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Abstract

Background: Machine learning (ML) models are promising tools for predicting

adverse postoperative outcomes in cardiac surgery, yet have not translated to

routine clinical use. We conducted a systematic review and meta‐analysis to assess

the predictive performance of ML approaches.

Methods: We conducted an electronic search to find studies assessing ML and

traditional statistical models to predict postoperative outcomes. Our primary

outcome was the concordance (C‐) index of discriminative performance. Using a

Bayesian meta‐analytic approach we pooled the C‐indices with the 95% credible

interval (CrI) across multiple outcomes comparing ML methods to logistic regression

(LR) and clinical scoring tools. Additionally, we performed critical difference and

sensitivity analysis.

Results: We identified 2792 references from the search of which 51 met inclusion

criteria. Two postoperative outcomes were amenable for meta‐analysis: 30‐day

mortality and in‐hospital mortality. For 30‐day mortality, the pooled C‐index and

95% CrI were 0.82 (0.79−0.85), 0.80 (0.77−0.84), 0.78 (0.74−0.82) for ML models,

LR, and scoring tools respectively. For in‐hospital mortality, the pooled C‐index was

0.81 (0.78−0.84) and 0.79 (0.73−0.84) for ML models and LR, respectively. There

were no statistically significant results indicating ML superiority over LR.

Conclusion: In cardiac surgery patients, for the prediction of mortality, current ML

methods do not have greater discriminative power over LR as measured by the

C‐index.
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1 | INTRODUCTION

The high physiological demands of cardiac surgery put patients at

risk of postoperative complications.1 Cardiac surgery is, however,

a data rich field, which has facilitated the development of a variety

of risk stratification tools.2 Traditionally, these data have been

fitted with linear models and clinical scoring tools created to assist

perioperative decision‐making.2 Novel machine learning (ML)

algorithms continue to be developed with increasing complexity

to fit the ever‐increasing data. The nonlinearity of these algorithms

may provide greater assistance in clinical decision‐making and

improve patient outcomes.3

Many ML models, such as artificial neural networks and the

sequelae of deep learning strategies, can model the dimensions of a

clinical predictive problem with nonlinear complexity and thereby

uncover relationships and unique latent structure within the data.4

Regardless of model design, the essential function of the ML model is

to learn important features by training on a given data set to be able

to make predictions or gain insights about data that was not part of

the original training set.4 These strategies are increasingly applied to

clinical domains, with research promising the ability to leverage peri,

and intra‐operative data to predict complications and potentially

improve patient care.3,5

The relative performance of these algorithms compared with

logistic regression (LR) models, however, remains unclear. A

review is needed to characterize the performance of these

algorithms and determine possible future directions for this

important clinical aid. We, therefore, conducted a systematic

review and meta‐analysis to compare the predictive performance

of ML models against established methods such as LR and clinical

scoring tools.

2 | METHODS

Ethics approval for this study was not required. The study was

prospectively registered with PROSPERO (CRD42020196587). The

Preferred Reporting Items for Systematic reviews and Meta‐Analysis

(PRISMA) statement was followed.6

2.1 | Types of studies

This review included all original studies investigating all ML models

used in the perioperative setting for predicting postoperative

adverse outcomes. In particular, we included studies that assessed

the performance of predicting poor outcomes. We included all

observational cross‐sectional, case‐control, and cohort studies

that compare any ML algorithm to any reference standard or a

different ML algorithm. Studies were either retrospective or

prospective and, if found, randomized control trials (RCTs) were

included.

2.2 | Inclusion and exclusion criteria

This study considered all English language peer‐reviewed studies

published at any time. This study included studies on adult patients of

any gender that underwent any form of cardiac surgery. Studies were

excluded if they were on a pediatric population or involved cardiac

transplant.

2.3 | Search strategy

We screened citations from Ovid MEDLINE (1950 to February 7th,

2022) and the Ovid Intelligent Gateway to Biomedical & Pharmaco-

logical Information (EMBASE) from inception to February 7th, 2022.

The search strategy is presented in Supporting Information: Table S1.

All identified articles had reference lists hand searched to identify any

other possible relevant studies.

2.4 | Study selection

Abstracts and full texts were screened by two independent reviewers

(Jahan C. Penny‐Dimri and Linley Hayes) with conflicts resolved by a

third reviewer (Luke Perry).

2.5 | Data extraction and risk of bias

Two independent reviewers (Jahan C. Penny‐Dimri and Linley Hayes)

assessed risk of bias using the QUADAS‐2 Risk of Bias tool along with

five additional previously reported signaling items that indicate bias

when comparing ML models.7,8 These two reviewers also indepen-

dently extracted qualitative and quantitative data according to a data

extraction template. Any disagreement was adjudicated by a third

reviewer (Luke Perry). To assess discriminative performance, the

concordance (C) index was collected, which corresponds to the area

under the receiver operating characteristic curve (AUROC). The

AUROC from any reported LR model, clinical scoring tool, and best

performing ML model were collected.

