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Abstract: Hypertension causes many deaths worldwide and has shown an increasing trend as a
severe non-communicable disease. Conventional antihypertensive drugs inevitably cause side effects,
and great efforts have been made to exploit healthier and more-available substitutes. Microalgae
have shown great potential in this regard and have been applied in the food and pharmaceutical
industries. Some compounds in microalgae have been proven to have antihypertensive effects.
Among these natural compounds, peptides from microalgae are promising angiotensin-converting
enzyme (ACE) inhibitors because an increasing number of peptides show hypertensive effects and
ACE inhibitory-like activity. In addition to acting as ACE inhibitors for the treatment of hypertension,
these peptides have other probiotic properties, such as antioxidant and anti-inflammatory proper-
ties, that are important for the prevention and treatment of hypertension. Numerous studies have
revealed the important bioactivities of ACE inhibitors and their mechanisms. This review discusses
the antihypertensive effects, structure-activity relationships, molecular docking studies, interaction
mechanisms, and other probiotic properties of microalgal ACE inhibitory peptides according to the
current research related to microalgae as potential antihypertensive drugs. Possible research direc-
tions are proposed. This review contributes to a more comprehensive understanding of microalgal
antihypertensive peptides.

Keywords: antihypertensive effect; microalgae; ACE inhibitor; peptides; molecular docking

1. Introduction

Microalgae are the main contributors to primary production in aquatic ecosystems.
They are widespread, fast-growing, and resilient in different harsh environments, such as
those with high salinity and temperature, as well as wastewater. In recent years, microalgae
and their derived natural compounds have been regarded as important and sustainable
food supplements and biodiesel sources for the purpose of overcoming food shortages
and energy crises associated with population growth and limited land resources [1–3].
Furthermore, microalgae species are rich in bioactive compounds such as the primary
nutrients carbohydrates, proteins, lipids, and probiotic materials such as vitamins and mi-
croelements [4–12]. In addition to their high production of nutrients, researchers have also
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recently found that an increasing number of bioactive compounds from microalgae show
antioxidant [13,14], anticancer [15,16], anti-inflammatory [17,18], antimicrobial [19,20], and
antiaging [21] properties with potential for the treatment and prevention of chronic diseases
and their syndromes [22–24].

Hypertension, a chronic disease in humans, is a multifactorial disorder that is con-
sidered one of the major causes of premature death worldwide. As a “silent killer”, this
chronic disease causes over nine million deaths annually and affects approximately one
billion people [25]. Hypertension is a key risk factor for inducing cardiovascular diseases
(CVDs), and the contribution of hypertension to CVD mortality has increased in some
countries during the last two decades, especially in certain low-income countries that
have the highest prevalence of hypertension [26]. Long-term hypertension also increases
the risks of fatal conditions or events such as myocardial infarction [27], stroke [28], and
kidney failure [29]. The pathogenesis of hypertension is complicated and unclear, and
many factors, such as body mass index, sex, insulin resistance, high alcohol and salt intake,
low potassium and calcium intake, stress, aging, and a sedentary lifestyle, are involved [30].
It should also be noted that free radical formation mediates some of the effects of hyperten-
sion. For instance, the proinflammatory actions caused by hypertension could increase the
formation of hydrogen peroxide and free radicals, such as superoxide anions and hydroxyl
radicals, in plasma to finally reduce the formation of nitric oxide by the endothelium [31].
The imbalance in the production and function of endothelial factors, such as nitric oxide, is
associated with vascular physiological function [32].

