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The development of immune checkpoint inhibitors is becoming a promising

approach to fight cancers. Antibodies targeting immune checkpoint proteins

such as CTLA-4 and PD-1 can reinvigorate endogenous antitumor T-cell

responses and bring durable advantages to several malignancies. However, only

a small subset of patients benefit from these checkpoint inhibitors. Identification of

new immune checkpoints with the aim of combination blockade of multiple

immune inhibitory pathways is becoming necessary to improve efficiency.

Recently, several B7 family-related proteins, TIGIT, VSIG4, and VSIG3, which

belong to the VSIG family, have attracted substantial attention as coinhibitory

receptors during T-cell activation. By interacting with their corresponding ligands,

these VSIG proteins inhibit T-cell responses and maintain an immune suppressive

microenvironment in tumors. These results indicated that VSIG family members

are becoming putative immune checkpoints in cancer immunotherapy. In this

review, we summarized the function of each VSIG protein in regulating immune

responses and in tumor progression, thus providing an overview of our current

understanding of VSIG family members.

KEYWORDS

immune checkpoint, VSIG4/CRIg, VSIG, TIGIT, cancer immunotherapy, antitumor T-
cell response, coinhibitory receptor
Abbreviations: ICB, immune checkpoint blockade; CTLA-4, cytotoxic T-lymphocyte-associated protein 4;

AML, acute myeloid leukemia; TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus;

COAD, colon adenocarcinoma; VISTA, V-domain immunoglobulin suppressor of T-cell activation; Co-IP,

coimmunoprecipitation; MM, multiple myeloma; TIGIT, T-cell immunoreceptor with immunoglobulin

and ITIM domain; PVR, poliovirus receptor; TFH, follicular T helper; FDC, follicular DC; ITT,

immunoglobulin tyrosine tail; ITIM, immunoreceptor tyrosine-based inhibitory motif; LTA, recognizing

lipoteichoic acid; ELISA, Enzyme-linked Immuno Sorbent Assay; MST, Microscale Thermophoresis; ECD,

extracellular domain; TTF1, subcellular localization of thyroid transcription factor 1; SLE, systemic lupus

erythematosus; NSCLC, non-small cell lung carcinoma; FECD, fuchs endothelial corneal dystrophy; JAM,

junctional adhesion molecule; SNP, single nucleotide polymorphisms; EMT, epithelial-mesenchymal

transition; IBS-D, intestinal biopsy of irritable bowel syndrome; HCC, hepatocellular carcinoma.
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Introduction

Immune checkpoint receptors are membrane molecules that

can modulate lymphocyte activation upon encoding their cognate

ligands on antigen-presenting cells or target cells. They play an

essential role in controlling excessive immune responses by

transmitting a stop signal to attenuate T-cell activation and

maintain immune homeostasis. However, tumors always take

advantage of these inhibitory pathways to escape attack from

antitumor immune cells (1, 2). Various malignancies are found to

confer an overall immunosuppressive tumor microenvironment

by upregulating the expression of immune checkpoint receptors

and their ligands. To unleash effector T-cell responses and

enhance endogenous antitumor activity, therapies targeting

these immunoregulatory proteins are becoming an encouraging

approach. The most successful immune checkpoint blockade

(ICB) therapy is anti-PD-1/PD-L1, which has been shown to

confer therapeutic advantages for a variety of cancers, such as

non-small cell lung carcinoma (NSCLC), malignant melanoma,

kidney cancer, and liver cancer (3–8). Another well-studied

immune checkpoint is cytotoxic T-lymphocyte-associated

protein 4 (CTLA-4) (1). The first immune checkpoint inhibitor

(ipilimumab) targeting CTLA-4 was approved in 2011 by the

Food and Drug Administration (FDA) and has been

demonstrated to control tumor growth and prolong survival in

melanoma (9–11). Since then, the application of ICBs has brought

a groundbreaking paradigm shift in cancer treatment, particularly

for advanced-stage cancers (9, 12–14). With the growing research

interest in cancer immunotherapy, many new checkpoints have

been identified and extensively studied in recent years, such as

TIM3, TIGIT, VISTA, LAG-3, BTLA, B7-H3, B7-H4, and B7-H5

(15–19). Most of them belong to the B7 family (VISTA, B7-H3,

B7-H4, B7-H5), which is characterized by typical extracellular

IgV-like and IgC-like domains and is categorized as the

immunoglobulin superfamily (IgSF) (20). These proteins can

function as coinhibitory receptors to deliver negative signaling

towards T cells upon TCR engagement, therefore inhibiting T-cell

activation, expansion, and functional polarization. Recently, the

V-Set and immunoglobulin (Ig) domain-containing (VSIG)

family, which also belongs to IgSF and exhibits structural

similarity with the B7 family proteins, has been increasingly

recognized as a potential immune checkpoint contributing to

tumor evasion. This family is currently comprised of eight

members, including VSIG1, VSIG2, VSIG3, VSIG4, VSIG8,

VSIG9, VSIG10, and VSIG10 L, which are all type I

transmembrane proteins that are expressed by a variety of both

immune and nonimmune cel ls , and many possess

immunosuppressive properties. For example, VSIG3, a ligand of

VISTA, is essential for its role in T-cell suppression (21, 22).

Another member, VSIG4, is also well known for its potent ability

to suppress T-cell responses (23). A star member of the VSIG

family is VSIG9, also known as TIGIT, which has emerged as a
Frontiers in Immunology 02
promising cancer therapeutic target due to its apparent function in

limiting antitumor T-cell and NK-cell responses (24–26). These

studies suggested that the members of the VSIG family could be

potent candidates for developing novel ICB therapies. However,

there is still a range of related proteins in this family that have yet

to be studied extensively, and the mechanism whereby VSIG

family proteins inhibit immune responses is not fully understood.

