocarcinoma cells, by means of imaging with fluorescence 
lifetime and Raman scattering microscopies. Assays of the viability of cells exposed to AmB, run prior to imag-
ing, confirmed high toxicity of this antifungal antibiotic also for human cells. Interestingly, the resistance of 
normal cells to the toxicity of the drug has been determined significantly lower as compared to adenocarcinoma 
cells (Fig. 1). One of the possible explanations of such a difference may be associated with a different membrane 
protein composition in normal and cancer cells17. It may influence not only on the pathogenicity of tumour cells 
but also distinct sensitivity to cytotoxic or antifungal drugs. Another explanation could be based upon high 
proliferation rate of cancer cells, involving remodelling of plasma membrane systems and therefore facilitated 
exocytosis resulting in the elimination of AmB molecules from the cell membranes (see Fig. 3). Such a process 
has been observed in all the AmB-containing cells imaged in the present study and therefore it can be assumed 
to be a natural defence mechanism against toxication with this antibiotic. The quantitative analysis of amplitudes 
of the short-lifetime fluorescence components representing AmB bound to the cells shows that independently 
of the actual concentration of the antibiotic in the growing medium an amplitude does not exceed ~60% (4-fold 
increase in the AmB concentration, see Fig. 2). This seems to be a demonstration of an efficient operation of 
a certain defence mechanism, for example, based upon the elimination of AmB molecules from the cells. On 
the other hand, it may not be excluded that this is a maximum concentration of the drug (corresponding to 
60% amplitude of the short lifetime fluorescence component) which can be resisted by a living cell, before cell 
death, providing that only alive cells were subjected to imaging. Interestingly, the exosomes formed, loaded with 
AmB, have been found not to contain Chol (see Figs 4 and S5). Such a result is very far from our expectations, 
taking into consideration the fact that AmB can effectively bind from the water phase to lipid membranes exclu-
sively those containing sterols in their hydrophobic core12,13,18. The results of the present work show that indeed, 
AmB binds to Chol-containing membranes but, on the other hand, can diffuse within the lipid phase and can 
be effectively eliminated via exocytosis from the membrane domains characterized by a relatively low level of 
sterols. A scheme summarizing those findings is presented in Fig. 5. The fact that despite the operation of such a 
defence mechanism, AmB is highly toxic to human cells, shows that molecules of the drug present in the plasma 

Figure 2.  Fluorescence lifetime images of cells. Fluorescence lifetime imaging data of two human cell lines: 
CCD 841 CoTr (on the left) and HT-29 (on the right), cultured without additions or with the addition of AmB 
at a concentration of 2.5 µg/ml and 10 µg/ml (marked). Cells were cultured on glass coverslips and imaged on 
the same slides (in situ). Side panels present the results of detailed fluorescence lifetime analysis in the images 
presented. A height of bars represents a fractional contribution of each lifetime component. The colour codes 
correspond to the localization of lifetime components on images: 1.1 ns green, 3.3 ns red and 0.6 ns blue.
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membranes affect the membrane physiological functionality. According to the results of the fluorescence lifetime 
and fluorescence spectral analyses, AmB incorporated into the cells appears in the form of small supramolecular 
structures. It is very likely that such structures promote uncontrolled ion flow through biomembranes, affecting 

Figure 3.  Fluorescence lifetime and fluorescence anisotropy images of a single exosome. Panel A shows a 
cell from the HT-29 cell line, cultured at AmB concentration of 10 µg/ml. Panel B shows an image of a single 
exosome vesicle, selected in panel A (marked with a white circle) and recorded with higher resolution. Panel 
C shows the same exosome imaged based on fluorescence anisotropy data. The colour code for panels A and 
B as in Fig. 2. The relatively short fluorescence lifetimes of AmB in the exosome (panel B) is indicative of the 
formation of small aggregated forms of the drug in the lipid phase. The relatively high fluorescence anisotropy 
values at the left- and right-hand of the image of a vesicle cross-section (panel C) are consistent with the 
perpendicular orientation of AmB molecules with respect to the membrane plane.
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electrostasis of living cells. The results of the present study show that not necessary sequestration of sterols from 
the lipid phase but also the direct presence of molecules of the drug within plasma membranes can affect their 
biological functions and is, at least partially, responsible for the toxicity of AmB. We also report operation of the 
detoxification mechanism based upon the elimination of AmB from the cell membranes via extrusion of lipos-
omes loaded with the antibiotic.

Figure 4.  Images of an HT-29 single cell from the culture grown in the presence of AmB. The concentration of 
AmB in the growing medium was 5 μg/ml. (A) Optical image. (B–D) Raman images: B – distribution of AmB, 
C – distribution of Chol, D – overlap of images presented in panels B and C. Panel E shows the template Raman 
spectra recorded for pure AmB and Chol under the same conditions and used for analysis of localization of the 
antibiotic and the sterol in the cells imaged.

Figure 5.  Schematic representation of binding and extrusion of amphotericin B to/from biomembranes. The 
model is discussed in the text.
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Methods
Chemicals and preparation.  Antibiotic amphotericin B from Streptomyces sp., dimethyl sulfoxide (DMSO) 
and cholesterol were purchased from Sigma Aldrich (USA). All other chemicals used in the preparations were of 
analytical grade. Water was purified by a Milli-Q system from Merck Millipore (France).

In order to additionally purify AmB, a powder of the antibiotic was suspended in a mixture of water and chlo-
roform (1:1, v/v) and vortexed for 30 min, then collected from the interphase (this procedure has been repeated 
three times)15,19. Finally, AmB was evaporated under gaseous nitrogen.

