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Abstract: Background: Species with ‘young’ or nascent sex chromosomes provide unique opportuni-
ties to understand early evolutionary mechanisms (e.g. accumulation of repetitive sequences, cessation 
of recombination and gene loss) that drive the evolution of sex chromosomes. Among vertebrates, 
fishes exhibit highly diverse and a wide spectrum of sex-determining mechanisms and sex chromo-
somes, ranging from cryptic to highly differentiated ones, as well as, from simple to multiple sex 
chromosome systems. Such variability in sex chromosome morphology and composition not only ex-
ists within closely related taxa, but often within races/populations of the same species. Inside this con-
text, the wolf fish Hoplias malabaricus offers opportunity to investigate the evolution of morphologi-
cally variable sex chromosomes within a species complex, as homomorphic to highly differentiated 
sex chromosome systems occur among its different karyomorphs.  
Materials & Methods: To discover various evolutionary stages of sex chromosomes and to compare 
their sequence composition among the wolf fish´s karyomorphs, we applied multipronged molecular 
cytogenetic approaches, including C-banding, repetitive DNAs mapping, Comparative Genomic Hy-
bridization (CGH) and Whole Chromosomal Painting (WCP). Our study was able to characterize a 
cryptically differentiated XX/XY sex chromosome system in the karyomorph F of this species. 
Conclusion: The Y chromosome was clearly identified by an interstitial heterochromatic block on the 
short arms, primarily composed of microsatellite motifs and retrotransposons. Additionally, CGH also 
identified a male specific chromosome region in the same chromosomal location, implying that the 
accumulation of these repeats may have initiated the Y chromosome differentiation, as well as played 
a critical role towards the evolution and differentiation of sex chromosomes in various karyomorphs of 
this species. 

Keywords: Fish, Early XY differentiation, Comparative genomic hybridization, Whole chromosome painting, Repetitive 
DNAs, Sex chromosomes. 

1. INTRODUCTION 

 Sex chromosomes evolve from an autosomal pair, 
when one chromosome acquired a sex determining locus 
[1, 2]. This process involves the accumulation of constitu-
tive heterochromatin and/or the occurrence of structural 
changes (e.g. chromosomal inversions or translocations) 
leading to the suppression of recombination between the 
homologous chromosomes [3]. This evolutionary process 
can be better explored among lower vertebrates where 
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the sex chromosomes exist either in incipient or in advanced 
forms.  
 Notably, fishes exhibit the widest spectrum of sex-
determining modes among vertebrates, ranging from envi-
ronmental sex determination to a variety of chromosomal sex 
determining systems [4-8]. Neotropical fish species display 
diverse patterns of sex chromosome differentiation, ranging 
from simple to highly reorganized multiple sex chromo-
somes [9, 10], representing both XX/XY and ZZ/ZW sex 
systems. The Erythrinidae family (Teleostei, Characiformes) 
represents an ideal model group to understand the evolution 
of sex chromosomes, since different evolutionary stages, 
from cryptic to highly differentiated ones, can occur among 
closely related species (Fig. 1). Heteromorphic sex chromo-
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somes in these species are hypothesized to be achieved by 
accumulation of heterochromatin and repetitive DNA se-
quences [10]. 
 This family is composed by three genera, Hoplias, 
Hoplerythrinus and Erythrinus, being widespread throughout 
South America and presenting huge karyotype diversity 
among different populations of the same species, comprising 
distinct karyomorphs [11, 12]. Previous studies demonstrated 
that some karyomorphs of E. erythrinus and H. malabaricus 
have heteromorphic sex chromosomes, while others have 
undifferentiated ones (Fig. 1). 
 In particular, the H. malabaricus species complex not 
only has simple sex chromosomes with various evolutionary 
stages of differentiation, but also has multiple sex chromo-
somes. This species complex is composed of seven karyo-
morphs (A - G) with 2n ranging from 39 to 42 chromosomes, 
with four sex chromosome types already identified (Fig. 1). 
The karyomorphs A and E do not show noticeably differen-
tiated sex chromosomes [11]. In contrast, a well-
differentiated XY sex system is present in karyomorph B 
[13] and a cryptically differentiated one is found in karyo-
morph C [14], while XY multiple systems (X1X2Y and 
XY1Y2) occur in karyomorphs D and G, respectively [11]. In 
karyomorph F a discrete heterochromatic block was previ-
ously highlighted in one of the homologues of the pair 1, 
characterized as the largest chromosome in H. malabaricus, 
signaling a probable sex pair [15]. Indeed, the accumulation 
of heterochromatin and repetitive DNA sequences played an 
important role in the differentiation of the X chromosome in 
the karyomorphs B and C [14, 16]. 
 In this study, we applied differential cytogenetic meth-
ods, such as C-banding, repetitive DNAs mapping, CGH and 
WCP to deeply investigate the occurrence of nascent sex 
chromosomes in the karyomorph F. These procedures have 
been applied successfully to unveil the mechanisms involved 
in the evolution of sex chromosomes even in early stages of 
differentiation [17-20]. Combinations of these techniques 