To attract more attention to this family, this review aims to

introduce VSIG family members and their role in regulating the

T-cell response in cancers.
Overview of the VSIG family

The discovery of the VSIG protein family dates back to the

1990s. The first identified member of the VSIG family is VSIG2,

initially called CTX. This gene was first cloned by Chrétien and

colleagues from the cortical thymocyte of Xenopus in 1996 (27).

The homolog gene of VSIG2 in chickens, mice, and humans was

cloned two years later (28). It is located on chromosome 11,

11q24.2. The second member, VSIG4, was cloned and found to

be localized in the pericentromeric region of the human X

chromosome (29). Since then, other members showing

sequence similarities with these identified VSIG proteins have

been discovered, including VSIG1, VSIG3, VSIG8, VSIG9

(widely known as TIGIT), VSIG10, and VSIG10 L. The

corresponding genes of those VSIG family members are

present on different chromosomes in humans, with the

exception of VSIG1, which is also present on the X

chromosome at a different position from VSIG4 (Xq22.3 and

Xq12, respectively). Of these eight members, only the structures

of VSIG4 and TIGIT (RCSB-PDB ID: 5IMK and 3Q0H,

respectively) were experimentally resolved through X-ray

crystallization, while the rest had computationally predicted

structures available. From these data, VSIG family members

have been shown to have either an IgV domain, an IgC2 domain,

or both (23, 26, 28–33). The IgV domain is shared by all

members except for VSIG10 and VSIG10 L (UniProt

Accession # Q8N0Z9 and Q86VR7), while IgC2 is a common

feature of all members except for VSIG8 (UniProt Accession #

P0DPA2) and TIGIT. Moreover, they are all type I

transmembrane proteins with a wide range of expression. The

structural composition of the extracellular domain (ECD) is

highly conserved between hVSIG and mVSIG members.

Although the tissue distribution of VSIG proteins is not fully

described due to antibody unavailability for some of the family

members, genetic analysis and sequencing data reveal a diverse

range of expression of VSIG proteins from testicular germ cells

(VSIG1 and VSIG3) (32, 34) to the hair shaft (VSIG8) (35, 36)

and immune cells (VSIG4 and TIGIT) (23–26, 33, 37–39), hence

serving a wide array of functions in both humans and mice. A

brief overview of VSIG family members and their functions,
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expression patterns, and roles in immunotherapy are

summarized in Table 1 and Table 2. In the following context,

we will discuss the role of each member of the VSIG family in

detail, provide a comprehensive summary of our current

understanding of these proteins, and highlight their potential

as new targets for ICB therapy.
VSIG1

IgSF is a large protein superfamily of cell surface and soluble

proteins involved in adhesion processes, binding, and cell

recognition. Members of this superfamily are defined by

structural similarities to immunoglobulins and the presence of

an Ig domain (40). VSIG1 is a typical IgSF with two extracellular

Ig-like domains and a short cytoplasmic domain. It is also

known as the radioiodinated cell surface A33 antigen or

glycoprotein A34, which was first characterized to be a tissue-

restricted cell surface protein predominantly expressed in the

gastric mucosa (30, 41). It was subcellularly localized in the

adherens junctions of glandular epithelia and was critical for

ensuring proper differentiation of glandular gastric epithelium

(41). Three alternatively spliced isoforms of VSIG1, including

VSIG1A, B and C, were identified in mice, with the latter being

specifically expressed in the testis (41). In this tissue, VSIG1 was

found to be a ZO1 (zonula occludens-1)-binding junctional

adhesion molecule (JAM) localized on the surface of sperm

cells to facilitate their interactions with Sertoli cells, suggesting

that VSIG1 may be involved in supporting spermatogenesis (34).

However, this has been challenged by a recent report showing

that VSIG1 knockout mice had normal development and

function of sperm cells, and whether the absence of phenotype
TABLE 1 Brief overview of VSIG family members.

VSIG1 VSIG2 VSIG3 V

Aliases GPA34 CTH,
CTXL

BT-IgSF,
IgSF11

VSIG

Cytogenic location Xq22.3 11q24.2 3q13.222

Exons 10 7 12

Discovery/First
Report

2006(30) 1996(19) 2002(32) 20

Binding Partners – – VISTA C3 (C
M

Structure Of ECD IgV-
IgC2

IgV-IgC2 IgV-IgC2 Ig

Length of amino acids (ECD domain)
for Human & Mouse

H:387 aa
(211aa)

H:227 aa
(220aa)

H:431 aa
(219aa)

H
(2

M:407
aa

(212aa)

M:328 aa
(220aa)

M:428 aa
(218aa)

M
(unr

Uniprot ID Q86XK7 Q96IQ7 Q5DX21 Q

Similarity with mVSIG 81% * 85% * 95% * 8

*Based on ECD, ** Based on IgV domain, *** Based on cytoplasmic region.
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upon VSIG1 deletion was caused by unknown compensatory

mechanisms or genetic redundancy remains to be

investigated (42).

Due to its abundant expression in the stomach, VSIG1 has

been extensively studied in gastric cancers. In a cohort of 232

gastric adenocarcinoma samples, Chen et al. reported that

VSIG1 was significantly reduced at both the mRNA and

protein levels in gastric tumor tissues compared to paired

noncancerous gastric mucosal tissues (43). Inoue et al. also

reported a dramatic decrease in VSIG1 expression in 219 of

362 gastric cancer specimens (44). Furthermore, downregulation

of VSIG1 was significantly correlated with poor overall survival

and worse clinical outcome in gastric cancer patients (43–45),

suggesting that VSIG1may function as a tumor suppressor gene.