Angiotensin-converting enzyme (ACE) is a ubiquitous enzyme in mammalian tissues
that is involved in the renin-angiotensin and kinin nitric oxide systems, and blood pressure
in humans is regulated by the renin-angiotensin-aldosterone system (RAAS) through two
main proteases, renin and ACE (Figure 1) [33]. Briefly, ACE can convert angiotensin I
(Ang I) into angiotensin II (Ang II) and increase blood pressure by vasoconstriction, which
is considered a useful therapeutic target for the treatment of hypertension [34]. To control
angiotensin II production, initially, antihypertensive drugs such as captopril, enalapril,
lisinopril, and benazepril were synthesized [35–38]. ACE inhibitors are employed in con-
ditions such as hypertension, heart failure, and diabetes due to their ability to reduce
angiotensin II levels, vasoconstriction, aldosterone secretion, and bradykinin [39–41]. How-
ever, these synthetic drugs usually cause side effects such as erectile dysfunction, persistent
dry cough, angioedema, and congenital malformations [33]. Therefore, exploration of
antihypertensive drugs has led to the discovery of healthier antihypertensive substances
to relieve blood pressure, and an increasing number of ACE inhibitor-like natural com-
pounds, especially biopeptides, have been found in foods such as milk, eggs, meat, fish,
soybeans, and their derivatives [42]. These biopeptides show low/no toxicity or no side
effects [43]. As promising functional food supplements, microalgae have also received
increasing attention due to their high content of valuable natural compounds, and some of
these compounds have been applied in the pharmaceutical, cosmetic, and nutraceutical
industries [44]. In addition, microalgal hydrolysates, extracts, and biopeptides in particular
have shown ACE inhibitory effects and gained increasing attention [45].

The first study of the antihypertensive effects of microalgae was conducted in the
1980s, when Miyakoshi et al., reported that Chlorella decreased blood pressure by modulat-
ing the RAAS [46,47]. Chlorella was also shown to decrease human blood pressure after
ingestion [48]. Suetsuna et al., was the first to find that biopeptides from Chlorella vulgaris
(C. vulgaris) and Spirulina platensis (S. platensis) showed marked antihypertensive effects
on spontaneously hypertensive rats (SHRs) [49]. After these findings, through in vivo
and in vitro studies, an increasing number of biopeptides from microalgal hydrolysates
from the genera Chlorella, Spirulina, Isochrysis, and Nannochloropsis were found to show
ACE inhibitory effects with functions similar to those of conventional antihypertensive
drugs [50–53]. Moreover, these peptides are often stable in the mammalian digestive
system [54]. Since the isolation and identification of ACE inhibitory peptides from microal-
gae, their molecular mechanisms, such as those determined from molecular docking, and
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antioxidative properties have emerged [55–57]. The relationship between the structure
and activity of ACE inhibitory peptides is important for the design of novel drugs [58].
Such a method is also widely used to screen for food-derived peptides and illustrate the
biological mechanisms of their functions or activities [59]. The simulation of docking can
aid in elaborating the interaction mechanisms of bioactive peptides with receptors from
the binding sites and binding types between the receptor and ligands, and the apparent
advantages of in silico studies are the time savings and low cost. Some studies on the
structural model were also supported by traditional methods such as fluorescence and
circular dichroism (CD) spectra, isothermal titration calorimetry, surface plasmon reso-
nance and bio-layer interferometry, and the computational approaches can significantly
aid in the study of the bioactive mechanisms of bioactive peptides [60–62]. Coincidentally,
the molecular docking mechanism of microalgal ACE inhibitory peptides also emerged
in recent years. Thus, this review attempts to review the current research related to the
antihypertensive effects, ACE inhibitory effects, and molecular docking mechanisms of
peptides from microalgae. The keywords “microalgae OR microalgal”, “antihypertensive
OR antihypertension”, “peptides”, and “molecular docking” were searched in the Web of
Science and Scopus.
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2. The Relationship between the Primary Structure of Microalgal Peptides and the
ACE Inhibitory Effect

