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Abstract

Background: Oxidative stress is known to play an important role in the pathology of traumatic brain injury. Mitochondria
are thought to be the major source of the damaging reactive oxygen species (ROS) following TBI. However, recent work has
revealed that the membrane, via the enzyme NADPH oxidase can also generate the superoxide radical (O2

2), and thereby
potentially contribute to the oxidative stress following TBI. The current study thus addressed the potential role of NADPH
oxidase in TBI.

Methodology/Principal Findings: The results revealed that NADPH oxidase activity in the cerebral cortex and hippocampal
CA1 region increases rapidly following controlled cortical impact in male mice, with an early peak at 1 h, followed by a
secondary peak from 24–96 h after TBI. In situ localization using oxidized hydroethidine and the neuronal marker, NeuN,
revealed that the O2

2 induction occurred in neurons at 1 h after TBI. Pre- or post-treatment with the NADPH oxidase
inhibitor, apocynin markedly inhibited microglial activation and oxidative stress damage. Apocynin also attenuated TBI-
induction of the Alzheimer’s disease proteins b-amyloid and amyloid precursor protein. Finally, both pre- and post-
treatment of apocynin was also shown to induce significant neuroprotection against TBI. In addition, a NOX2-specific
inhibitor, gp91ds-tat was also shown to exert neuroprotection against TBI.

Conclusions/Significance: As a whole, the study demonstrates that NADPH oxidase activity and superoxide production
exhibit a biphasic elevation in the hippocampus and cortex following TBI, which contributes significantly to the pathology
of TBI via mediation of oxidative stress damage, microglial activation, and AD protein induction in the brain following TBI.
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Introduction

Traumatic brain injury (TBI) is the leading cause of death and

disability in young people in the United States. Approximately 1.5

million people are affected each year with TBI, and despite

advances in research and care, severe TBI still exhibits a mortality

index as high as 35%–40%. Thus, the clinical outcome of severely

head-injured patients is still poor. Primary damage in TBI is

thought to result from mechanical forces applied to the skull and

brain at the time of impact, leading to focal or diffuse brain injury

patterns [1]. Secondary brain injuries, on the other hand, evolve

over time [2]. These are characterized by a complex cascade of

biochemical events that lead to neuroinflammation, brain edema,

and delayed neuronal cell death [3–7].

Oxidative stress has been implicated to play a significant role in

the pathology of TBI [8–10]. The most commonly occurring

cellular free radical is superoxide radical (O2
2), which is produced

when an oxygen molecule gains one electron from another

substance. Excess O2
2 leads to tissue damage by promoting

hydroxyl radical (OH2) formation through hydrogen peroxide

(H2O2), and by combining with nitric oxide to form peroxynitrite

(ONO2
2), a powerful oxidant formed from superoxide and NO

that can damage a wide array of molecules in cells [11]. It has

been generally assumed that mitochondria are the major source of

O2
2 following brain injury [12]. However, recent work has shown

that the enzyme, NADPH oxidase can also contribute to O2
2

production in cells. NADPH oxidase is a membrane enzyme

composed of several subunits that include NOX and phox subunits

[13,14]. There are several isoforms of NOX, termed NOX 1–5

[13]. Previous work by our laboratory and others has shown that

the NOX2 NADPH oxidase is highly localized in the cerebral

cortex and hippocampal CA1 region [15,16]. Our laboratory and

others also demonstrated that NOX2 is localized in neurons and

microglia in the cortex and hippocampus [13,15,16]. NOX2

activation is dependent upon forming an active complex with

several phox subunits (p47phox, p67phox, p40phox) and activated
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Rac1, which upon cell stress or activation translocate to the

membrane from the cytoplasm to form the activated NADPH

oxidase complex [13,15]. Work from several labs including our

own has shown that over-activation of neuronal NOX2 NADPH

oxidase contributes significantly to ischemic oxidative damage to

neurons and other cell types following cerebral ischemia

[13,16,17]. NADPH oxidase is also localized in microglial and

thus has the potential to contribute to neuroinflammation, as the

extracellular ROS produced by microglia is directly toxic to

neurons, and intracellular ROS in the microglia can amplify the

production of several pro-inflammatory and neurotoxic cytokines

[18].

