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Abstract

Despite extensive research efforts on diagnosis and treatment, pancreatic ductal adenocarcinoma 

(PDAC) remains a devastating disease and the third leading cause of cancer-related death in the 

United States. Resistance to current therapeutic approaches is a major reason for the poor survival 

of pancreatic patients. In order to overcome this major challenge and improve patient outcomes, 

we are in desperate need of novel therapeutic approaches. PDAC chemoresistance mechanisms are 

complex and multifaceted. Novel therapeutics must be equipped to deal with this challenge. 

microRNAs (miRNAs) have emerged as strong candidates to fill this role due to their 

multitargeted function. miRNAs have been shown to have important roles in pancreatic cancer 

resistance. In this review, we summarize the recent advancement in miRNA research related to 

PDAC therapeutic resistance mechanisms and the potential of miRNAs as therapeutic agents for 

future clinical management of PDAC.
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Background

In the past several decades we have made some great progress in treating several cancers; 

however, there is still much more that needs to be done to have a dramatic impact on patient 

survival. Pancreatic ductal adenocarcinoma (PDAC) in particular remains a considerable 

challenge. Several factors including typically late presentation, early metastasis, and 

resistance to chemotherapy, all contribute to PDAC being the third deadliest cancer in the 

United States.[1,2] While currently patients are typically treated with surgical resection, 

adjuvant chemotherapy, and radiotherapy, many patients experience postoperative 

recurrence.[3,4] For the past 20 years, gemcitabine has been the standard first-line 

chemotherapeutic used to treat pancreatic cancer.[5] Over this time, the efficacy of different 
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therapeutic regiments based around gemcitabine, have been tested including combination of 

gemcitabine with several other agents such as 5-fluorouracil (5-FU), oxaliplatin, cisplatin, 

and capecitabine.[6–9] Despite these efforts, the impact on patient survival has remained 

limited, due in part to the various resistance mechanism involved in PDAC cells. Some 

PDAC patients will have intrinsic resistance and never respond to therapy, while others will 

have acquired resistance that will develop during the course of treatment leading to 

recurrence.[10] Since resistance is such a major issue for treating PDAC patients, extensive 

research efforts have been aimed at understanding the mechanisms involved in PDAC 

chemoresistance. These efforts have demonstrated that PDAC chemoresistance is 

multifaceted. PDAC cells have altered expression of several important genes such as KRAS, 

p53, and BCL-2 among others. These cells also have changes in important signaling 

pathways such as Notch and Hedgehog.[10–13] Factors in the tumor microenvironment, 

secreted by tumor-associated fibroblasts, also contribute to resistance.[14–17] The presence of 

PDAC stem cells also contributes to resistance, as these cells have several characteristics that 

make them highly resistant to chemotherapy. These cells are slowly dividing, making them 

more resistant than rapidly dividing cells. These cells also have a very plastic nature, and 

altered metabolism that allows them to cope with the challenge of therapy.[18] The need for 

novel therapeutics is clear based on the poor survival for PDAC patients, only 3% for 

patients with metastatic disease.[1] The fact that various mechanism contribute to resistance 

makes microRNA (miRNA) an ideal candidate to combat this challenge as their 

multitargeted function may be more challenging for cancer cells to develop resistance.

miRNAs are short (18–22 nucleotides) noncoding RNAs that regulate gene expression by 

base pairing primarily to the 3′-untranslated region of target messenger RNA (mRNA) to 

inhibit translation or induce mRNA degradation. Each miRNA is able to target several 

different target genes, allowing them to inhibit the expression of a network of targets. 

Depending on the target genes they inhibit, miRNAs may promote cancer progression and 

resistance (onco-miRNAs) or inhibit progression and resistance (tumor suppressor 

miRNAs). In the past decade, it has become clear that miRNAs have important roles in all 

cancers including PDAC. We have also come to appreciate the potential for manipulating 

miRNAs for therapeutic intervention.[19]

miRNAs functions in PDAC resistance mechanisms

It is now understood that miRNAs have important functions in PDAC and dysregulation of 

their expression may play a role in cancer development as well as resistance. miRNAs 

regulate tumorigenesis, cell cycle control, apoptosis, proliferation, chemoresistance, 

invasion, and metastasis.[19] There are plenty of examples of the important functions 

miRNAs have in PDAC resistance. Some miRNAs promote chemoresistance in PDAC. 