A concentration of the antibiotic was determined based on a molar extinction coefficient of AmB in DMSO 
solution (121 400 M−1 cm−1) at 416 nm absorption maximum20. For this purpose, electronic absorption spec-
tra were recorded with the application of a Cary 60 UV-Vis spectrophotometer from Agilent Technologies 
(Australia).

Cell culture.  The research was held on two cell lines: human normal colon epithelial cells CCD 841 CoTr 
(ATCC No. CRL-1807) and human adenocarcinoma cells HT-29 (ATCC No. HTB-38) derived from a stage I 
cancer. Cells were cultured in 5% CO2/95% air humidified atmosphere in a mixture of DMEM: RPMI 1640 (1:1) 
media (Sigma, St Louis, MO, USA) at 34 °C (CCD 841 CoTr) and RPMI 1640 medium at 37 °C (HT-29). Media 
were supplemented with 2% or 10% (v/v) FBS (GibcoTM, Paisley, UK) and antibiotics: 100 U/ml penicillin, 100 μg/
ml streptomycin (Sigma).

For the experiments, cells were treated with 25 mM trypsin and EDTA, counted and diluted to a density of 
1 × 105 cells/ml. For neutral red (NR) assay, 100 μl of cell suspension were poured to each well of 96-well plate, 
and for FLIM and Raman analyses, 2 ml of cells were poured onto round glass cover slips placed inside the Petri 
dish. Subsequently, cultures were incubated for 24 h with appropriate concentrations of AmB. Afterwards, for the 
FLIM and Raman analyses, cells were washed twice with PBS.

Viability assay by Neutral Red uptake.  The method is based on uptake of supravital dye, neutral red, 
by live cells and its accumulation in the lysosomes. The absorbance is directly proportional to the viability of the 
cells21,22. After 24 h incubation with AmB at concentrations of range from 0.05 to 25 μg/ml, the medium was dis-
carded and 100 μl of NR dye (40 μg/ml)(Sigma) were added to each well. Plates were incubated for 3 h in a humid-
ified atmosphere at 34 or 37 °C. Afterwards, the dye-containing medium was removed and cells were fixed with 
200 μl of 0.5% formalin in 1% CaCl2. Subsequently, the fixative was removed and dye was solubilized with 100 μl 
of solvent (1% acetic acid in 50% ethanol). The plates were gently shaken for 20 min at room temperature and 
the absorbance of the extracted dye was measured spectrophotometrically at 540 nm using a microplate reader 
(Molecular Devices Corp., Emax, Menlo Park, CA).

Results of viability are presented as arithmetic mean ± SD and were analyzed using GraphPad Prism software. 
Statistical significance was calculated with one-way ANOVA test and Dunnett post-hoc test and is expressed with 
*, where * signifies p < 0.05, **p < 0.01, and ***p < 0.001. According to FDA, the maximum recommended a 
total daily dose of amphotericin B desoxycholate for adults should not exceed 1.5 mg/kg.

Fluorescence Lifetime Imaging Microscopy and micro-spectroscopy.  Fluorescence lifetime 
imaging was carried out on MicroTime 200 (Picoquant GmbH, Germany) linked with Olympus IX71 inverted 
microscope. The cell samples were illuminated by 405 nm pulsed laser with 10 MHz repetition frequency and 
16 ps resolution time. During the experiments was used a silicon oil-immersed objective (NA = 1.3, 60×). 
Measurements were carried out with the application of ZT 405RDC dichroic, ZET405 StopLine Notch Filter, 430 
long wavelength-pass filters from Chroma-AHF Analysentechnik and a confocal pinhole of 50 μm in diameter. 
The fluorescence signal was divided into perpendicular- and parallel-polarized channels and was simultaneously 
measured by two twin Single Photon Avalanche Diodes. The perpendicular (F⊥) and parallel (F‖‖) intensities were 
further used to calculate the anisotropy as defined:

=
−

+
⊥

⊥
r

F GF
F GF2

Polarization directions are referred to the polarization of excitation laser beam. G was an instrumental correc-
tion factor (typically 1.01). A value of factor G was determined before each experiment, in separate measurement 
carried out with a long-lifetime fluorescence probe.

Fluorescence lifetimes and fluorescence anisotropy values were analyzed and determined with the application 
of SymPhoTime 64 v. 2.3 software (Picoquant GmbH, Germany).

Fluorescence emission spectra of micro-scale objects were recorded from a selected area of the imaged 
cells with the application of a Shamrock 163 spectrograph coupled with the microscope. For detection, a single 
photon-sensitive camera (Newton EMCCD DU970P BUF, Andor Technology) was used, cooled to minus 50 °C.

Raman imaging.  Raman spectral analysis and imaging on a microscale was carried out with inVia Reflex 
confocal Raman microscope (Renishaw, UK) with Cobolt o8-NLD 405 nm laser (power at a sample 0.2 mW). 
Water immersed objective (Olympus NA = 1.2, 60×) was applied during the experiments. In each pixel of the map, 
a Raman spectrum was recorded in the region between 953–3033 cm−1, with the application of a 2400 lines/mm  
grating (1 cm−1 spectral resolution) and EMCCD Newton 970 camera (Andor Technology, UK) cooled to minus 
50 °C. Spectrum acquisition time was set to 0.1 s. All results were analyzed by DCLS spectral deconvolution using 
Wire 4.4 software (Renishaw, UK).
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