Currently, there is little known on the role of NADPH oxidase

in TBI. One recent report suggested that NADPH oxidase plays a

role in microglia activation in the cerebral cortex at 24 h–48 h

following TBI [19]. It is unknown whether NADPH oxidase

mediates earlier elevations in ROS that occurs within 1–3 h after

TBI, and whether it plays a significant role in oxidative stress

induction and damage that has been shown to occur as early as

3 h after TBI [9]. It is also unclear as to whether NADPH oxidase

may play a role in the induction of Alzheimer’s disease (AD)-

related proteins such as amyloid processing protein (APP) and b-

amyloid, which have been implicated in the pathology of TBI. The

current studies were designed to address these key deficits in our

knowledge.

Methods

Controlled Cortical Impact
Animal studies were approved by the Committee on Animal

Use for Research and Education at Georgia Health Sciences

University (protocol # BR10-05-330), in compliance with NIH

guidelines. Adult male CD-1 (Charles River, Wilmington, MA)

mice were anesthetized with xylazine (8 mg/kg)/ketamine

(60 mg/kg) and subjected to a sham injury or controlled cortical

impact, as detailed by our laboratory [20,21]. Briefly, mice were

placed in a stereotaxic frame (Amscien Instruments, Richmond,

VA, USA) and a 3.5 mm craniotomy was made in the right

parietal bone midway between bregma and lambda with the

medial edge 1 mm lateral to the midline, leaving the dura intact.

Mice were impacted at 4.5 m/s with a 20 ms dwell time and

1 mm depression using a 3 mm diameter convex tip, mimicking a

moderate TBI. Sham-operated mice underwent the identical

surgical procedures, but were not impacted. The incision was

closed with surgical staples and mice were allowed to recover.

Throughout all procedures, body temperature was maintained at

37uC using a small animal temperature controller (Kopf

Instruments, Tujunga, CA, USA). The NADPH oxidase inhibitor,

apocynin (Sigma-Aldrich, 4 mg/kg) or saline were administered

by intraperitoneal (IP) injections 20 min prior to TBI or 2 h after

TBI. In addition, in some studies, a NOX2 competitive inhibitor,

gp91ds–tat or its scrambled control peptide (Scr) (250 mg/mouse,

synthesized by AnaSpec) were administered by IP injection 20 min

prior to TBI.

Assessment of Cerebral Edema
Brain water content (BWC), a sensitive measure of cerebral

edema, was quantified using the wet-dry method, as detailed by

our group [20,22]. At 24 h post-injury, a time-point associated

with significant edema formation after experimental TBI

[20,23,24], BWC was estimated in 3 mm coronal sections of the

ipsilateral cortex (or corresponding contralateral cortex), centered

upon the impact site. Tissue was immediately weighed (wet

weight), then dehydrated at 65uC. The sample was reweighed 48 h

later to obtain a dry weight. The percentage of tissue water

content was calculated using the following formula: BWC = [(wet

weight–dried weight)/wet weight]6100%.

Western Blot Analysis
Western blotting was performed as described in detail by our

laboratory [25]. The pericontusional cerebral cortex was micro-

dissected from brain tissue and immediately frozen in dry ice.

Tissues samples were homogenized using a glass homogenizer with

ice-cold homogenization buffer. Protein concentrations were

determined by the Modified Lowry Protein Assay (Pierce,

Rockford, ILL). Samples were subjected to gel electrophoresis,

transferred to PVDF membranes, and Western blotted with an

anti-b-Amyloid (sc-28365, Santa Cruz), anti-APP (#36-6900,

Invitrogen) or anti-b-Actin (sc-81178, Santa Cruz) antibody.

Bound proteins were visualized using the Odyssey Imaging System

(LI-COR Bioscience, Lincoln, NB) and analyzed with the Image J

analysis software (Version 1.30v; NIH, USA). Band densities were

normalized to actin and expressed as fold changes of control

animals. A Mean 6 SE were calculated from the data from all the

animals for graphical presentation and statistical comparison.

Immunohistochemistry
DAB staining was performed using the VECTASTAIN Elite

ABC Kit (Vector Laboratories, Inc., CA) as described previously

by our laboratory [25]. Briefly, after blocking with normal goat/

horse serum for 1 h, sections were incubated with the primary

antibodies overnight at 4uC, followed by incubation with

secondary biotinylated antibodies and ABC reagents for 1 h,

separately. Color was developed with DAB reagent for 2–10 min.

Images were captured using an AxioVision4Ac microscope system

(Carl Zeiss, Germany).