miR-21 is one of the best characterized onco-miRs in many cancers. In PDAC high 

expression of miR-21 has been shown to inhibit the effectiveness of gemcitabine. High 

expression is also associated with shorter patient survival. These effects of miR-21 are a 

result of its targeting phosphatase and tensin homolog, and suppression of miR-21 results in 

cell cycle arrest, apoptosis, and enhanced sensitivity to chemotherapy.[20–22] In addition to 

miR-21, several other miRNAs have been shown to promote resistance in PDAC. miR-320a, 

promotes resistance to 5-FU in PDAC by targeting programmed cell death domain 4.[23] 
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miR-221–3p also increases PDAC resistance to 5-FU by targeting Retinoblastoma 1 (RB1). 

In addition to promoting chemoresistance, by targeting RB1 miR-221–3p promotes cell 

proliferation, migration invasion, and epithelial-to-mesenchymal transition (EMT).[24] 

miR-106a is another miRNA that promotes chemoresistance. In the case of miR-106a, it is 

expressed in exosomes from cancer-associated fibroblasts.[25] miR-155 also has 

chemoresistance-associated functions in PDAC involving exosomes. Gemcitabine treatment 

promotes miR-155 expression which induces increased production of exosomes and 

inhibition of apoptosis to promote resistance. miR-155 is also packaged in exosomes 

promoting resistance in nearby cells.[26] In PDAC stem cells, the miR-30 family promotes 

invasion and migration.[27]

While there are many miRNAs that promote resistance in PDAC, there are also many other 

miRNAs that enhance PDAC chemosensitivity. Typically, expression of these miRNA is 

reduced in PDAC and restoration of their expression helps to combat chemoresistance. 

miR-34 is a well-studied tumor suppressor miRNA that is regulated by p53. In PDAC loss of 

miR-34 is associated with enrichment of stem like cells, while restoration of miR-34 inhibits 

growth and enhances sensitivity to gemcitabine.[28,29] Similar to miR-34, miR-205 has also 

been shown to inhibit PDAC stem cells and promote sensitivity to gemcitabine.[30] Various 

studies have also shown that the miR-200 as well as the let-7 family are reduced in 

gemcitabine resistant cells and expression of these miRNAs promote chemosensitivity.[31] 

Several groups have also demonstrated the importance of miR-506 in combating 

chemoresistance in PDAC. Through the regulation of several different targets, miR-506 

promotes apoptosis, induces cell cycle arrest and enhances chemosensitivity.[32,33] miR-15a 

is another miRNA with important roles in PDAC resistance. miR-15a suppresses the growth 

of chemoresistant PDAC cells and inhibits EMT by targeting WNT3A, FGF7 as well as 

BMI-1.[34,35] These are just some examples of the important functions of miRNAs in PDAC 

resistance (Table 1). Clearly depending on the miRNA, it may either help to promote or 

combat resistance. Either by inhibiting onco-miRs or reintroducing tumor suppressor 

miRNAs, we can leverage these functions for therapeutic effects.

Therapeutic potential of miRNAs in PDAC

There are several strategies to develop miRNA-based therapeutics in PDAC. One is to 

suppress onco-miRNAs via antisense or antagomir-based approaches, the other is to restore 

and replace tumor suppressor miRNAs.[36] Because miRNA can impact of multiple targets 

and pathways, miRNA-based therapy will have a potential to overcome the complex 

resistance mechanism in cancer.[37] However, with regard to the therapeutic development, 

there are several major hurdles (e.g., delivery and poor pharmacokinetics) that needs to be 

overcome.[38] A number of strategies have been developed to overcome such hurdles. 

Various nano-vehicles and nanoparticles have been developed and tested.[39–41] However, 

many of these delivery vehicles cause host toxicity. Various improvements have also been 

developed to enhance stability of anti-miR by modification of the backbone with 2′-O-

methyl group, phosphothioate, or with the locked nucleic acid.[42]

We have recently developed a novel miRNA replacement strategy by integrating the 

therapeutic power of chemotherapeutic agents such as 5-FU with tumor suppressor miRNAs 
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in PDAC. It is not just a simple combination of 5-FU with tumor suppressor miR, as 5-FU 

alone can still have major side effects in patients, but rather, we incorporate 5-FU into tumor 

suppressor miR by replacing Uracil (U) with 5-FU in the guide strand. We initially 

developed this approach using miR-129 and miR-15a in colon cancer.[43,44] By 

incorporating 5-FU into miR-129 and miR-15a, we created a potent new miRNA-based drug 

with the power of tumor suppressive function of miRNA together with 5-FU (Fig. 1). We 

demonstrated these modified miNRA have some unique features such as enhanced stability 

and potency, with no observed host toxicity. 5-FU-modified miRNA can also be delivered to 

tumor cells vehicle free. This is a major advancement that may help to overcome the 

bottleneck of delivery that hampers nucleic acid-based therapeutics.