In support of this, overexpression of VSIG1 diminished the

proliferation and migration of multiple gastric cancer cell lines

in vitro (44).

In contrast, VSIG1 seemed to be upregulated in a variety of

nongastric carcinomas (30, 44, 46, 47). It was identified as a

signature gene for gastric-type differentiation of serrated

pathway-associated colon carcinoma (47–49) and lung

adenocarcinoma (50). The coexpression of VSIG1 in the

cytoplasm of hepatocytes with thyroid transcription factor 1

(TTF1) was also considered to be a potential lineage shift

indicator of conventional to gastric-type hepatocellular

carcinoma (HCC) (51). In the same study, Gurzu et al. further

revealed that VSIG1 was strongly correlated with epithelial-

mesenchymal transition (EMT) genes, such as E-cadherin and

N-cadherin and VIM (51). Since VSIG1 is known to function as

a JAM involved in tight junction assembly, these data implicated

a potential role of VSIG1 in modulating EMT during tumor

metastasis. In support of this, Bernal et al. showed that VSIG1
SIG4 VSIG8 VSIG9 VSIG10 VSIG10 L

4, Z39IG C1orf204 TIGIT, VSTM3,
WUCAM

– –

Xq12 1q23.2 3q13.31 12q24.23 19q13.41

8 7 6 11 10

00(29) 2006(36) 2009(26) 2015(140) 2016(144)

3b),LTA,
S4A6D

VISTA CD155, CD112,
CD113

– –

V-IgC IgV-IgV IgV IgC2-IgC2-
IgC2- IgC2

IgC2(type 1)-
IgC2 (type 2)

:399 aa
64aa)

H:414 aa
(242aa)

H:244 aa (120aa) H:540 aa
(383aa)

H:867 aa (749aa)

:280 aa
eviewed)

M:417 aa
(241aa)

M:249 aa (120aa) M:558 aa
(406aa)

M:868 aa (736aa)

9Y279 P0DPA2 Q495A1 Q8N0Z9 Q86VR7

0% ** 88% * 65% *, 77% *** 63% * 75% *
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TABLE 2 Diverse expression and function of VSIG family members.

VSIG
Members

Expression in
Immune cells

Expression In Tissue Expression in Cancer Role in Immunotherapy

VSIG1 – Stomach, testis, ovary, liver Esophageal carcinomas, gastric
cancer,
Ovarian cancers(30,44,47) HCC
(51)
Colon cancer(47,52)
Lung cancer(46)

–

VSIG2 Macrophage B cell Colon, stomach, prostate, trachea,
thyroid glands

AML (58);
Colon adenocarcinoma(62)
Pancreatic cancer(60)
Lung adenocarcinoma(61)

Positively correlated with B cell and M1
macrophage infiltration (62)

VSIG3 – Brain, testis Colorectal cancer, hepatocellular
carcinomas,
Gastric cancer (63,69) ; gliomas
(70)

Negative regulation of T cell activation(21,22,67)

VSIG4 Tissue resident
macrophage

Liver, peritoneum, Pancreas, colon Lung cancer (93); Breast cancer
(94)
Ovarian cancer (95)
Multiple myeloma (MM) (96)
High-grade glioma (97)

Negative regulation of Tcell activation
(23,73,74,92)

VSIG8 – Oral epithelium, hair shaft &
follicle, nail matrix

Head and neck cancer(#)
Thyroid cancer(#)
Colorectal cancers(#)
…

Negative regulation of T cell activation(99,101);

TIGIT T cell, NK cell, Treg Lymphoid tissue Melanoma, NSCLC,
Colorectal cancer,HCC, AML,
Glioblastoma(124-128,137)
…

Negative regulator of immune cells
(26,107,131,135…)

VSIG10 DC Intestinal epithelium Adenocarcinoma (141) Negative regulation of
CD4+ T cell activation(*)

VSIG10L – Saliva gland, oesophagus Lung squamous cell carcinoma
(145)

–

(*Reference from US patent (Application #20200270343).
(#)Reference from THE HUMAN PROTEIN ATLAS.
Website: https://www.proteinatlas.org/ENSG00000243284-VSIG8/pathology.
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knockdown increased while gain of VSIG1 inhibited the

migration of colon cancer cells (52). Overall, although the

function of VSIG1 in modulating antitumor immune

responses has not been explored thus far, given its importance

as a cell surface tumor suppressor in contraining tumor growth

and metastasis, targeting VSIG1 would be of great value for the

treatment of different types of cancer (30).
VSIG2

VSIG2 is composed of an ECD of 220 aa containing IgC2

and IgV domains and a cytoplasmic tail of 63 aa (28). VSIG2 is

also known as CTXL (cortical thymocyte-like protein). It was

initially identified as a marker predominantly expressed on

cortical thymocytes in Xenopus and was designated CTX

(cortical thymocyte of Xenopus). Due to the abundant

expression of VSIG2 on double-positive thymocytes of

Xenopus and on recent T-cell immigrants in chickens, it was

considered to be involved in T-cell development in these species
Frontiers in Immunology 04
(27). However, by cloning its mouse and human homologues,

namely, CTM (cortical thymocyte of mouse) and CTH (crotical

thymocyte of human), respectively, VSIG2 was found to be

abundantly expressed in the thyroid glands, trachea, prostate,

colon, and stomach but weakly expressed in the lung and

bladder but not in the thymus (28). These initial data suggest

that VSIG2 may be an ancestral lymphocyte receptor before the

introduction of somatic rearrangement in mammals.