Confocal Microscopy and Image Analysis
Confocal analysis was performed as described previously by our

laboratory [25]. Briefly, coronal brain sections (20 mm) were cut

on a microtome after perfusion and cryoprotection. Staining was

performed using a mouse anti-NeuN monoclonal antibody (1:500,

Chemicon, MA, USA), and the anti-CD11b monoclonal antibody

(OX-42, 1:500, Abcam) following the manufacturer’s instruction.

All the confocal images were captured on an LSM510 Meta

confocal microscope and images were viewed using LSM510 Meta

and Volocity 4.0 imaging software.

Histology and Assessment of Surviving Cells
Coronal sections (25-mm thick) were collected throughout the

entire dorsal hippocampus from animals sacrificed at 4 d after

TBI, and every eighth section was collected and stained. Sections

were stained with 0.1% (w/v) Cresyl violet for 5 min, dehydrated

through graded concentrations of ethanol, and cleared in xylene.

The slides were examined with a Zeiss Axioskop 40 (Zeiss,

Germany), and the densities of surviving neurons in the

pericontusional cerebral cortex and the medial CA1/CA3

pyramidal cell layer were counted on each section using the

unbiased Stereologer System (Stereology Resource Center,

Chester, MD, USA) [26]. The counting parameters utilized were

the distance between counting frames (75 mm), the counting frame

size (2006200 mm), the disector height (10 mm), and the guard-

zone thickness (2 mm). Intact cells showing round nuclei but not

condensed, pyknotic nuclei were counted as surviving cells. Means

6 SE were calculated from the data in each group, and statistical

analysis was performed as described below. The numbers of

surviving cells were expressed as percentage of sham control.

NADPH Oxidase and Brain Injury
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NADPH oxidase activity and superoxide production assay
NADPH oxidase activity was determined as described previ-

ously by our laboratory [27]. Briefly, assays were carried out in a

final volume of 1 ml containing 50 mM Krebs-Ringer Phosphate

buffer, pH 7.0, 1 mM EGTA, 150 mM sucrose, 0.5 mM

lucigenin, 0.1 mM NADPH, and 50 mg tissue homogenate.

Photoemissions, expressed in terms of relative light units (RLU),

were measured every min for 5 min using a luminometer.

Superoxide production was measured using a LumiMax Super-

oxide Anion Detection kit (Stratagene, La Jolla, CA) following the

manufacturer’s protocol. In brief, 50 mg sample proteins were

suspended in 100 ml assay medium, and then mixed with 100 ml of

reagent mixture containing 0.2 mM luminol, 0.25 mM enhancer.

Light emissions at 30-sec intervals were recorded by a standard

luminometer. All the values were standardized to the amount of

protein and were calculated as RLU/mg protein/min. A Mean 6

SE was calculated from the data collected in each group for

graphical depiction.

In situ detection of superoxide production
The production of superoxide (O22) radicals was investigated

using hydroethidine (HEt) (Molecular Probes, Invitrogen, CA) as

described previously by our group and others [28,29]. HEt (1 mg/

ml in 200 ml PBS) was administered intravenously 30 min before

ischemia. Fluorescent intensity of the oxidized HEt was measured

on a confocal laser microscope using an excitation wavelength of

543 nm and the emission will be recorded at wavelengths between

560 and 590 nm.

Statistical Analysis
Statistical analysis was performed using one-way analysis of

variance (ANOVA) analysis, followed by Student-Newman-Keuls

post-hoc tests to determine group differences. Statistical signifi-

cance was accepted at the 95% confidence level (P,0.05). Data

was expressed as mean 6 standard error (SE).