Our recent studies demonstrated miR-15a functions as a tumor suppressor in PDAC in vitro 
by inhibiting cell proliferation and impacts cell cycle control.[45] We have demonstrated that 

5-FU-modified miR-15a is a potent inhibitor for PDAC both in vitro and in vivo and 

improves survival, either alone or in combination with gemcitabine. The effects of miR-15a 

are mediated through the regulation of several important target genes (Wee1, checkpoint 

kinase 1 [Chk1], BMI-1, and Yap-1). All of these targets are elevated in PDAC and many are 

good target candidates for therapeutic development in PDAC. B lymphoma Mo-MLV 

insertion region 1 is an oncogene associated with poor prognosis.[46,47] Yes-associated 

protein 1 is crucial in promoting pancreatic tumorigenesis as well as invasion, migration, and 

chemosensitivity.[48–50] Wee1 and Chk1 are 2 key G2/M checkpoint regulators, which can 

affect Cdc2 activity.[51,52] These targets have been recognized as candidates for therapeutic 

development by the pharmaceutical industry.[51,53,54] The regulation of all of these 

important targets combined with the effectiveness of the 5-FU incorporation makes 5-FU-

modified miR-15a an intriguing candidate for PDAC therapy.

In addition to reintroducing tumor suppressor miRNAs, suppression of onco-miRNAs also 

has potential. By inhibiting these miRNAs expression of their target genes can be restored 

which may have therapeutic effects. A recent study has demonstrated the potential of anti-

miR-21. Delivery of antimiR-21 was shown to be effective in patient derived PDAC 

organoids and patient derived xenograft models using tandem peptide pTP-iRGD.[55]

Conclusion

There are many mechanism that contribute to both the intrinsic and acquired resistance seen 

in PDAC. The adaptive nature of these cells makes overcoming resistance a moving target. 

This is highlighted by the fact that efforts focusing on single protein coding targets have 

yielded little progress on PDAC drug development in the past decades. In the face of this 

challenge, miRNA therapeutics may be excellent therapeutic candidates. Their ability to 

quickly modulate the expression of multiple targets gives them the unique ability to regulate 

several pathways at once. This should make it more difficult for cells to adapt and overcome 

miRNA therapy. As a result, a number of miRNAs have shown great potential as novel 

therapeutics in PDAC. With advancement in miRNA research and therapeutic development, 

we expect that tumor suppressive miRNAs, including 5-FUmodified miRNAs will allow us 

to better manage clinical treatment and enhance survival and minimize toxicity for PDAC 

patients.

Fesler and Ju Page 4

J Pancreatol. Author manuscript; available in PMC 2020 March 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments

The authors apologize to those whose work has not been included in this review due to scope and space limitations. 
This study was supported, in part, by the National Institute of Health/ National Cancer Institute R01CA15501904 
(JJ).

References

[1]. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019;69:7–34. 
[PubMed: 30620402] 

[2]. Li D, Xie K, Wolff R, et al. Pancreatic cancer. Lancet 2004;363:1049–1057. [PubMed: 15051286] 

[3]. Wagner M, Redaelli C, Lietz M, et al. Curative resection is the single most important factor 
determining outcome in patients with pancreatic adenocarcinoma. Br J Surg 2004;91:586–594. 
[PubMed: 15122610] 

[4]. Matsuno S, Egawa S, Fukuyama S, et al. Pancreatic cancer registry in Japan: 20 years of 
experience. Pancreas 2004;28:219–230. [PubMed: 15084961] 

[5]. Burris HA 3rd, Moore MJ, Andersen J, et al. Improvements in survival and clinical benefit with 
gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J 
Clin Oncol 1997;15:2403–2413. [PubMed: 9196156] 

[6]. Berlin JD, Catalano P, Thomas JP, et al. Phase III study of gemcitabine in combination with 
fluorouracil versus gemcitabine alone in patients with advanced pancreatic carcinoma: Eastern 
Cooperative Oncology Group Trial E2297. J Clin Oncol 2002;20:3270–3275. [PubMed: 
12149301] 