Although the physiopathological function of VSIG2 remains

to be explored, a close association of VSIG2 with the progression

of various human diseases has been demonstrated in recent years

using multiomics approaches, highlighting the potential of

VSIG2 as a biomarker for the diagnosis of many diseases.

VSIG2 was found to be significantly upregulated in the corneal

samples of Fuchs endothelial corneal dystrophy (FECD) patients

(53), in the intestinal biopsy of irritable bowel syndrome (IBS-D)

patients (54), in the plasma of acute tubular injury and

interstitial fibrosis/tubular atrophy patients (55), and in the

plasma of incident heart failure patients (56). Moreover, the

single nucleotide polymorphisms (SNPs) of VSIG2 are strongly
frontiersin.org
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associated with serologic profile and cytokine phenotype in

systemic lupus erythematosus (SLE) (57). Aberrant VSIG2

expression was also found in tumors. Heimeng et al. reported

that VSIG2 expression in acute myeloid leukemia (AML)

patients correlated with poor prognosis according to The

Cancer Genome Atlas (TCGA) and Gene Expression Omnibus

(GEO) databases (58). VSIG2 expression has been found to be

significantly upregulated in patients with nonmuscle invasive

bladder cancer but downregulated in patients with muscle

invasive bladder cancer; thus, it could serve as a biomarker of

invasiveness in bladder cancers (59). In primary lung

adenocarcinoma and pancreatic cancer, VSIG2 was

characterized as a member of the DNA methylation-related

prognostic signature (60, 61). High expression and

methylation of VSIG2 correlated with poor survival in these

cancer patients (58, 60, 61).

The potential effect of VSIG2 in modulating antitumor

immunity was also implicated in colorectal cancers. In a recent

study, Cui Z et al. reported lower expression of VSIG2 in colon

adenocarcinoma (COAD) samples, and its downregulation was

associated with a poor overall survival rate in COAD patients

(62). However, it appears that VSIG2 functions as a tumor

suppressor gene to ensure tumor immune surveillance rather

than an immune checkpoint molecule in this particular cancer

type. Interestingly, VSIG2 expression positively correlated with

B-cell and M1 macrophage infiltration (62). Since these cells are

normally the most abundant antigen-presenting cells in tumor

tissues, dissecting the role of VSIG2 in these cells may have

implications for understanding the biology of T-cell activation in

the tumor microenvironment.
VSIG3

VSIG3 contains a V-type and C2-type immunoglobulin

domain, a C-terminal PDZ domain, and a transmembrane

domain (63). It was first cloned in 2002 and was then

indicated to be a cell adhesion molecule that mediates

homophilic cellular interactions (32). VSIG3 is also known as

IgSF gene 11 (IgSF11) or brain- and testis-specific IgSF (BT-

IgSF) because of its abundant expression in these two organs in

mammals (32, 64). hVSIG3 contains 12 exons encoding two

isoforms that share 97% amino acid identity and are thus

considered to be identical in function. VSIG3-mediated cell

adhesion can regulate the development of neurons and

excitatory synaptic transmission and the differentiation of

osteoclasts, and its mutation in zebrafish was associated with

impaired migration and survival of melanophores (65, 66).

In addition to its role in cell adhesion, one of the most

notable functions of VSIG3 relies on its capacity to regulate

immune responses. VSIG3 is reported to be a ligand for the

nove l B7 f am i l y immune ch e ckpo in t V -doma in

immunoglobulin suppressor of T-cell activation (VISTA) (21,
Frontiers in Immunology 05
22, 67). VISTA is mainly expressed on naïve T cells and

functions as an important regulator in maintaining T-cell

tolerance through the induction of peripheral T-cell deletion

(68). Truncated VSIG3 ECD containing either the IgV- or IgC2-

type domain bound to human VISTA protein in a similar

manner as the full-length ECD. Most importantly, the

crosslinking of VSIG3 during TCR stimulation significantly

inhibited T-cell activation by reducing the production of

cytokines and chemokines. Blockade of VISTA significantly

attenuated VSIG3-mediated T-cell inhibition, suggesting that

this process is dependent on its recognition with VISTA (67).

The VSIG3 and VISTA interaction was further demonstrated by

Xie et al. using a coimmunoprecipitation (Co-IP) assay (21).

They also revealed the crystal structure of the human VSIG3

ECD and designed a small molecule inhibitor, K284-3046, based

on protein−protein docking analysis. This chemical inhibitor

showed potent effects in diminishing VSIG3-mediated T-cell

suppression (21).

The identification of VSIG3 as a binding partner for VISTA

has important implications for tumor immunotherapy. As a well-

known coinhibitory molecule for T cells, VISTA is highly

expressed in myeloid cells and T cells that infiltrate into tumors

and help create an immunosuppressive tumor microenvironment

by enhancing Treg differentiation and inhibiting T-cell activation.

In contrast, VSIG3 was highly expressed in a number of cancers,

such as colorectal cancers, gastric cancer, hepatocellular

carcinomas, and gliomas, but not on immune cells (63, 69).