Results

Temporal Induction of NADPH Oxidase Activation and
O2

2 Generation in the Brain Following TBI
In initial studies, we first examined the temporal pattern of

NADPH oxidase activation and O2
2 generation in the adult male

mouse cerebral cortex and whole hippocampus samples following

moderate TBI induced by controlled cortical contusion. As shown

in Fig. 1, there was rapid, robust elevation of NADPH oxidase

activity and O2
2 levels in the cerebral cortex and hippocampus at

1 h after TBI. This rapid elevation of NADPH oxidase activity

and O2
2 levels was followed by a fall to lower but still elevated

levels at 3–6 h after TBI. Interestingly, a second significant

elevation of NADPH oxidase activity and O2
2 levels was also

observed from 24 h–96 h after TBI. In the majority of the

subsequent studies, we chose to use the 1 h time-point for further

analysis, as this was when peak NADPH oxidase activity and O2
2

levels were observed. We next sought to confirm in situ elevation of

O2
2 in the cortex and hippocampus by utilizing the hydroethidine

(HEt) method, in which HEt is selectively oxidized by O2
2 to yield

a fluorescent signal that is easily detectable in brain sections by

confocal microscopy. We also used immunohistochemistry for the

neuronal marker, NeuN, so as to determine if changes in O2
2

generation occurs in neurons. As shown in Fig. 2 in situ O2
2

levels, as measured by oxidized HEt fluorescent signal, increased

markedly at 1 h after TBI in the cortex (Fig. 2A) and

hippocampal CA1 region (Fig. 2B) in saline-treated animals as

compared to sham control animals. Furthermore, the HEt

fluorescent signal was strongly colocalized in cortical and

hippocampal neurons, as evidenced by colocalization with the

neuronal marker NeuN, suggesting that neurons are major sources

of O2
2 generation in the cortex and hippocampus in the initial

early period following TBI (Fig. 2A&B). It is likely that microglia

are the source of superoxide at later time-points; however, this

could not be confirmed using the HEt method as the elevation of

superoxide was much lower at 24–96 h as compared to 1 h post

TBI and the sensitivity of the HEt method was too low to allow

detection.

Role of NADPH Oxidase in O2
2 Generation and Oxidative

Damage in the Brain Following TBI
We next examined whether the increase in O2

2 generation in

cortical and hippocampal neurons following TBI was due to

activation of NADPH oxidase. This was determined by examining

the effect of pretreatment with the NADPH oxidase inhibitor,

apocynin (4 mg/kg ip, 20 min prior to TBI) on O2
2 generation in

cortical and hippocampal neurons following TBI. As shown in

representative photomicrographs in Fig. 2A–B, pretreatment with

apocynin markedly attenuated generation of O2
2 in the cortical

and hippocampal neurons at 1 h after TBI as compared to the

saline-treated group, suggesting that NADPH oxidase plays a

critical role in O2
2 production in neurons following TBI. Fig. 2C–

D shows the mean values and statistical analysis of O2
2 generation

(as measured by using cerebral cortex and hippocampal protein

samples) in all animals, demonstrating that there is an approxi-

mate 3-fold and 7-fold increase in O2
2 levels in the cortex and

hippocampus, respectively, in saline-treated animals at 1 h after

TBI as compared to sham controls, and that pretreatment with the

NADPH oxidase inhibitor, apocynin markedly attenuated the

induction of O2
2 following TBI. These findings suggest that

NADPH oxidase has a major role in the robust O2
2 generation

observed in the cortex and hippocampus in the early period

following TBI. We thus next examined whether inhibition of

NADPH oxidase via administration of apocynin leads to a

decrease in oxidative damage in the brain following TBI. To

accomplish this aim, brain sections were collected at 2 days after

TBI and immunohistochemistry was performed for several well

characterized markers of oxidative damage, including 4-HNE (4-

hydroxynonenal), 8-OHdG (8-hydroxydeoxyguanosine), and p-

H2AX (phospho-histone), which are markers of lipid peroxidation,

DNA damage and oxidative histone phosphorylation, respectively.

The results show robust increases in immunostaining intensity for

all three oxidative stress markers in the cortex and hippocampal

CA1 region in the saline-treated (TBI) group as compared to sham

controls (Fig. 3). Interestingly, both pre- and post-treatment with

the NADPH oxidase inhibitor, apocynin markedly attenuated the

oxidative stress damage following TBI, as indicated by a strong

attenuation of 4-HNE, 8-OHdG and p-H2AX immunostaining in

the cortex and hippocampal CA1 region as compared to saline-

treated (TBI) controls (Fig. 3). The results suggest an important

role for NADPH oxidase in oxidative stress damage to the brain

following TBI.

Role of NADPH Oxidase in Microglia Activation Following
TBI

It is well known that microglial activation occurs several days

after TBI and plays a role in inflammation and pathology of TBI.