ACE inhibitor and ACE inhibitor-like peptides could inhibit ACE through two strate-
gies, namely, competitive and noncompetitive, which are determined by Lineweaver–Burk
plots. Competitive inhibitors compete with the substrate and bind to the active site of
ACE, and noncompetitive inhibitors change the conformation of ACE, which prevents the
substrate from binding to the active site of ACE. When the Lineweaver-Burk plot cannot
demonstrate the inhibitory strategy of the peptide, a mixed-noncompetitive pattern ap-
pears, which has been observed for some peptides [63–65]. Notably, the inhibitory activities
of ACE inhibitors are not determined by their binding strategy [66]. The ACE inhibitory
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activity of peptides is expressed as the half maximal inhibitory concentration (IC50), which
indicates the ACE inhibitor concentration that leads to 50% inhibition of ACE activity.
Moreover, a few studies have demonstrated that the composition of the peptide and the
amino acid sequence impacts the inhibitory activity of hypertensive peptides [67]. Thus,
we listed the microalgal bioactive peptides, their origin, and their IC50 values in Table 1;
their primary structures are shown in Figure 2.

Table 1. The ACE inhibitor-like peptides from microalgae and their inhibitory effects.

Inhibitory
Pattern Species No. Peptides

Sequence IC50 (µM) Study Type Reference

Noncompetitive

Chlorella sorokiniana
1 IW 0.5 In vitro (rabbit lung)

[68]2 VW 0.58 In vitro (rabbit lung)

Chlorella vulgaris 3 TTW 0.61 In vivo (rats)
[55]4 VHW 0.91 In vivo (rats)

Chlorella sorokiniana 5 LW 1.11 In vitro (rabbit lung) [68]
Spirulina platensis 6 IQP 5.77 In vivo (rats) [69]

Nannochloropsis oculata 7 LVTVM 18 In vitro [70]
Spirulina platensis 8 VEP 27.36 In vivo (rats) [71]
Chlorella vulgaris 9 VECYGPNRPQF 29.6 In vitro [54]
Isochrysis galbana 10 YMGLDLK 36.1 In vitro [72]

Isochrysis zhanjiangensis 11 FEIHCC 61.38 In vitro [51]
Spirulina sp. 12 TMEPGKP 132 In vitro [52]

Competitive Chlorella ellipsoidea 13 VEGY 128.4 In vivo (rats) [73]
Tetradesmus obliquus 14 WV 307.61 In vitro (rabbit lung) [68]

Not available

Tetradesmus obliquus 15 WYGPDRPKFL 0.82 In vitro
[74]16 GPDRPKFLGPF 5.73 In vitro

Spirulina platensis 17 IAPG 11.4 In vivo (rats)

[49]

Chlorella vulgaris 18 FAL 26.3 In vivo (rats)

Spirulina platensis 19 IAE 34.7 In vivo (rats)
20 VAE 35.8 In vivo (rats)

Chlorella vulgaris
21 AEL 57.1 In vivo (rats)
22 AFL 63.8 In vivo (rats)
23 VVPPA 79.5 In vivo (rats)

Nannochloropsis oculata 24 GMNNLTP 123 In vitro
[53]25 LEQ 173 In vitro

Chlorella vulgaris 26 IVVE 315.3 In vivo (rats) [49]
Gracilariopsis
lemaneiformis 27 QVEY 474.36 In vitro [75]

Abbreviations of amino acids: A (Ala), R (Arg), N (Asn), D (Asp), C (Cys), Q (Gln), E (Glu), G (Gly), H (His), I (Ile), L (Leu), K (Lys), M
(Met), F (Phe), P (Pro), T (Thr), W (Trp), Y (Tyr), V (Val).

Daskaya-Dikmen et al., noted that potent ACE inhibitory peptides are generally short-
chain peptides consisting of 2–12 amino acids [76]. To the best of our knowledge, the
number of amino acids in peptides with antihypertensive properties from microalgae
ranges from 2 to 11. To ensure the stability and bioactivity of ACE inhibitory peptides in
mammalian gastrointestinal tissue, these peptides are usually obtained from the biomass of
microalgal hydrolysates through hydrolytic enzymes under acidic conditions to simulate
gastrointestinal digestion. Thus, the peptides identified from microalgae were regarded to
be stable in the mammalian gastrointestinal tract.