allowed us to identify a cryptic XX/XY sex chromosome 
system in karyomorph F involving the largest chromosomal 
pair. The X and Y chromosomes differ only slightly by the 
interstitial heterochromatic block present in the short arms of 
the nascent Y chromosome. We highlighted the possible 
roles of repetitive DNA accumulation in triggering the evo-
lutionary process of the sex chromosomes differentiation. 

2. MATERIAL AND METHODS 

2.1. Specimens, Chromosome Preparations, DNA Sam-
ples and C-banding 

 Twenty females and 21 males of H. malabaricus belong-
ing to karyomorph F were collected from the São Francisco 
River (Três Marias, Minas Gerais State, Brazil) and from the 
Crixás-Açú River (Crixás, Goiás State, Brazil) under appro-
priate authorization of the Brazilian environmental agency 
ICMBIO/SISBIO (License number 48628-2). The specimens 
were deposited in the fish collection of the Cytogenetic 
Laboratory, Departamento de Genética e Evolução, Univer-
sidade Federal de São Carlos. Mitotic chromosomes were 
obtained by following protocols described in [21]. The ex-
periments followed ethical and anesthesia conducts, in ac-
cordance with the Ethics Committee on Animal Experimen-
tation of the Universidade Federal de São Carlos (Process 
number CEUA 1853260315). The C-positive heterochro-
matin was detected using barium hydroxide protocol accord-
ing to [22]. Genomic DNA from male and female specimens 
was extracted according to standard phenol-chloroform pro-
cedures [23].  

2.2. Probes for Chromosome Hybridization 

 A total of 17 repetitive DNA sequences, including: three 
multigene families (U2 snDNA, 5S and 18S rDNAs), one 
satellite DNA (5SHindIII-DNA), one transposable element 
(Rex 1), a telomeric (TTAGGG)n and 11 microsatellite re-
peat motifs, were used as probes. 

 
Fig. (1). Overview of the different sex chromosome systems present in the Erythrinidae family. Data from [11, 13, 14] and present paper. 
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 Oligonucleotide probes containing microsatellite se-
quences (A)30, (C)30, (CA)15, (GA)15, (GC)15, (TA)15, 
(CAT)10, (CAC)10, (CGG)10, (GAA)10 and (GAG)10, were 
directly labelled with Cy5 during synthesis by Sigma (St. 
Louis, MO, USA), according to [24]. Telomeric (TTAGGG)n 
sequences were generated by PCR using (TTAGGG)5 and 
(CCCTAA)5 as primers, without DNA as template, accord-
ing to [25]. These sequences were directly labelled with 
Spectrum Green-dUTP by nick translation, according to the 
manufacturer’s recommendations (Roche, Mannheim, Ger-
many). 
 All the other repeats were isolated from the H. malabari-
cus genome. The 5S rDNA probe corresponded to copies of 
120 base pair (bp) of the 5S rRNA encoding gene and 200 bp 
of the non-transcribed spacer (NTS) [26]. The 5SHindIII-
DNA probe, which is a copy of repetitive satellite sequences 
with 360 bp, is composed of a 95-bp segment with similarity 
to the 5S rRNA gene and a 265-bp segment similar to the 
NTS [26]. The 18S rRNA probe containing copies of a 1,400 
bp-segment of the 18S rRNA gene was obtained via PCR 
from nuclear DNA [27]. The retrotransposable element Rex 1 
was obtained using primers described in [28]. The U2 
snDNA sequence was produced by PCR, according to [29], 
using primers derived from the U2 coding sequences of sev-
eral model organisms available in Genbank [30]. All these 
probes were directly labeled with Spectrum Orange-dUTP 
by nick translation (Roche, Mannheim, Germany), with the 
exception of 5S rDNA, that was labelled with Spectrum 
Green-dUTP also by nick translation (Roche, Mannheim, 
Germany). 