We thus examined whether activation of NADPH oxidase has a

critical role in microglial activation following TBI by assessing the

effect of administration of apocynin upon microglia activation

following TBI. To access microglial activation, we performed

NADPH Oxidase and Brain Injury
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immunohistochemistry on brain sections at 4 d after TBI for the

microglial activation marker, CD11b. We also performed

immunostaining with the neuronal marker, NeuN in order to

assess apocynin effects upon preservation of neuronal density. As

shown in Fig. 4 A&B, sham animals showed robust NeuN

immunostaining and low CD11b immunostaining in the cortex

and hippocampal CA1 region, indicating healthy neurons and

little microglial activation in the non-injured state. In contrast,

saline-treated animals examined at 4 d after TBI showed clear

reduction of immunostaining intensity for the neuronal marker

NeuN, and robust immunostaining for the microglial activation

marker, CD11b in the cortex and hippocampal CA1 region, as

compared to the sham control (Fig. 4A&B). Intriguingly, both

pre- and post-treatment of apocynin markedly attenuated CD11b

immunostaining in the cortex and hippocampal CA1 region at 4 d

after TBI, suggesting a role for NADPH oxidase activation in

microglial activation following TBI. In addition, apocynin-

pretreated animals showed enhanced NeuN immunostaining in

both the cerebral cortex and hippocampal CA1 region at 4 d after

TBI, suggesting enhanced preservation of neurons following TBI.

NADPH Oxidase Activation Mediates b-Amyloid
Induction in the Brain Following TBI

It has been previously shown that TBI is associated with an

elevation of b-amyloid levels in the brain, which may explain an

increased risk for cognitive decline and dementia in TBI patients

[30,31]. We therefore examined b-amyloid induction in the brain

at various time-points following TBI and assessed the potential

role of NADPH oxidase activation in b-amyloid induction via use

of the NADPH oxidase inhibitor, apocynin. As shown in

Fig. 5A(a), Western blot analysis revealed that b-amyloid protein

levels are significantly increased in the cerebral cortex at all time-

points examined (1 h, 2 d and 4 d after TBI) as compared to sham

controls. Interestingly, apocynin pretreatment significantly atten-

uated the elevation of b-amyloid protein levels in the cortex at all

time-points examined following TBI (Fig. 5A), suggesting that

NADPH oxidase activation is important for the induction of b-

amyloid. Fig. 5A(b) shows a similar pattern of change for amyloid

precursor protein (APP) when examined at the 2day time-point,

with TBI (saline) showing increased levels of APP in the cortex and

treatment with apocynin preventing the increase of APP. To

provide more information on potential cell types and organelles in

which the b-amyloid changes occur, we utilized immunohisto-

chemistry. As shown in Fig. 5B, sham animals showed very little

b-amyloid immunostaining in the cortex. In contrast, saline

treated (TBI) animals showed robust b-amyloid immunostaining in

the cortex at the 1 h time-point after TBI, with the staining

appearing to be in neuronal soma and axons, at least from

morphological appearance (e.g. immunostaining in round cells

and in long fiber like processes). At 2 d after TBI, many cells in the

cortex of saline-treated (TBI) mice that were b-amyloid-positive

had the morphological appearance of microglia. Both pre- and

post-treatment of apocynin caused a marked attenuation of b-

amyloid immunostaining intensity in the cortex (Fig. 5B) at 2 d

following TBI. We should add that b-amyloid immunostaining

was also observed in the hippocampal CA1 region, but at lower

levels than the cortex, and that apocynin similarly decreased the b-

amyloid immunostaining intensity in the hippocampal CA1 region

as it did in the cortex (data not shown).

Figure 1. Temporal pattern of changes in NADPH oxidase activity and superoxide (O2
2) levels in the cortex and hippocampus after

TBI. Assays of NADPH Oxidase Activity (A, C) and O2
2 production (B, D) were carried out using cerebral cortex and whole hippocampus (Hip)

samples collected at the indicated times after TBI. Sham animals which did not undergo TBI were used as controls. Mean 6 SE were calculated from
the data collected in each group (n = 4) and expressed as fold changes vs. sham control. *P,0.05 vs. sham in each panel.
doi:10.1371/journal.pone.0034504.g001
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Figure 2. Effects of the NADPH oxidase inhibitor, apocynin on in situ superoxide levels (O2
2) induced by TBI. A–B: Representative

confocal microscopy of in situ O2
2 (oxidized HEt, red) and NeuN (green) staining taken from cerebral cortex and medial hippocampal CA1 region (Hip

CA1) at 1 h after TBI. C–D: Superoxide levels were measured using cerebral cortex and hippocampus samples, and shown as fold change vs. sham
control (means6SE; n = 4 animals per group). Apocynin significantly attenuated O2