A few in vitro and in vivo studies have reported IC50 values of microalgal ACE in-
hibitory peptides ranging from 0.5 to 474.36 µM, and most of these microalgal peptides
were clearly noncompetitive ACE inhibitors (Table 1), as the noncompetitive pattern
seemed to be more common and more effective than the competitive pattern. Except for
the peptides with unavailable patterns, the IC50 values of competitive peptide inhibitors
from C. sorokiniana and C. ellipsoidea were 307.61 and 128.4 µM, respectively, while most
noncompetitive inhibitors from microalgae had lower IC50 values, with the exception of
peptide Thr-Met-Glu-Pro-Gly-Lys-Pro (TMEPGKP) from Spirulina sp. (IC50 = 132 µM; the
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IC50 of others ranged from 0.5–61.38 µM). Pujiastuti et al., pointed out that there is no
correlation between ACE inhibitory activity and the inhibitory pattern in marine organisms
(mainly multicellular organisms such as fish, sharks, and shrimp) [66]. When focusing
on only microalgal biopeptides, different inhibitory mechanisms were observed. Such a
finding may be a misjudgment because limited research has been conducted on microalgal
ACE inhibitory peptides, and more research is needed on microalgal biopeptides to verify
the hypothesis that differences in species or genetics may dominate the inhibitory pattern
and bioactivity. For instance, to the best of our knowledge, ACE inhibitor-like peptides
in the genera Isochrysis, Spirulina, and Nannochloropsis have shown only noncompetitive
properties in studies that have analyzed this pattern to date, and Chlorella shows both
inhibition patterns (Table 1).
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The primary structure of the peptide (chain composition, position, and sequence of
amino acids) is also an important factor associated with ACE inhibitory activity. The N-
terminus and C-terminus both strongly affect the ACE inhibitory activity of biopeptides [41].
Many short-chain peptides with hydrophobic and other amino acids (P, Y, F, or W) at the
C-terminus are considered potent ACE inhibitory peptides [77]. In microalgal biopeptides,
the residues C, F, L, V, W, P, E, G, A, Q, Y, K, and M at the C-terminus all exhibited ACE
inhibitory-like properties to a greater extent than peptides from commercially available
foods [41] but to a lesser extent than cereal protein peptides [78] and marine organisms [66].

To better understand the correlation between the structural ACE inhibitory activity
from the C-terminal residues in microalgal biopeptides, the structural formulas of these
amino acids are shown in Figure 2. F, W, G, and M at the C-terminus of short-chain
peptides exhibit relatively strong inhibitory activity against ACE. For instance, when W
was the C-terminal residue of microalgal peptides, these microalgal peptides (numbers
1–5) showed low IC50 values (0.5–1.11 µM), indicating a strong inhibitory effect, while W at
the N-terminus of a dipeptide (number 4) showed a relatively high IC50 value (307.61 µM).
In addition, Y as the C-terminal residue of the microalgal peptides did not have strong
inhibitory effects [73,75].

In addition to the amino acids at the N- and C-termini, the type of functional group at
these positions affects the ACE inhibitory effects of microalgal biopeptides. Hydrophobic
and aromatic residues at the N- and C-termini usually show strong antihypertensive
activity [79]. Notably, microalgal peptides showed a strong ACE inhibitory effect when
short-chain alkyl residues were present at the N-terminus and C-terminus, such as peptides
1, 2, 3, 4, 5, and 8. It may be inferred that the bioactivities of peptides 1, 2, and 5 are
influenced by their crystal structures, which showed short-chain alkyl groups or a certain
number of carbon atoms, whereby the isobutyl group showed the strongest inhibitory
activity and n-butyl showed the lowest inhibitory activity. The different bioactivities
among peptides with similar termini indicated that the other amino acid residues also
affect the biofunctions and efficacy against ACE. For example, some residues or atoms
can form hydrogen bonds (oxygen-, nitrogen-, benzene-, phenol- and amine-containing
residues) [80,81].