2.3. Fluorescence In Situ Hybridization (FISH) for Re-
petitive DNA Mapping 

 Fluorescence In Situ Hybridization (FISH) was per-
formed under high stringency conditions on metaphase 
chromosome spreads as described in [31]. The chromosome 
slides were incubated with RNAse (40 µg/ml) for 1.5 h at 
37°C. After denaturation of the chromosomal DNA in 70% 
formamide/2x SSC at 70°C, spreads were dehydrated in 
ethanol series (70, 85 and 100%), 2 min each. 20 µl of the 
hybridization mixture (2.5 ng/µl probes, 2 µg/µl salmon 
sperm DNA, 50% deionized formamide, 10% dextran sul-
phate) were dropped on the slides, and the hybridization was 
performed for 14 h at 37°C in a moist chamber containing 2x 
SSC. The post-hybridization wash was carried out with 1x 
SSC for 5 min at 65oC. A final wash was performed at room 
temperature in 4x SSC for 5 min. Finally, the chromosomes 
were counterstained with DAPI (1.2 µg/ml) and mounted in 
antifade solution (Vector, Burlingame, CA, USA). 

2.4. Chromosomal Microdissection, Probes Preparation 
and Labelling 

 Two distinct chromosomes were microdissected and used 
for the preparation of probes for chromosome painting. For 
this, 16 copies of the X chromosome of H. malabaricus 
(karyomorph B - XY system) and 18 copies of the largest 
chromosome pair (No 1) of H. malabaricus (karyomorph F) 
were microdissected, using the methodology described in 
[32]. We refer to these probes as HMA-X and HMA-1, re-
spectively. The HMA-X probe was labelled via PCR with 
Spectrum Green-dUTP (Vysis, Downers Grove, USA) and 

the HMA-1 probe with Spectrum Orange-dUTP (Vysis, 
Downers Grove, USA) in a 30 cycle label-PCR with DOP 
primer, using 1 µl of the primary DOP-PCR products as 
template DNA, according to [32].  

2.5. FISH for Whole Chromosome Painting (WCP) 

 Chromosomal preparations of males and females of the 
H. malabaricus (karyomorph F) were used for the FISH ex-
periment, combining HMA-X and HMA-1 probes, according 
to [32]. To block the hybridization of high-copy repeat se-
quences, 50 µg of C0t1-DNA directly isolated from H. 
malabaricus male genome was used prepared according to 
[33]. Hybridization was performed for 16-18 h at 37°C in a 
moist chamber. The post-hybridization wash was carried out 
with 1x SSC for 5 min at 65ºC, and in 4x SSC/Tween using 
a shaker at RT and then rinsed quickly in 1x PBS. Subse-
quently, the slides were dehydrated in an ethanol series (70, 
85 and 100%), 2 min each. Finally, the chromosomes were 
counterstained with DAPI (1.2 µg/ml) and mounted in anti-
fade solution (Vector, Burlingame, CA, USA). 

2.6. Preparation of Probes for Comparative Genome Hy-
bridization (CGH) 

 For each probe, 1 µg of gDNA was used in the labeling 
procedure. The female gDNA was labeled with Digoxigenin-
11-dUTP using DIG-nick-translation Mix (Roche, Mann-
heim, Germany), and the male gDNA was labeled with bio-
tin-16-dUTP using BIO-nick-translation Mix (Roche). The 
hybridization solution for each slide (25 µl) was composed 
of 1 µg of male-specific labelled gDNA, 1 µg of female-
specific labelled gDNA and 50 µg of C0t1-DNA directly 
isolated from H. malabaricus female genome, prepared ac-
cording to [33]. 

2.7. FISH for CGH 

 The CGH experiments were performed according to [34]. 
The hybridization signal was detected with anti-digoxigenin-
Rhodamin (Roche) diluted in 0.5% bovine serum albumin 
(BSA) in PBS; and avidin-FITC (Sigma) diluted in PBS con-
taining 10% normal goat serum (NGS). The final washes 
were performed at 42°C in 4× SSC and 0.01% Tween, 7 min 
each for 3 times. Finally, the chromosomes were counter-
stained with DAPI (1.2 µg/ml) and mounted in antifade solu-
tion (Vector, Burlingame, CA, USA). 

2.8. Microscopic Analyses 

 At least 30 metaphase spreads per individual were ana-
lyzed to confirm the 2n, karyotype structure and FISH re-
sults. Images were captured using an Olympus BX50 micro-
scope (Olympus Corporation, Ishikawa, Japan) with 
CoolSNAP and the images processed using Image Pro Plus 
4.1 software (Media Cybernetics, Silver Spring, MD, USA). 
Chromosomes were classified as metacentric (m) and sub-
metacentric (sm), according to their arm ratios [35]. 