[7]. Heinemann V, Quietzsch D, Gieseler F, et al. Randomized phase III trial of gemcitabine plus 
cisplatin compared with gemcitabine alone in advanced pancreatic cancer. J Clin Oncol 
2006;24:3946–3952. [PubMed: 16921047] 

[8]. Louvet C, Labianca R, Hammel P, et al. Gemcitabine in combination with oxaliplatin compared 
with gemcitabine alone in locally advanced or metastatic pancreatic cancer: results of a 
GERCOR and GISCAD phase III trial. J Clin Oncol 2005;23:3509–3516. [PubMed: 15908661] 

[9]. Herrmann R, Bodoky G, Ruhstaller T, et al. Gemcitabine plus capecitabine compared with 
gemcitabine alone in advanced pancreatic cancer: a randomized, multicenter, phase III trial of the 
Swiss Group for Clinical Cancer Research and the Central European Cooperative Oncology 
Group. J Clin Oncol 2007;25:2212–2217. [PubMed: 17538165] 

[10]. Wang Z, Li Y, Ahmad A, et al. Pancreatic cancer: understanding and overcoming 
chemoresistance. Nat Rev Gastroenterol Hepatol 2011;8:27–33. [PubMed: 21102532] 

[11]. Drakaki A, Iliopoulos D. MicroRNA-gene signaling pathways in pancreatic cancer. Biomed J 
2013;36:200–208. [PubMed: 24225187] 

[12]. Yu S, Lu Z, Liu C, et al. miRNA-96 suppresses KRAS and functions as a tumor suppressor gene 
in pancreatic cancer. Cancer Res 2010;70:6015–6025. [PubMed: 20610624] 

[13]. Pai P, Rachagani S, Are C, et al. Prospects of miRNA-based therapy for pancreatic cancer. Curr 
Drug Targets 2013;14:1101–1109. [PubMed: 23834151] 

[14]. Jacobetz MA, Chan DS, Neesse A, et al. Hyaluronan impairs vascular function and drug delivery 
in a mouse model of pancreatic cancer. Gut 2013;62:112–120. [PubMed: 22466618] 

[15]. Provenzano PP, Cuevas C, Chang AE, et al. Enzymatic targeting of the stroma ablates physical 
barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 2012;21:418–429. 
[PubMed: 22439937] 

[16]. Rhim AD, Oberstein PE, Thomas DH, et al. Stromal elements act to restrain, rather than support, 
pancreatic ductal adenocarcinoma. Cancer Cell 2014;25:735–747. [PubMed: 24856585] 

[17]. Biffi G, Oni TE, Spielman B, et al. IL1-induced JAK/STAT signaling is antagonized by TGFbeta 
to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov 2019;9:282–
301. [PubMed: 30366930] 

[18]. Biancur DE, Kimmelman AC. The plasticity of pancreatic cancer metabolism in tumor 
progression and therapeutic resistance. Biochim Biophys Acta Rev Cancer 2018;1870:67–75. 
[PubMed: 29702208] 

Fesler and Ju Page 5

J Pancreatol. Author manuscript; available in PMC 2020 March 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[19]. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281–297. 
[PubMed: 14744438] 

[20]. Giovannetti E, Funel N, Peters GJ, et al. MicroRNA-21 in pancreatic cancer: correlation with 
clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine 
activity. Cancer Res 2010;70:4528–4538. [PubMed: 20460539] 

[21]. Park JK, Lee EJ, Esau C, et al. Antisense inhibition of microRNA-21 or −221 arrests cell cycle, 
induces apoptosis, and sensitizes the effects of gemcitabine in pancreatic adenocarcinoma. 
Pancreas 2009;38:e190–e199. [PubMed: 19730150] 

[22]. Hwang JH, Voortman J, Giovannetti E, et al. Identification of microRNA-21 as a biomarker for 
chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer. 
PLoS One 2010;5:e10630. [PubMed: 20498843] 

[23]. Wang W, Zhao L, Wei X, et al. MicroRNA-320a promotes 5-FU resistance in human pancreatic 
cancer cells. Sci Rep 2016;6:27641. [PubMed: 27279541] 

[24]. Zhao L, Zou D, Wei X, et al. MiRNA-221–3p desensitizes pancreatic cancer cells to 5-
fluorouracil by targeting RB1. Tumour Biol 2016; 37:16053–16063.