3. Molecular Docking of Microalgal Peptides to ACE

Great efforts have been made in recent years in the molecular docking of biopeptides
from conventional foods to ACE [82,83]. However, unlike ACE inhibitor-like peptides
from traditional food sources, the molecular interaction mechanism and molecular docking
of microalgal peptides are still untapped. The crystal structure often chosen is human
tACE (PDB ID: 1O8A). The best pose and conformation of the peptide and ACE can be
determined by LibDock scores and binding energies. LibDock scores are obtained from the
IC50 value with the formula LibDock score = 10.063 lg (1/IC50) + 68.08 [84], and a lower
binding energy is better.

Human tACE includes three active site pockets named S1, S2, and S1′ [85]. These
pockets contain different amino acid residues: A354, E384, and Y523 in S1; Q281, H353,
K511, H513, and Y520 in S2; and E162 in S1′ [75,86]. In addition, these active site pockets
have different favorable amino acid residues that bind in them. The S1 pocket shows
strong affinity to P, A, V, and L; Pro and Leu are the most favorable for S2 binding; and
S1′ is more likely to bind I [87]. In addition, molecular interactions such as van der Waals
forces, coordination interactions, hydrogen bonds, and electrostatic, hydrophobic, and
hydrophilic forces should be considered. Peptides and ACE residues are linked through the
main interaction forces involving van der Waals forces and some secondary interactions,
such as hydrogen bonds and hydrophobic and electrostatic forces (Figure 3 [55]).
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1 
 

 Figure 3. Molecular docking of ACE and the peptides. Docking pose, hydrophobic interaction
diagram with active pocket, and two-dimensional diagram of TTW (Thr-Thr-Trp, A), VHW (Val-His-
Trp, B), and FEIHCC (Phe-Glu-Ile-His-Cys-Cys, C) binding with ACE, respectively. The dotted lines
represent hydrogen bonds, the atoms in green indicate van der Waals interaction forces in (A,B), and
the atoms in light green in (C) represent the van der Waals interaction force. The pink atoms indicate
an electrostatic interaction force, and gray atoms represent zinc in (A,B). The difference density map
(blue clouds) is the electron cloud of hydrophobic interactions.

Even though these forces can contribute during molecular docking, the hydrogen
bond is still considered the most important factor in binding stability [88]. The distance of
hydrogen bonds between the amino acid residues of ACE and the peptide could reflect
the affinity of the peptide. A shorter distance indicates a stronger affinity and more stable
binding [89]. Considering the active sites in ACE, the hydrogen bonds between the amino
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acid residues in the microalgal peptides and the active sites of ACE affect their inhibitory
activities and cause discrepancies. The microalgal peptide Thr-Thr-Trp (TTW) (LibDock
score: 162) from C. vulgaris forms five short hydrogen bonds within the active sites of ACE
(ranging from 2.08 to 2.48 Å), which include hydrogen bonds with H353 and H513 in the
S2 pocket and A354 in the S1 pocket (Table 2). Moreover, Val-His-Trp (VHW) (LibDock
score: 177) can form five short hydrogen bonds with ACE (ranging from 1.93 to 2.45 Å),
which include hydrogen bonds with A354 and E384 in the S1 pocket and H353 and Y520
in the S2 pocket. These two peptides can finally construct stable conformations with
ACE (Figure 3A,B and Table 2 [55]). However, two points should be noted: (1) these two
peptides (TTW and VHW) form hydrogen bonds with P407 and E411, respectively, which
are residues that do not belong to well-known active sites in ACE; and (2) E384 in the S1
pocket can coordinate with Zn2+, which contributes to the ACE inhibitory activity.

Table 2. Distances and binding sites of hydrogen bonds for each peptide.