Suppression of VSIG3 by small interfering RNA (siRNA)

attenuated the proliferation of gastric cancer cells in vitro,

suggesting that the expression level of VSIG3 is essential for the

fate of cancer cells (63). Ghouzlani et al. also found that high

VSIG3 expression was related to a strong immunosuppressive

microenvironment and functionally compromised T cells in

glioma (70). Therefore, it is speculated that highly upregulated

VSIG3 in tumor cells could reinforce immune inhibitory signals to

VISTA-expressing T cells in the tumor microenvironment,

generating antibodies or chemical inhibitors that specifically

block the VSIG3-VISTA interaction and could increase the

efficiency of VISTA-based ICB therapy (22).
VSIG4

VSIG4, also known as Z39Ig or CRIg, was first described in

2000 as an X chromosome-located gene (29). VSIG4 contains

two Ig-like domains, one complete IgV domain and a truncated

IgC domain, and shares all the conserved amino acids with

known B7 family members; thus, it is also considered a B7

family-related protein (23). There exist two alternatively spliced

forms of human VSIG4 protein: the long isoform of VSIG4(L)

encodes both IgV and IgC2 domains, while the short isoform of

VSIG4(S) encodes only a single IgV domain (37). In

comparison, murine VSIG4 only shows the short isoform of a
frontiersin.org
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single IgV domain. Human and mouse VSIG4 share 83%

sequence homology within the IgV domain (71). The IgV

domain is responsible for binding to the b chain of C3b to

promote phagocytosis (72). The intracellular portion of VSIG4

contains a cAMP/cGMP-dependent prote in kinase

phosphorylation site and a protein kinase C phosphorylation

site, yet the function of these sites remains unclear (29). Notably,

VSIG4 expression is restricted to tissue resident macrophages,

including liver Kupffer cells (37), peritoneal macrophages (23),

pancreatic macrophages (73, 74), synovial lining macrophages in

the joint, and interstitial macrophages in the heart (38, 75, 76);

however, the extent of expression on these macrophages can be

downregulated by inflammatory cytokines (77, 78). This

expression pattern suggests a role for VSIG4 in maintaining

tissue homeostasis.

VSIG4 is well known as the complement receptor of the Ig

superfamily (CRIg) with a high binding affinity to complement

components C3b and iC3b. Upon activation, C3—the central

component of the complement system—is cleaved to a small C3a

fragment and a large C3b fragment by C3 convertase, and iC3b is

subsequently produced by complement factor I-mediated

cleavage of C3b (79, 80). Both C3b and iC3b are potent

opsonins that can coat the surface of invading pathogens,

apoptotic cells, or immune complexes to facilitate their

clearance by the mononuclear phagocytic system. By

recognizing C3b- and iC3b-tagged pathogens, accumulating

evidence suggests a critical role of VSIG4 in host defense

against bloodstream infections by promoting Kupffer cells to

take up complement-tagged bacteria, fungi, and viruses (37, 81,

82). This function is vital to prevent the dissemination of

pathogens to some vulnerable organs, such as the heart and

kidney (37). However, it was also reported that VSIG4 facilitated

a relatively slow clearance of circulating bacteria when compared

to scavenger receptor-mediated fast clearance (83). This slow

clearance of circulating bacteria may be essential to enable a

timely induction of adaptive immune responses. Moreover,

VSIG4 was suggested to be a pattern recognition receptor that

directly binds and captures blood-borne gram-positive bacteria

by recognizing lipoteichoic acid (LTA) during Staphylococcus

aureus infection (84).

Structural analysis revealed that VSIG4 can also dramatically

inhibit the activity of C3 and C5 convertase upon binding to

C3b, thereby preventing the alternative pathway of complement

activation (72). Given that inappropriate activation of

complement is usually associated with unwanted and

exacerbated inflammation, recombinant VSIG4-Fc protein has

been exploited as a decoy receptor to efficiently alleviate a variety

of inflammatory diseases by preventing excessive complement

activation, such as experimental autoimmune uveoretinitis

(EAU) (85), intestinal ischemia/reperfusion (IR) injury (86),

type 1 diabetes (73, 74), arthritis (71, 72), and SLE (87). This

complement inhibitory function could be further improved by

fusing VSIG4 with the alternative pathway inhibitory domain of
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factor H (FH) (88). In addition, recent studies reported that

VSIG4 can directly inhibit macrophage-mediated inflammation

independent of complement. Huang et al. found that

macrophages lacking VSIG4 showed increased activation of

the NLRP3 inflammasome upon stimulation (89). VSIG4 was

found to interact with the transmembrane protein MS4A6D to

form a surface inhibitory signaling complex, leading to

attenuated NLRP3 inflammasome activation via a JAK2-

STAT3-A20 signaling cascade (89, 90). In addition, VSIG4 was

also able to intervene in mitochondrial pyruvate metabolism in

macrophages by activating the PI3K-Akt-STAT3 pathway,

thereby resulting in reduced oxidative phosphorylation and

diminished M1 polarization of macrophages (91). These data

suggest the possible applications of targeting VSIG4 in treating

inflammatory diseases.

As a macrophage-specific immune regulator, VSIG4 is a

potent coinhibitory ligand that strongly suppresses T-cell

proliferation and cytokine production. T-cell stimulation in

the presence of recombinant VSIG4 caused T-cell anergy, cell

cycle arrest at the G0/G1 phase (23, 73, 74, 92), and skewed

differentiation of CD4+ T cells towards Foxp3+ Treg cells.

Importantly, this T-cell inhibitory effect was only found with

plate-bound but not soluble VSIG4 protein, suggesting that the

crosslink of VSIG4 with a putative binding partner on the

surface of T cells is required to deliver inhibitory signals.