3. RESULTS 

3.1. Karyotypes and C-banding 

 All specimens have 2n=40 chromosomes (10 m+10 sm) 
in both sexes. The large-sized metacentric pair (pair no. 1) 
constitutes a distinctive feature of the karyotype, represent-
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ing the largest chromosome known for all H. malabaricus 
karyomorphs. C-positive heterochromatic bands are located 
in the centromeric regions, in addition to faint telomeric 
marks in some chromosomal pairs. However, C-banded male 
karyotypes always show an interstitial heterochromatic block 
in the short arms of one homologue of the first chromosome 
pair, whereas females lack this block, identifying the Y 
chromosome and the presence of a nascent XX/XY sex 
chromosome system in karyomorph F (Fig. 2), corroborating 
the findings of [15]. However, despite the presence of this 
exclusive heterochromatic block on the Y chromosome, both 
X and Y chromosomes are identical in size. For conven-
ience, these chromosomes were named as XY chromosomes 
for the description of the following results. 

3.2. Chromosomal Mapping of Repetitive DNAs 

 The 5S rDNA probe hybridized near the interstitial re-
gion of the long arms of only one chromosome pair, while 
18S rDNA sites are found in four other pairs, including sin-
gle and bi-telomeric sites. 5SHindIII satellite DNA is located 
in the centromeric regions of 10 chromosome pairs in both 
male and females (Fig. 3). No hybridization signals of theses 
repetitive DNAs were observed on the X and Y chromo-
somes (Fig. 3). These findings are in agreement with previ-
ous studies [36]. 
 FISH with telomeric probe (TTAGGG)n hybridized on 
the telomeres of all chromosomes, however, no Interstitial 
Telomeric Sites (ITS) are detected. The U2 snRNA shows 
dispersed hybridization signals distributed widely across the 
whole chromosomal complement, including euchromatic and 
heterochromatic regions. This same pattern is also observed 
for the retrotransposon Rex 1, except some localized dense 
accumulation on the terminal region of five pairs of chromo-
somes (Fig. 3).  
 Variable patterns of hybridization signals were observed 
for microsatellite motifs-some discrete while others distrib-

uted uniformly along all chromosomes. For example, the 
(GA)n and (CA)n microsatellites provide a rich banding pat-
tern in the subtelomeric region along almost all chromo-
somes, while (A)n, (C)n, (GC)n, (TA)n, (CGG)n, (GAA)n and 
(GAG)n provide strong dispersed signals across the entire 
length of all chromosomes, highlighting their widespread 
presence in the genome (Figs. 3 and 4). Microsatellites 
(CAT)n and (CAC)n present an intermediate pattern, having 
spread signals across the entire length of all chromosomes, 
together with a rich banding pattern in the subtelomeric re-
gion of some of them (Fig. 4).  
 However, several microsatellite motifs [(A)n, (CAT)n, 
(CAC)n, (CGG)n and (GAA)n] and the Rex1 sequence 
showed Y specific amplification, being accumulated in the 
exclusive heterochromatic block, unlike the pattern found on 
the X chromosome (Fig. 5). 

3.3. Comparative Genomic Hybridization (CGH) 

 Remarkably, CGH experiments were able to show male 
specific sequences on the short arms of the Y chromosome 
(Fig. 6). All the remaining male chromosomes were uni-
formly stained with both gDNA probes, highlighting the 
centromeric region of all chromosomes and the telomeric 
region of several pairs. Additionally, with the male-specific 
gDNA probe, the Y chromosome stood out with an intersti-
tial signal on its short arms. Sequences from male and fe-
males are shared in all chromosomes, with clear accumula-
tion of male sequences on the Yp (Fig. 6e).  

3.4. Whole Chromosome Painting (WCP) with HMA-X 
and HMA-1 Probes 

 The HMA-1 probe hybridized completely to the largest 
chromosomal pair in both females (XX) and males (XY), 
while the HMA-X probe hybridized to 2 other sm chromo-
somes in both sexes (Fig. 7). 

 
Fig. (2). Male (a) and female (b) karyotypes of Hoplias malabaricus (karyomorph F) under conventional Giemsa staining (left) and C-
banding (right). In (c), distinct chromosome pairs no. 1 showing a conspicuous C-positive block in one of the homologues present only in 
males but not in females, identifying a cryptically Y chromosome and thus an XY sex chromosome system. Scale bar represents 5 µm. 
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Fig. (3). Male and female metaphase plates of Hoplias malabaricus (karyomorph F) showing the overall distribution of various repetitive 
sequences on the chromosomes. Arrows indicate Y specific signals. Scale bar represents 5 µm. 