2 generation compared with vehicle control. *P,0.05 vs. saline in
each group. Scale bars, 50 mm.
doi:10.1371/journal.pone.0034504.g002

Figure 3. Effect of apocynin on TBI-induced oxidative damage in the cerebral cortex and hippocampal CA1 region. Representative
DAB immunostaining for markers of oxidative damage for lipid peroxidation (4-HNE), DNA damage (8-OHdG) and histones (phospho-H2A.X) 2 days
following TBI. Note that both pre- and post-treatment of apocynin markedly decreased 4-HNE, 8-OHdG and phohpho-H2A.X staining in cerebral
cortex and hippocampus CA1. The results are representative of 4–5 animals per group. Scale bars, 50 mm.
doi:10.1371/journal.pone.0034504.g003

NADPH Oxidase and Brain Injury
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Figure 4. Apocynin increases neuronal density and attenuates microglia activation following TBI. Coronal brain sections containing
cerebral cortex (A) and hippocampal CA1 region (B) were subjected to immunofluorescent staining with anti-NeuN (green) and anti-CD11b (red)
antibodies. Representative images indicate that both pre- and post-treatment of apocynin markedly increased neuronal density and reduced
microglial activation at 4 d after TBI. The results are representative of 4–5 animals per group. Scale bars, 50 mm.
doi:10.1371/journal.pone.0034504.g004

Figure 5. Effects of apocynin on levels of b-amyloid and amyloid precursor protein (APP) in the cortex and hippocampus following
TBI. A(a,b): At the indicated time points after TBI, protein samples from pericontusional cerebral cortex were analyzed by Western blotting with an
anti-b-amyloid or anti-APP antibody. b-Actin was used as loading control. b-amyloid and APP protein levels were significantly increased in the
cerebral cortex at the examined time-points, and apocynin pretreatment significantly attenuated the elevation. Data are mean6SE (n = 4 in each
group). *P,0.05 vs. vehicle control. B: Representative DAB immunostaining of b-amyloid on coronal brain sections from sham and brain injured mice
at the indicated time points following TBI. Note that apocynin markedly attenuated TBI induced increase of b-amyloid levels mainly in the neuronal
soma (at 1 h) and microglia like cells (at 2 d). Both pre- and post-treatment of apocynin strongly attenuated the b-amyloid induction. The results are
representative of 4–5 animals per group. Scale bar, 50 mm.
doi:10.1371/journal.pone.0034504.g005

NADPH Oxidase and Brain Injury
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Administration of the NADPH Oxidase Inhibitor,
Apocynin, Provides Significant Neuroprotection Against
TBI

Since apocynin inhibited ROS production, oxidative damage,

microglial activation and b-amyloid/APP induction in the brain

following TBI, we next examined whether apocynin exerts

significant neuroprotection against TBI. Apocynin (4 mg/kg ip)