Indeed, VSIG4 can directly bind activated T cells without the

need for serum, demonstrating the existence of a complement-

independent ligand of VSIG4 on T cells, which remains to be

determined. Although VSIG4 expression is restricted in tissue-

resident macrophages at a steady state, several studies have

reported an upregulation of VSIG4 expression in lung cancer

(93), breast cancer (94), ovarian cancer (95), and multiple

myeloma (MM) (96). By examining VSIG4 expression in

tumor tissues, it was found to be highly enriched in tumor-

associated macrophages but not in tumor cells or other immune

cells (93). High expression of VSIG4 is correlated with poor

prognosis of high-grade glioma (97), and its deficiency led to

significantly inhibited growth of Lewis lung cancer cells (LLC) in

mice (93). Based on these findings, VSIG4 is becoming an

attractive macrophage-specific immune checkpoint molecule in

cancer immunotherapy. Identifying the ligand of VSIG4 on T

cells would be pivotal for understanding the mechanisms

whereby VSIG4 modulates antitumor T-cell responses and is

fundamentally important for developing high-efficacy inhibitors

that aim to block VSIG4-mediated T-cell suppression in

cancer Figure 1.
VSIG8

VSIG8 is a relatively less explored member of the VSIG

family, approximately 45 kDa in size. Mature hVSIG8 contains

two Ig-V domains, which are a part of the ECD spanning 242 aa.
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hVSIG8 shares 88% and 89% identity with the VSIG8 of mouse

and rat, respectively. It was identified through proteomic

analysis of the human hair shaft (35, 36) and found to also be

expressed in the oral epithelium, superficial layers of the nail

matrix, and hair follicles (98). Interestingly, Wang et al. reported

that immobilized recombinant VSIG8 could suppress human T-

cell proliferation and cytokine production and decrease the

differentiation of naïve CD4+ T cells towards Th1 cells,

confirming its role as a negative regulator of T-cell responses

(99). VSIG8 was later reported to be a putative binding partner

of VISTA (100), and a US patent (WO2016090347 A1) also

reported the interaction of VSIG8 and VISTA, demonstrating

the suppressive effects of this interaction on T cells. In addition,

Chen et al. demonstrated the VSIG8-VISTA interaction by
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ELISA, MST and Co-IP assays and confirmed its function in

inhibiting human T-cell activation (101). However, a recent

study using a functional ELISA suggested no interaction between

human VSIG8 and VISTA (67). Similarly, George et al.

generated a two-sided fusion protein that contained the ECD

of both VSIG8 and OX40 L and reported no binding between

this fusion protein and recombinant VISTA, although it was able

to bind VISTA-expressing macrophages or tumor cells.

Nevertheless, this VSIG8-Fc-OX40 L fusion protein stimulated

T-cell activation and antitumor activity, possibly by blocking

VSIG8-mediated inhibitory signaling (102). Future studies

generating VSIG8-deficient animals and blocking antibodies

will further enhance our understanding of this potential

immune checkpoint molecule in cancer immunotherapy.
FIGURE 1

Illustration of VSIG4 functions. In host defense against bloodstream infections,VSIG4 recognizes C3b and helps macrophages phagocytose C3b-
or iC3b-tagged pathogens (bacteria, viruses, fungi, etc.). In a variety of complement activation-dependent inflammatory diseases, VSIG4 delivers
anti-inflammatory signals by binding C3b to prevent the alternative pathway of complement activation. VSIG4 also inhibits macrophage M1
activation by regulating inflammasome activation and pyruvate metabolism. VSIG4 also inhibits T-cell activation, proliferation, and IL-2
production upon binding to an unknown ligand on T cells.
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VSIG9

VSIG9, well known as TIGIT, with a full name of T-cell

immunoglobulin and ITIM domain (also known as WUCAM or

Vstm3), is currently one of the most attractive and promising

immune checkpoint targets. TIGIT also belongs to the poliovirus

receptor (PVR)/nectin family and is widely expressed on

activated NK cells, CD8+ T cells, CD4+ T cells, and Treg cells

(24–26, 33, 39). TIGIT was discovered in 2009 by three

independent groups (25, 26, 33). One reported that TIGIT was

an adhesion molecule mediating TFH (follicular T helper) and

FDC (follicular DC) interactions (33), whereas the other two

identified TIGIT as a coinhibitory receptor on T and NK cells

(25, 26). The structure of TIGIT comprises a short intracellular

domain with one immunoglobulin tyrosine tail (ITT)-like motif

and one immunoreceptor tyrosine-based inhibitory motif

(ITIM), a type I transmembrane domain, and an extracellular

IgV domain (26, 33, 39). While there is a 58% overall sequence

identity between human and mouse TIGIT (25, 26), their ITIM-

containing sequences that confer immune inhibitory functions

are identical. TIGIT has three ligands, including CD155, CD112,

and CD113, which all belong to the PVR/nectin family receptors

(25, 103, 104). Their expression features and binding affinity

with TIGIT are listed in Table 3.

Among these ligands, CD155 exhibited the highest affinity

with TIGIT (104, 105). CD155 is mainly expressed on dendritic

cells (DCs), T cells, B cells and macrophages. Engaging of

TIGIT with CD155 has been shown to prevent excessive

immune cell activation and sustain immune homeostasis (33,

106–108). Notably, there are two other PVR family receptors,

CD226 and CD96, which share sequence homology with

TIGIT and compete with TIGIT for CD155 binding (109–

111). However, as opposed to TIGIT and CD96, CD226 acts as

an activating receptor that promotes T-cell and NK-cell

activation opon CD155 ligation (112–114). TIGIT binds

CD112 and CD113 with lower affinity than CD155, and the

functional consequences of their binding have been less

characterized. CD112 is also known as the ligand for the

coinhibitory receptor CD112R, which was recently

discovered as an immune checkpoint receptor expressed on

T cells and NK cells (109, 115). Similar to CD155, CD112,

another common ligand of TIGIT, can also bind CD226 (109).