2.6 | Data syntheis

After data collection, any C‐indexes had their standard error

calculated (SE) as described by Hanley and MacNeil.9 Where there

were sufficient studies exploring a postoperative outcome, defined as

greater than five studies available, a pooled estimate was obtained

and the data was presented as a forest plot. Meta‐analysis was

conducted using a random effects Bayesian approach.10 To investi-

gate any performance difference in an outcome agnostic context, a

critical difference diagram was performed across all studies that

reported an AUROC for a scoring tool, LR, and ML model.11 Critical
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difference diagrams are a nonparametric approach, using a Wilcoxon‐

Holm method, that compares the performance of predictive models

across different datasets.11

2.7 | Publication bias and sensitivity analysis

A funnel plot was generated to assess for small‐study effects and

publication bias.12

Sensitivity analysis was conducted to investigate bias by

excluding studies deemed to be of high or unclear risk of bias to

determine whether the conclusions from the data synthesis were

robust. Sensitivity analysis was also used to investigate the role of

publication year on performance. This analysis was included to test

for bias from advances in ML methods over time as the field of ML is

rapidly changing.

2.8 | Assessment of the evidence

The Grading of Recommendations Assessment, Development, and

Evaluation (GRADE) approach was used to assess the evidence.13

3 | RESULTS

The search yielded 2792 references. There were 417 duplicates that

were removed before abstract screening. A further 2247 references

were excluded based on the title or abstract. During full‐text

screening a further 79 studies were excluded for a final inclusion of

51 studies (see Figure 1).

3.1 | Study characteristics

Studies were published from 1992 to 2022. The incidence of

publication shows an exponential increase with time, depicted in

Figure 2. Most studies published, 21 of 51, were from North America,

followed by Europe with 14 studies, 12 from the Middle East or Asia,

2 from South America, and 2 from Australia.

The most common outcome was short‐term mortality with 14

studies reporting 30‐day mortality and 10 reporting in‐hospital

mortality. Acute kidney injury and prolonged mechanical ventilation

were the next most common with five studies reporting these

outcomes.

All studies were either retrospective (45) or prospective cohort

studies (6). Most studies, 42 of 51, used either a train‐test‐validation

split with bootstrapping or K‐fold validation to generate performance

metrics. Only six studies used a prospectively collected validation

cohort and one study used a completely external validation cohort.

Overall, 33 of the 51 studies (65%) were at low risk of bias.

Common points of bias included different features being used to train

LR and ML model algorithms or no reference standard applied at all.

Complete tables for study characteristics are available in the

Supporting Information. The descriptive study characteristics are

available in Supporting Information: Table S2, the data set character-

istics for each study are available in Supporting Information: Table S3,

analysis characteristics for each study are available in Supporting

Information: Table S4, and performance characteristics are available

in Supporting Information: Table S5.

3.2 | Data synthesis

There were only sufficient study numbers to perform evidence

synthesis on two outcomes, which were 30‐day mortality and in‐

hospital mortality. Pooled C‐indexes with their 95% credible intervals

(CrI) are reported in Table 1. Across both 30‐day mortality and in‐

hospital mortality, the best‐performing ML model was not associated

with statistically significant improvement in performance as shown by

the p‐values in Table 1. For 30‐day mortality, the pooled C‐index and

F IGURE 1 Preferred reporting items for systematic reviews and
meta‐analysis (PRISMA) flow diagram. The flow diagram shows the
flow of studies and exclusions through the different phases of the
systematic review.

F IGURE 2 Distribution of publication rate over time for included
studies. The rate of publication of applied machine learning papers in
cardiac surgery is currently following an exponential distribution.
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95% CrI were 0.82 (0.79−0.85), 0.80 (0.77−0.84), 0.78 (0.74−0.82)

for ML models, LR, and scoring tool respectively. For in‐hospital

mortality, the pooled C‐index was 0.81 (0.78−0.84) and 0.79

(0.73−0.84) for ML models and LR, respectively.

Sensitivity analysis for risk of bias and publication year did

not change the results of the analysis (Supporting Information:

Table S6).

Forest plots for these results are shown in Figures 3 and 4.

3.3 | Critical difference analysis

Critical difference analysis was performed on all eligible studies as

well as on all low bias studies. The initial analysis showed a

statistically significant difference between ML models, LR, and

clinical scoring tools with ML performing the best. This was

demonstrated by a p‐value less than 0.05 across all pairwise

comparisons. After removing studies at high or unclear risk of bias

the difference between ML models and LR was not significant

(Table 2 and Figure 5).

Additionally, sensitivity analysis for publication year showed that

the initially statistically significant difference between ML and LR was

lost after only including studies published after 2010, and also after

restricting to studies published after 2020 (Table 2 and Supporting

Information: Figures S1–S3).