[25]. Fang Y, Zhou W, Rong Y, et al. Exosomal miRNA-106b from cancer-associated fibroblast 
promotes gemcitabine resistance in pancreatic cancer. Exp Cell Res 2019;383:111543. [PubMed: 
31374207] 

[26]. Mikamori M, Yamada D, Eguchi H, et al. MicroRNA-155 controls exosome synthesis and 
promotes gemcitabine resistance in pancreatic ductal adenocarcinoma. Sci Rep 2017;7:42339. 
[PubMed: 28198398] 

[27]. Tsukasa K, Ding Q, Miyazaki Y, et al. miR-30 family promotes migratory and invasive abilities 
in CD133(+) pancreatic cancer stem-like cells. Hum Cell 2016;29:130–137. [PubMed: 
26965588] 

[28]. Rokhlin OW, Scheinker VS, Taghiyev AF, et al. MicroRNA-34 mediates AR-dependent p53-
induced apoptosis in prostate cancer. Cancer Biol Ther 2008;7:1288–1296. [PubMed: 18497571] 

[29]. Ji Q, Hao X, Zhang M, et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-
initiating cells. PLoS One 2009;4:e6816. [PubMed: 19714243] 

[30]. Chaudhary AK, Mondal G, Kumar V, et al. Chemosensitization and inhibition of pancreatic 
cancer stem cell proliferation by overexpression of microRNA-205. Cancer Lett 2017;402:1–8. 
[PubMed: 28536008] 

[31]. Li Y, VandenBoom TG 2nd, Kong D, et al. Up-regulation of miR-200 and let-7 by natural agents 
leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic 
cancer cells. Cancer Res 2009;69:6704–6712. [PubMed: 19654291] 

[32]. Li J, Wu H, Li W, et al. Downregulated miR-506 expression facilitates pancreatic cancer 
progression and chemoresistance via SPHK1/Akt/NF-kappaB signaling. Oncogene 
2016;35:5501–5514. [PubMed: 27065335] 

[33]. Du J, Zheng X, Cai S, et al. MicroRNA-506 participates in pancreatic cancer pathogenesis by 
targeting PIM3. Mol Med Rep 2015;12:5121–5126. [PubMed: 26238203] 

[34]. Zhang XJ, Ye H, Zeng CW, et al. Dysregulation of miR-15a and miR-214 in human pancreatic 
cancer. J Hematol Oncol 2010;3:46. [PubMed: 21106054] 

[35]. Guo S, Xu X, Tang Y, et al. miR-15a inhibits cell proliferation and epithelial to mesenchymal 
transition in pancreatic ductal adenocarcinoma by down-regulating Bmi-1 expression. Cancer 
Lett 2014;344: 40–46. [PubMed: 24252251] 

[36]. Fesler A, Guo S, Liu H, et al. Overcoming chemoresistance in cancer stem cells with the help of 
microRNAs in colorectal cancer. Epigenomics 2017;9:793–796. [PubMed: 28517961] 

[37]. Fesler A, Liu H, Wu N, et al. Autophagy regulated by miRNAs in colorectal cancer progression 
and resistance. Cancer Transl Med 2017;3:96–100. [PubMed: 28748218] 

[38]. Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies and 
challenges. Nat Rev Drug Discov 2010;9:775–789. [PubMed: 20885409] 

[39]. Rai K, Takigawa N, Ito S, et al. Liposomal delivery of microRNA-7-expressing plasmid 
overcomes epidermal growth factor receptor tyrosine kinase inhibitor-resistance in lung cancer 
cells. Mol Cancer Ther 2011;10:1720–1727. [PubMed: 21712475] 

Fesler and Ju Page 6

J Pancreatol. Author manuscript; available in PMC 2020 March 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[40]. Griveau A, Bejaud J, Anthiya S, et al. Silencing of miR-21 by locked nucleic acid-lipid 
nanocapsule complexes sensitize human glioblastoma cells to radiation-induced cell death. Int J 
Pharm 2013;454: 765–774. [PubMed: 23732394] 

[41]. Yang YP, Chien Y, Chiou GY, et al. Inhibition of cancer stem cell-like properties and reduced 
chemoradioresistance of glioblastoma using microRNA145 with cationic polyurethane-short 
branch PEI. Biomaterials 2012;33:1462–1476. [PubMed: 22098779] 