The competition and balance among TIGIT, CD226, CD96,

and CD112R for the same ligands is quite complex and has

been extensively reviewed elsewhere (112, 116, 117). The
TABLE 3 Expression patterns of TIGIT ligands and their relative binding affin

CD155

Expression cell types DCs, T cells, B cells, macrophages, tumor cells D

Receptors and Binding Affinity(+) TIGIT (++) CD226(+) CD96(+) T

Function Inhibitory ligand I
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interactions between TIGIT and its ligands with other VSIG

members are summarized in Figure 2.

Because of the binding affinity advantage, the TIGIT-CD155

interaction prevails in TIGIT-mediated immune inhibition (26).

The TIGIT-CD155 axis exerts its inhibitory effects on T and NK

cells through three distinct mechanisms of action, including 1) a

cell intrinsic manner by transmitting inhibitory signals to the

effector cells (26); 2) a cell extrinsic manner by modulating the

cytokine profile of CD155-expressing cells, such as DCs and

macrophages (26, 107); and 3) by competing with CD226-

mediated costimulatory signals (118). The cell intrinsic effect

of TIGIT was well characterized by Inozume et al. by expressing

truncated CD155 without a cytoplasmic domain, which was

sufficient to suppress T-cell production of IFN-g in a TIGIT-

dependent manner (119). Similarly, agonistic anti-TIGIT mAbs

were capable of dampening mouse and human T-cell

proliferation and cytokine production (39, 118, 120).

Following TIGIT-CD155 binding, the ITT-like motif is

phosphorylated and subsequently bound to growth factor

receptor-bound protein 2 (Grb2) or b-arrestin 2, which leads

to the recruitment of SHIP-1 and SHP2 and abolishment of

PI3K and MAPK and NF-kB signaling (121). TIGIT can also

work in a cell-extrinsic manner by modulating the cytokine

profile of CD155-expressing cells, such as DCs and

macrophages. The altered cytokine milieu, e.g., increased IL-10

levels and decreased IL-12 levels, in turn, can lead to attenuated

activation of NK and T cells (26).

The tumor microenvironment has taken advantage of the

TIGIT-CD155 inhibitory pathway as an important strategy to

evade immune surveillance and thus result in uncontrolled

tumor growth (122, 123). TIGIT is highly expressed on CD8+

tumor-infiltrating lymphocytes (TILs) in various tumors, such as

gastric cancer, colon cancer, breast cancer, melanoma, and

NSCLC (124–127). TIGIT+ CD8+ TILs are dysfunctional with

reduced effector cytokine production and impaired

degranulation, exhibiting a typical feature of exhaustion.

Blocking the TIGIT pathway can drastically reverse T-cell

exhaustion. In AML, TIGIT+ CD8+ exhausted T cells were

reinvigorated by knockdown of TIGIT expression (128). The

prominent advantage of TIGIT over other immune checkpoints

lies in its potent ability to restrain NK-cell responses. Upon

binding to its ligand CD155 expressed by tumor cells, TIGIT-

expressing NK cells dramatically diminish their cell cytotoxicity

(129, 130). Zhang Q et al. showed that antibody blockade of

TIGIT prevented NK exhaustion and unleashed antitumor
ity and function.

CD112 CD113

Cs, T cells and B cells, CD14+ cells, monocyte, tumor cells T cells, tumor cells

IGIT (+) CD226 (+) CD112R (++) TIGIT (+)

nhibitory ligand Inhibitory ligand
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immunity in an NK-cell-dependent manner, collectively leading

to tumor regression (131). Moreover, TIGIT is highly expressed

on Treg cells and is essential to maintain the suppressive

capabilities of Tregs, which potentially inhibit a variety of

immune cells by suppressing Th1 and Th17 cells (132–135). A

study demonstrated that TIGIT suppresses antitumor immunity

primarily via Tregs but not CD8+ T cells (135). In addition,

TIGIT also functions as a ligand to skew the maturation or

polarization of intratumoral myeloid cells, including DCs and

macrophages, towards a state with increased IL-10 but decreased

IL-12 secretion (26). This results in DC tolerance and alternative

activation of macrophages, both contributing to tumor

immune tolerance.

Owing to the importance of TIGIT-CD155 engagement in

NK and T-cell dysfunction in tumors, developing therapeutic
Frontiers in Immunology 09
agents to block this pathway holds great promise for cancer

immunotherapy. There is strong evidence that TIGIT blockade

has a direct effect in reversing T-cell dysfunction in cancer

patients. Anti-TIGIT mAb treatment has been shown to

escalate the proliferation, cytokine production, and

degranulation of bone marrow CD8+ T cells from MM

patients and peripheral blood CD8+ T cells from melanoma

patients (125, 136). Recent advances have also proposed a dual

blockade of PD-1 and TIGIT as a more inspiring method for

cancer immunotherapy than a single TIGIT blockade. Whereas

blocking each of the PD-1/PD-L1 or TIGIT pathways does not

remarkably impede the growth of CT26 tumors, a dual blockade

synergizes to increase the proliferation and function of

antitumor CD8+ T cells, which results in protective memory T

cells, complete tumor rejection, and overall prolonged survival
FIGURE 2

Illustration of VSIG family members as potential ICBs on immune cells. The interaction of TIGIT, VSIG3, VSIG8 and VSIG4 with other ligand-
expressing cells shows great potential as novel immune checkpoints. VSIG10 also shows potential as a coinhibitory receptor on DCs. The width
of the arrows is proportional to the relative binding affinities. The strongest interactions are between TIGIT/CD155 and CD112R/CD112. Negative
(-) represents an inhibitory signal, and positive (+) represents an activating signal.
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(126, 131). These effects have been abrogated upon CD8+ T-cell