3.4 | Assessment of publication bias

Visual inspection of the funnel plot showed a slight asymmetry

suggesting a possibility of a small publication bias toward positive

results (Supporting Information: Figure S4).

3.5 | GRADE assessment

A GRADE assessment considers five domains including the risk of

bias, the precision of the estimates, the consistency, directness, and

publication bias. Although our pooled estimates are precise and

direct, given the high proportion of high‐risk studies and small risk of

publication bias, our confidence in the evidence was downgraded to

low‐moderate.

4 | DISCUSSION

This meta‐analysis found that, in unbiased studies, the best

performing ML models do not achieve a significant advantage in

discriminative power compared to LR when measured by the C‐index.

While ML models tended toward higher performance, this was not a

statistically significant result in either meta‐analysis or critical

difference analysis.

4.1 | Previous work

A recent Bayesian meta‐analysis in 2020 investigated the use of ML

for predicting mortality after cardiac surgery, however, their

conclusions were that ML models outperformed LR.3 Aside from

incorporating additional evidence, an important difference between

their analysis and our work is that they did not discriminate between

in‐hospital and 30‐day mortality. Additionally, our work extends the

analysis to incorporate an outcome‐agnostic approach with critical

difference diagrams that corroborate the findings in the main meta‐

analysis.

4.2 | Implications and interpretation

While modern ML methods have made significant improvements to

many industries, uptake of these modeling techniques in healthcare

has been slow.14 Our findings suggest that the marginal gain in

discriminative power of ML models compared to traditional statistical

techniques may be part of the slow adoption of this technology. ML

methods also come with trade‐offs such as lack of interpretability and

propensity to over‐fit the training data.15

The current body of evidence, however, is limited with regard

to assessing the true value of a predictive model. The current

standard is to use metrics that assess discrimination and

calibration, however, these metrics fail to provide guidance for

policymakers or clinicians about the value of the model as part of

a larger decision‐making process.16 Recent theoretical formula-

tions on the ability to assess value has led to novel metrics such

as area under the value operating characteristic curve, which

incorporates mathematical definitions of a cost for incorrect

predictions and benefit for correct predictions.16

TABLE 1 Pooled C‐indexes

Outcome Studies
ML model pooled C‐index
(95% CrI)

LR pooled C‐index
(95% CrI)

Score pooled C‐index
(95% CrI)

p‐Value ML versus LR/p‐value ML
versus score/p‐value LR versus score

30‐day mortality 14 0.82 (0.79−0.85) 0.80 (0.77−0.84) 0.78 (0.74−0.82) 0.32/0.11/0.20

In‐hospital
mortality

10 0.81 (0.78−0.84) 0.79 (0.73−0.84) NA 0.24

Abbreviations: 95% CrI, 95% credible intervals; LR, logistic regression; ML, machine learning.
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The studies included in this review were limited in the scope of ML

modeling, incorporating mainly supervised neural networks or decision

tree‐based models. There are significant developments in a variety of ML

methods, including unsupervised learning paradigms and unique neural

network architectures that remain to be tested in this space.5 We would

therefore interpret the negative results of this study cautiously as better

metrics and ML models are being rapidly developed consistent with the

exponential increase in publications in this field.

F IGURE 3 Forest plot for 30‐day mortality across
model type. Panel (A) shows the subgroup for the best
performing machine learning model. Panel (B) shows the
subgroup for logistic regression models. Panel (C) shows
the subgroup for clinical scoring tools.
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4.3 | Limitations

This study has several technical limitations. First, we were unable to

perform meta‐analysis on all the outcomes included in this review

due to low study numbers in most of the outcomes. These low

numbers also restricted the ability to perform meta‐regression or

subgroup analysis across import covariates, such as ML model class.

Additionally, for the outcomes of 30‐day mortality and in‐hospital

F IGURE 4 Forest plot for in‐hospital mortality across model type. Panel (A) shows the subgroup for the best performing machine learning
model. Panel (B) shows the subgroup for logistic regression models.
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mortality we were unable to account for patients who died outside

the measurement boundary, for example after a hospital‐to‐hospital

transfer or in‐hospital and after 30‐days.

Finally, this meta‐analysis focused only on pooling the C‐index,

however, this one metric cannot incorporate many other benefits of

an ML modeling approach. Recently developed explanatory modeling

of previously uninterpretable ML models, such as with Shapley

additive values, have made it possible to leverage the increased

complexity of ML to gain unique insights from the data.17 Several of

the included studies included ML methods to provide unique

prediction level risk profiles for patients.18,19 The ability of ML

methods to provide unique explanations for predictions of risk is not

a measurable outcome despite being an emerging benefit of these

models.

5 | CONCLUSIONS

This study found that, in cardiac surgery patients, ML models were

not superior to currently used statistical methods. These findings

suggest that, until better technology is developed, the clinical utility

and applicability of ML technology remain a research tool only.
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