Peptides Hydrogen Bond Distance (Å) Active Sites Pockets

TTW

His353 2.17 S2
Ala354 2.08 S1
His513 2.48 S2
Ala354 2.02 S1
Ala354 2.46 S1
Pro407 1.89 -

VHW

Glu411 2.08 -
Ala354 2.41 S1
Ala354 1.96 S1
His353 2.45 S2
Tyr520 2.23 S2
Glu384 1.93 S1

FEHICC

Arg522 6.39 -
His387 2.17 -
Arg402 2.09 -
Tyr360 2.12 -
Lys118 2.52 -

2.50
Asp121 1.78 -

Another molecular docking analysis of ACE with the ACE inhibitory peptide Phe-
Glu-Ile-His-Cys-Cys (FEIHCC) from I. zhanjiangensis indicated that the microalgal peptide
could interact with ACE through hydrogen bonds in sites other than the active sites to
have an inhibitory effect on ACE (Figure 3C [51]). However, the inhibitory activity was still
affected by whether the peptide formed hydrogen bonds with the active site because the
IC50 of FEIHCC (61.38 µM) is much higher than that of TTW (0.61 µM) and VHW (0.91 µM),
even though FEIHCC formed more hydrogen bonds with ACE (seven hydrogen bonds
with distances ranging from 1.78 to 6.39 Å, shown in Table 2). Moreover, hydrogen bonds
between ACE and microalgal peptides usually occur with the N- and/or C-terminus, and
this result could verify this theory based on their primary structures as mentioned above.
In addition, short hydrogen bonds existed in the middle of these peptides. The oxygen and
nitrogen atoms in the middle of TTW and VHW could form short hydrogen bonds with
A354 in the S1 pocket.

4. The Antioxidant and Anti-Inflammatory Properties of Microalgal ACE Inhibitory
Peptides against Hypertension

Oxidative stress has been identified as a key etiological factor in the development
of hypertension [90]. Some bioactive peptides possessing ACE inhibitory activity from
microalgae also display antioxidant activity [54,91]. This is generally because peptides with
antioxidant properties are thought to contribute either synergistically or independently
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to the antihypertensive effects [92]. ACE inhibitory protein hydrolysates from B. malleus
increased the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity and
metal chelation ability at a concentration of 2 mg/mL [93]. The ACE inhibitory peptide IQP
from S. platensis at a concentration of 6.23 mg/mL exhibited a 75.72% radical scavenging
activity (RSA) percentage, which reflects the DPPH radical scavenging effects [94]. The
peptide Val-Glu-Cys-Tyr-Gly-Pro-Asn-Arg-Pro-Gln-Phe (VECYGPNRPQF) from C. vulgaris
could effectively scavenge superoxide radicals (IC50 of 7.5 ± 0.12 µM); the IC50 value of the
hydroxyl radical scavenging effect was 8.3 ± 0.15 µM; and the DPPH radical scavenging
activity could reach more than 40% at a concentration of 60 µM [91]. A peptidomic study
also showed that certain ACE inhibitory peptides from Tetradesmus obliquus, such as Ala-
Asp-Val-Pro-Phe-Arg (ADVPFR), Ser-Gly-Ser-Trp-Asp-Gly-Thr-Leu-Arg (SGSWDGTLR),
Gly-Pro-Lys-Asp-Asp-Pro-Ala-Ala-Trp (GPKDDPAAW), Ser-Trp-Asp-Gly-Thr-Leu-Arg
(SWDGTLR), and Ser-Trp-Ile-Ala-Arg (SWIAR), showed antioxidant properties according
to their DPPH scavenging activity [74].

The inflammatory processes are associated with hypertension and participate in its
development and maintenance [95]. Inflammatory responses also cause endothelial dys-
function and activate endothelial damage and apoptosis [96]. Peptides from microalgae
can also regulate some pathways related to inflammation and oxidative stress. The excel-
lent work of Chen et al., revealed that the peptide FEIHCC from I. zhanjiangensis inhibits
expression of the NF-κB, MAPK, and Akt signaling pathways to block inflammation and
endothelial cell apoptosis after Ang II treatment and activates the Nrf2 signaling path-
way [51]. In detail, the NF-κB inhibition could be beneficial in treating inflammatory
diseases [97], and FEIHCC could inhibit the NF-κB pathway by protecting IκBα degra-
dation and downregulating NF-κB expression and nuclear transport by inhibiting NF-κB
DNA binding activity. The downregulation of MAPK expression also indicated that such
peptides could mitigate cellular stress or inflammatory cytokines to some degree. The Akt
signaling pathway could be regulated to a normal level corresponding to that resulting
from Ang II treatment, and overexpression of the Akt pathway may enhance angiogen-
esis and lead to hepatic portal hypertension [98]. The activation of Nrf2 also mediated
endothelial dysfunction, improved endothelial cell activity, and ameliorated mitochondrial
and cellular injury [99,100]. It reduced inflammatory cytokine expression (NO, COX-2,
and ICAM-1), inhibited the secretion of inflammatory mediators, and decreased the risk
of hypertension.