deficiency. The translational potential of dual PD-1/TIGIT

inhibition has already been demonstrated; it increases the

proliferation and function of intratumoral antigen-specific

CD8+ T cells in melanoma patients to an extent that is much

more dramatic than a single blockade (119, 125). A recent phase

II study also indicated that dual PD-L1/TIGIT blockade

(atezolizumab/tiragolumab) has superior clinical benefits

compared to PD-L1 blockade alone in NSCLC patients,

despite similar profiles of toxicity and tolerability (137). Apart

from PD-1, TIGIT blockade could also synergize with other

ICBs in cancer immunotherapy. For instance, TIGIT and TIM-3

inhibition in mice cooperated to promote an antitumor immune

response (135); dual blockade of TIGIT and LAG3 improved the

treatment efficacy in a mouse model of anti-PD-1-resistant lung

cancer (138). In conclusion, TIGIT, as a new immune

checkpo int , pos se s ses g rea t po tent i a l fo r cancer

immunotherapy. Effective tumor control for certain types of

cancer can be expected by combining anti-TIGIT with other

ICB inhibitors.
VSIG10 and VSIG10 L

VSIG10 contains four Ig-like C2-type domains in its ECD

with 63% identity between hVSIG10 and mVSIG10 (139, 140).

VSIG10 was highly expressed on both normal and cancer

epithelial cells based on transcriptional data. Moreover,

Papasotiriou et al. reported the overexpression of VSIG10 in

adenocarcinoma; however, no expression was observed in

melanoma, prostate, breast, or pancreatic cancer (141). Until

recently, there was no report about its biological function.

According to a US patent (Application #20200270343),

recombinant VSIG10-Fc fusion protein was able to suppress

CD4+ T-cell activation and cytokine production, pinpointing its

potential as an immune checkpoint inhibitor. Interestingly,

VSIG10 was also predicted to be abundantly expressed by DC

subsets both in humans and mice. Growing data points toward

the importance of immune checkpoints expressed on DCs in

dampening the antitumor response. For instance, DCs highly

express PD-L1 and have been demonstrated to be an important

target of PD-L1 blocking antibodies (142). These PD-L1-

expressing DCs are identified to attenuate T-cell activation and

regulate its response to ICBs (143).

Hence, the generation of anti-VSIG10 antibodies, as

reported in the patent, may present a promising DC-targeting

ICB cancer immunotherapy. Similar to VSIG10, VSIG10 L also

contains IgC2 in its ECD. VSIG10 L is normally expressed in the

healthy esophagus and squamous mucosa; however, it is

downregulated in esophageal adenocarcinoma and Barrett’s
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esophagus (144). High expression is found in lung squamous cell

carcinoma (145), pointing to the dual nature of VSIG10 L in

cancers. Further exploration is needed, as they could be potential

biomarkers or immune checkpoints.
Conclusion

ICB treatment has brought a revolutionary advance for

cancer therapy in the past decade. Antibodies targeting PD-1

and CTLA-4 were approved by the FDA and were proven to be

effective against several cancer types. Despite tremendous

success, over half of the patients remain poorly responsive to

these regimens, possibly due to the involvement of multiple

immune inhibitory pathways in the cancer microenvironment.

Therefore, seeking new immune checkpoint molecules is

becoming increasingly important for the optimization of ICB-

based cancer immunotherapy. Here, we show that many VSIG

family members show potent effects of T-cell inhibition in

cancer, and antitumor immunity can dramatically benefit from

the blockade of these molecules. The most attractive and

promising member of the VSIG family is TIGIT, and its

blockade has achieved great success in reinvigorating

antitumor NK and T-cell responses (126, 131, 135). There are

currently over 50 clinical trials underway to study the

therapeutic effect, safety, and tolerability of TIGIT blockade in

cancer, either using it alone or in combination with other cancer

therapeutics. Apart from TIGIT, VSIG3, VSIG8, and VSIG4 also

show great potential as novel immune checkpoints. As putative

binding partners for the well-known coinhibitory molecule

VISTA, both VSIG3 and VSIG8 were able to negatively

regulate T-cell responses and can be targeted in certain cancer

types in which antitumor immunity is predominantly affected by

the VISTA pathway. VSIG4 is of particular interest because it is

specifically expressed by tissue resident macrophages, which are

becoming increasingly appreciated as critical contributors to

tumor progression and metastasis. Blockade of VSIG4 to

functionally reprogram macrophages thus stands out as an

important complement to the current T-cel l-based

immunotherapy regimens. In addition, although not fully

validated, VSIG10 shows potential as a coinhibitory receptor

expressed by another important type of myeloid immune cell,

namely, DCs, which are also largely overlooked in the field of

immune checkpoint therapy. Overall, VSIG family proteins

represent an important group of transmembrane receptors

that emerge as immune checkpoints controlling the fates of

multiple types of immune cells in tumors, spanning from

myeloid cells to lymphoid cells. Therapeutically targeting these

proteins could be beneficial to the current regimen of ICB

treatment in cancer.
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