[42]. Pecot CV, Calin GA, Coleman RL, et al. RNA interference in the clinic: challenges and future 
directions. Nat Rev Cancer 2011;11:59–67. [PubMed: 21160526] 

[43]. Wu N, Fesler A, Liu H, et al. Development of novel miR-129 mimics with enhanced efficacy to 
eliminate chemoresistant colon cancer stem cells. Oncotarget 2018;9:8887–8897. [PubMed: 
29507661] 

[44]. Fesler A, Liu H, Ju J. Modified miR-15a has therapeutic potential for improving treatment of 
advanced stage colorectal cancer through inhibition of BCL2, BMI1, YAP1 and DCLK1. 
Oncotarget 2018;9: 2367–2383. [PubMed: 29416778] 

[45]. Guo S, Fesler A, Huang W, et al. Functional significance and therapeutic potential of mir-15a 
mimic in pancreatic ductal adenocarcinoma. Cold Spring Harbor Lab bioRxiv 2019;716738.

[46]. Wu C, Zheng X, Li X, et al. Reduction of gastric cancer proliferation and invasion by miR-15a 
mediated suppression of Bmi-1 translation. Oncotarget 2016;7:14522–14536. [PubMed: 
26894855] 

[47]. Wang MC, Li CL, Cui J, et al. BMI-1, a promising therapeutic target for human cancer. Oncology 
Lett 2015;10:583–588.

[48]. Wang P, Wei D, Zhang H, et al. PKCι and YAP1 are crucial in promoting pancreatic 
tumorigenesis. Oncotarget 2018;9:32736–32750. [PubMed: 30214681] 

[49]. Kapoor A, Yao W, Ying H, et al. Yap1 activation enables bypass of oncogenic Kras addiction in 
pancreatic cancer. Cell 2014;158:185–197. [PubMed: 24954535] 

[50]. Gruber R, Panayiotou R, Nye E, et al. YAP1 and TAZ control pancreatic cancer initiation in mice 
by direct up-regulation of JAK-STAT3 signaling. Gastroenterology 2016;151:526–539. [PubMed: 
27215660] 

[51]. Chung S, Vail PJ, Witkiewicz AK, et al. Coordinately targeting cell cycle checkpoint functions in 
integrated models of pancreatic cancer. Clin Cancer Res 2019;25:2290–2304. [PubMed: 
30538111] 

[52]. Parsels LA, Parsels JD, Tanska DM, et al. The contribution of DNA replication stress marked by 
high-intensity, pan-nuclear γH2AX staining to chemosensitization by CHK1 and WEE1 
inhibitors. Cell Cycle 2018;17:1076–1086. [PubMed: 29895190] 

[53]. Pilie PG, Tang C, Mills GB, et al. State-of-the-art strategies for targeting the DNA damage 
response in cancer. Nat Rev Clin Oncol 2019;16:81–104. [PubMed: 30356138] 

[54]. Rajeshkumar NV, De Oliveira E, Ottenhof N, et al. MK-1775, a potent Wee1 inhibitor, synergizes 
with gemcitabine to achieve tumor regressions, selectively in p53-deficient pancreatic cancer 
xenografts. Clin Cancer Res 2011;17:2799–2806. [PubMed: 21389100] 

[55]. Gilles ME, Hao L, Huang L, et al. Personalized RNA medicine for pancreatic cancer. Clin Cancer 
Res 2018;24:1734–1747. [PubMed: 29330203] 

Fesler and Ju Page 7

J Pancreatol. Author manuscript; available in PMC 2020 March 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
5-FU-miR-15a combined the tumor suppressive effects of miR-15a with those of 5-FU. 5-

FU-miR-15a is incorporated into the RISC complex resulting in suppression of miR-15a’s 

target genes, Wee1, Chk1, BMI-1, and Yap-1. Suppression of these targets induces cell cycle 

arrest, apoptosis, and suppresses EMT. When the 5-FU-mIR-15a breaks down 5-FU is 

released which will lead to DNA damage and cell death. In addition the modification of the 

miRNA may have some novel effects resulting from the unique modification as well as its 

breakdown products. Chk1 = checkpoint kinase 1, EMT = epithelial-to-mesenchymal 

transition, 5-FU = 5-fluorouracil, miRNA = microRNA, RISC = RNA-induced silencing 

complex.
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