5. Antihypertensive Effects of Microalgal Biopeptides

Microalgal biopeptides could be potential sources of ACE inhibitors [66]. The anti-
hypertensive effects and kinetics are different and determined by the species and peptide.
For instance, a single dose (200 mg/kg) of the peptidic fraction of C. vulgaris significantly
reduced the systolic blood pressure of SHRs from 1 to 4 h, and the highest antihyper-
tensive effect appeared at 1 h (a decrease of 49.9 mmHg). This antihypertensive effect
continued for 4 h after oral administration, and the highest effect was comparable to that
of the captopril group (10 mg/kg) [49]. A 30 mg/kg dose of the freeze-dried biomass of
transplastomic Chlamydomonas reinhardtii (C. reinhardtii) significantly reduced the systolic
blood pressure of SHRs after intragastric administration (metal cannula), which contained
more than 29% of the peptide Val-Leu-Pro-Val-Pro (VLPVP) [101]. The antihypertensive
effects of the recombinant protein from C. reinhardtii were demonstrated after intragastric
administration of the genetically modified strain of SHRs at a dose of 10 mg of recombinant
AHP3 (gene from the transplastomic strain; complete name: antihypertensive peptides 3)
protein per kg of body weight; the maximal decrease in blood pressure was observed 6 h
post-administration [56]. The peptide VHW achieved a 31 mmHg systolic blood pressure
drop at the end of the experiment, whereas lisinopril achieved a drop of only 10 mmHg
and TTW caused a maximal decrease in systolic blood pressure from 239 to 204 mmHg
at 2 h (p > 0.05). Both TTW and VHW from C. vulgaris also influenced diastolic blood
pressure (DBP), with TTW leading to a significant reduction in DBP from 180 to 140 mmHg
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at 2 h (p < 0.05) and VHW showing a decrease in DBP from 174 to 153 mmHg at 1 h
(p > 0.05) in SHRs at a dose of 5 mg/kg body weight, where these peptides were digested
in vitro and administered by gavage [55]. Protein hydrolysates from Bellerochea malleus
(B.‘malleus) were found to reduce blood pressure in SHRs by 17 mmHg after 5 days of oral
administration [93]. These findings indicate that proper application of microalgal peptides
has potential protective and therapeutic effects against hypertension.

6. Conclusions

Microalgae have great potential for the prevention and treatment of hypertension due
to excellent biological properties; they are easily cultured, possess low/no toxicity, and
do not require land use. Some have found applications in many health-related industries.
Microalgal peptides are effective ACE inhibitor peptides both in vivo and in vitro. The
ACE inhibitory effects of these peptides are becoming a popular research topic, as are ACE
inhibitor peptides from other food sources. Microalgal peptide activity may be determined
by many factors, such as the species of origin, inhibitory pattern, sequence of amino acids,
functional groups present, crystal structure, and molecular docking sites. In addition, these
peptides protect cells by improving their antioxidant and anti-inflammatory properties
through the regulation of physiological signaling pathways such as NF-κB, Nrf2, MAPK,
and Akt, which also contribute to the prevention, diagnosis, and treatment of hypertension
and its syndrome. However, knowledge of the structure-activity relationships of microalgal
peptides is still deficient, especially regarding contributions from other functional groups.
Future studies should focus on the bioactivity of microalgal peptides, the diversity of
microalgal biopeptides, the relationship between their higher-order structure and activity,
and additional mechanisms of molecular docking and interactions to achieve a better
understanding of their use in healthy food supplemental sources and drug design.
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