was administered 20 min before TBI, and cell death in the

cerebral cortex and hippocampus was examined 4 days after TBI

using the cresyl violet staining procedure. Figure 6A presents

representative photomicrographs of the cresyl violet staining

results in the cerebral cortex and hippocampal CA1 and CA3

regions at 4 d after TBI. The cresyl violet staining results show

that while cortical and hippocampal cells in sham animals

displayed round and pale stained nuclei typical of normal healthy

cells; cresyl violet-stained cortical and hippocampal cells in saline-

treated (TBI) animals had a shrunken morphology with pyknotic

nuclei, indicating many dead or dying cells in the cortex and

hippocampal CA1 and CA3 regions. Apocynin pre-administration

dramatically attenuated TBI-induced neuronal cell death in the

cerebral cortex and hippocampus at 4 days after TBI, as

determined by cresyl violet staining, which revealed less damaged

or dead cells and more healthier, normal cells as compared to the

saline-treated (TBI) control group. Unbiased stereological analysis

was used to determine cell density in the cortex and hippocampus

following TBI. As shown in Fig. 6B, the results revealed that

saline-treated (TBI) animals have very low cell density as

compared to sham controls in the cerebral cortex and hippocam-

pal CA1 and CA3 regions at 4 d after TBI. Additionally, apocynin

pretreatment resulted in a preserved cortical and hippocampal cell

density – e.g. up to 60–70% of the sham controls, indicating a

strong and significant neuroprotective effect of apocynin pretreat-

ment. Interestingly, apocynin post-administration at 2 h after TBI

also significantly attenuated the delayed neuronal cell death. This

suggests that NADPH oxidase activation and superoxide eleva-

Figure 6. Neuroprotective effects of apocynin in the cerebral cortex and hippocampus(CA1 and CA3 regions) following TBI. A:
Representative Cresyl violet staining on day 4 after TBI from sham, saline- and apocynin-pre/post treated mice. Boxed areas in left column are shown
at higher magnification in right columns. B: Quantitative analysis of the numbers of surviving cells expressed as % of sham control. Intact cells
showing round nuclei but not condensed, pyknotic nuclei were counted as surviving cells. Data are mean 6 SE (n = 5–7) and a typical experiment is
presented. *P,0.01 vs. saline in each group. Scale bars, 50 mm.
doi:10.1371/journal.pone.0034504.g006
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tions after the peak induction at 1 h play a major role in neuronal

cell death following TBI.

Evidence that the NOX2 isoform of NADPH Oxidase Plays
a Critical Role in Neuronal Damage Following TBI

We next examine the role of the major NOX2 isoform of

NADPH oxidase in TBI damage. Fig. 7A shows the results of

double immunohistochemistry for NOX2 and the neuronal

marker, NeuN in the cerebral cortex at 1 h after TBI. The results

show that NOX2 is expressed in the extranuclear membrane

region of cortical cells 1 h after TBI and is highly colocalized in

neurons as evidenced by colocalization with NeuN. To determine

the role of NOX2 in TBI damage in the cortex, we administered a

competitive NOX2 inhibitor, gp91ds-tat, which is a 9 amino acid

peptide inhibitor that binds the p47Phox binding site on NOX2,

preventing activation of NOX2 [32]. A scrambled tat peptide was

also administered as a control. As shown in Fig. 7B (a–b),
pretreatment with gp91ds-tat resulted in significant neuroprotec-

tion against TBI as evidenced by enhanced neuronal density in the

cerebral cortex as compared to the scrambled-tat peptide control.

In addition, we examined the ability of the NOX2 inhibitor to

reduce brain edema following TBI. As shown in Fig. 7C, TBI

induced a significant increase in brain edema in the ipsilateral

hemisphere as compared to the contralateral hemisphere and

sham controls. Pretreatment with gp91ds-tat significantly reduced

brain edema in the ipsilateral hemisphere following TBI.

Figure 7. Critical Role of the NOX2 NADPH Oxidase isoform in neuronal damage and brain edema following TBI. A: Confocal images
show colocalization of the NOX2 NADPH oxidase isoform and NeuN in cerebral cortex at 1 h after TBI. B: Cresyl Violet staining and cell-counting
studies showing neuroprotective effects of the NOX2 NADPH oxidase inhibitor, gp91ds-tat at 4 days after TBI. Note the enhanced neuronal density in
the cerebral cortex in gp91ds-tat treated mice as compared to the scrambled-tat peptide control (Scr)-treated mice. Data are expressed as mean6SE,
n = 5–7 in each group. *P,0.05 vs. scrambled-tat control. Scale bar, 50 mm. C: Brain water content was measured in the ipsilateral hemisphere at 1
day following TBI. Pretreatment with gp91ds-tat significantly reduced brain edema. Data are mean6SE (n = 12). *P,0.05 vs. scrambled-tat control.
doi:10.1371/journal.pone.0034504.g007
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Discussion

ROS generation and oxidative stress has been implicated to

contribute significantly to neuronal cell death and functional

impairments following TBI [9,10,33]. The current study adds to

our understanding regarding the source of the ROS by

demonstrating that the membrane, via activation of the enzyme

NADPH oxidase, contributes significantly to generation of O2
2 in

the cerebral cortex and hippocampus. There are at least five

different isoforms of NADPH oxidase identified to date, termed

NOX 1–5 [14]. The NOX2 isoform has been shown to be highly

expressed in the cortex and hippocampus and to be involved in

oxidative damage following focal and global cerebral ischemia

[15,27,34–36].

In our study, two peaks of NADPH oxidase activation were

observed at 1 h and 24–96 h after TBI, which paralleled

elevations of O2
2. The secondary peak of NADPH oxidase may

have the greater role in neuronal cell death, as apocynin post-

treatment after the first peak of NADPH oxidase (e.g. 2 h after

TBI) still exerted significant neuroprotection, which was statisti-

cally not different from pretreatment (although mean values for

neuronal cell density were 5–15% lower in the post-treatment

group). That NADPH oxidase activation is responsible for the

O2
2 elevations observed in our study was suggested by the fact

that administration of the NADPH oxidase inhibitor, apocynin

strongly attenuated the elevation of O2
2. O2

2 is well known to be

metabolized to highly toxic free radicals such as hydroxyl ion and

peroxynitrite, which cause oxidative damage to cells and neurons

[37]. Our study showed that NADPH oxidase activation plays an

important role in oxidative damage to neurons following TBI, as

pre- or post-treatment with the NADPH oxidase inhibitor,

apocynin significantly reduced oxidative damage in the cortex

and hippocampus, as evidenced by assessment of oxidative stress

markers of lipid peroxidation and DNA oxidative damage, and

significant neuroprotection against TBI. Intriguingly, apocynin has

also been shown to reduce ischemic injury and improve outcome

in mouse stroke models [35,38,39], suggesting that NADPH

oxidase activation also has a pathological role in ischemic type

injury in addition to concussion injury. Furthermore, the ability of

apocynin to reduce neuronal cell death, neurological impairment

and mortality in the stroke studies was lost when it was

administered in NOX2 knockout mice, which strongly suggests

that the beneficial neural effects of apocynin are due specifically to

inhibition of NOX2 NADPH oxidase [35].

Our study implicates NOX2 NADPH oxidase as having a

significant role in TBI, as dual immunohistochemistry studies

revealed that NOX2 is highly colocalized in neurons at 1 h after

TBI. Furthermore, pretreatment with the specific NOX2

inhibitor, gp91ds-tat significantly attenuated neuronal damage

and edema following TBI. It should be pointed out that a recent

study using NOX2 mutant knockout mice found that TBI damage

to the brain was likewise significantly attenuated in NOX2

knockout mice as compared to wild type mice [19]. In that study,

which examined only late time-points (24–48 h) after TBI, the

authors concluded that NOX2 activation in microglia at 24–48 h

contributed significantly to neuronal damage following TBI. Our

study examined both early and late time-points after TBI and

found that there are two peaks of NADPH oxidase activation and

O2
2 elevation, an early peak at 1 h and a delayed peak at 24–96 h

after TBI. The first peak appears to be of neuronal origin as

colocalization studies showed strong colocalization of NOX2 and

in situ O2
2 (HEt) signal in neurons at 1 h after TBI. The cellular

source for the NADPH oxidation and O2
2 elevation at 24–96 h is

unclear, but our study showed enhanced microglial activation that

paralleled the NADPH oxidase activation and enhanced O2
2

levels at 24–96 hr. This observation suggests that enhanced

microglia activation likely contributes to the delayed secondary

elevation of NADPH oxidase activation and O2
2 production after

TBI. In support of this possibility, NOX2 knockout mice have

been reported to have significantly reduced generation of O2
2 in

microglia at 24–48 h after TBI [19]. From a functional standpoint,

microglial activation has been implicated to play a role in

mediating the inflammation that occurs after TBI and contribut-

ing to neuronal damage through release of inflammatory cytokines

[40,41]. Microglia have also been shown to enhance beta-

amyloid–induced neurotoxicity [42]. Thus, the attenuation of

microglia activation following NADPH oxidase inhibition could

potentially reduce inflammation and b-amyloid-induced neuro-

toxicity, and facilitate neuronal survival following TBI. In support

of this suggestion, post-treatment with apocynin at 2 h after TBI

was strongly neuroprotective. Previous work has shown that TBI is

also associated with a significantly enhanced risk of cognitive

decline and dementia [31,43]. Intriguingly, TBI has been

demonstrated to induce significant elevations of the AD proteins,

APP and b-amyloid protein in the regions adjacent to the site of

injury [30,44]. Our study confirms elevation of APP and b-

amyloid in the brain following TBI, and extends these observa-

tions by providing evidence that NADPH oxidase activation is

critical for the induction of APP and b-amyloid.

In conclusion, the results of the current study demonstrate that

the membrane, via NADPH oxidase activation can contribute

significantly to ROS generation, oxidative stress damage, and

neuronal cell death following TBI. The study also suggests that

targeting NADPH oxidase for inhibition via use of specific

NADPH oxidase inhibitors may have clinical efficacy in TBI.
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