 

 
Fig. (4). Male and female metaphase plates of Hoplias malabaricus (karyomorph F) showing the overall distribution of various microsatel-
lites repeats on the chromosomes. Arrows indicate Y specific signals. Scale bar represents 5 µm. 
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Fig. (5). Comparison of the C-banding and the distribution of distinct repetitive DNAs on the X and Y chromosomes of Hoplias malabaricus 
(karyomorph F), highlighting the accumulation of some of them in the particular heterochromatic block of the Y chromosome. 

 

 
Fig. (6). Comparative genomic hybridization (CGH) on male metaphase of Hoplias malabaricus (karyomorph F), with emphasis on the X and 
Y chromosomes. DAPI staining (a). Hybridization with female gDNA probe (red) (b). Hybridization with male gDNA probe (green) (c). 
Merged (d). Enlarged merged image of X and Y chromosomes highlighting the distribution of sex chromosome specific sequences (e). Scale 
bar represents 5 µm. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper.) 

4. DISCUSSION 

 Our overall data show that the largest metacentric pair 
(chromosome 1) found in the karyomorph F of H. malabari-
cus really represents nascent XY sex chromosomes, where 
the Y is still at an early stage of differentiation. Indeed, our 
CGH experiments clearly demonstrated that the Y specific 
interstitial heterochromatic block in the short arms and thus 
identified male-specific chromosomal region (Fig. 6d, e). 
The particular accumulation of repeated DNAs in such re-

gion reflects the initial steps shaping the evolutionary differ-
entiation of the Y chromosome and probably the starting 
point to impair the recombination between the undifferenti-
ated sex pair. Similarly, in the plant Silene latifolia (Caryo-
phyllales, Caryophyllaceae), it was found that the accumula-
tion of a specific satellite DNA sequence (TRAYC) in the 
young Y chromosome also had a key role in its early stage of 
differentiation [37]. However, in hermaphrodite and dio-
ecious species of the genus Rumex (Caryophyllales, Polygo-
naceae) the distribution of satellite DNAs suggests that the 
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amplification of tandem repeats in the Y chromosome was 
not necessary to suppress recombination but, in turn, accel-
erated the sex specific differentiation at earlier stages of its 
evolution [38]. Microsatellite repeat motifs have also a cen-
tral role in the evolution of sex chromosomes in several 
Sauropsida [39-41] and fish [42-44] species. Nevertheless, in 
Christinus marmoratus, a species of Australian gecko with a 
heterochromatic W chromosome, no sex specific amplifica-
tion of microsatellites repeats was observed, suggesting ac-
cumulation of unknown novel repeats [40]. Thus, it is high-
lighted that repetitive DNAs may play significant roles in the 
evolutionary process of sex chromosomes differentiation 
among different species. 
 Investigation of ‘young’ sex chromosomes helps us to 
understand how sex chromosomes first become non-
recombining and the evolutionary consequences of the loss 
of recombination. Contrary to higher vertebrates, cryptically 
differentiated sex chromosomes can be found among am-
phibians [45-48], reptiles [49-52] and particularly in distinct 
fish species [14, 53-60]. In fact, among fishes, approximately 
90% of the species studied so far present undifferentiated or 
cryptic sex chromosomes [4, 9]. In the well-studied medaka 
fish, Oryzias latipes, the X and Y chromosomes are morpho-
logically indistinguishable [53], where the Y chromosome is 
only 5 to 10 mya and shows only slight molecular differ-
ences in relation to the X [57]. Among salmonids, an XY sex 
chromosome system is also found [60], in which the Y 
chromosome contains a small sex-specific region and with 
minor morphological differentiation from the X chromosome 
in some species [61]. In the nascent XY system of Xipho-
phorus maculatus, the expansion of a specific repeat (XIR) 
was highlighted as the first molecular event linked with the 
divergence of the Y chromosome and the isolation of the 
sex-determining locus [62]. In addition, nascent sex chromo-
somes can also evolve and operate via epigenetic regulation, 
as discovered in half-smooth tongue sole [63]. 
 Heterochromatin accumulation has been reported as a 
major event in the sex chromosome differentiation. In the 
glass knifefish, Eigenmannia virescens, the acrocentric X 
chromosome diverges from the Y due to a particular hetero-
chromatin accumulation on its distal arms [64]. In other Po-

eciliidae species, a heteromorphism in the heterochromatin 
between two homologous chromosomes allowed the identifi-
cation of the sex chromosomes of ZZ/ZW type in Poecilia 
schenops var. melanistica [65] and of the XY system in P. 
reticulata [66]. Additionally, in Dicentrarchus labrax, the 
amount and patterns of the heterochromatin distribution in 
one of the two smallest chromosomes of the male karyotype 
have indicated in early stage of the sex chromosome differ-
entiation [67]. A particular scenario was observed for the XY 
systems of karyomorph B of H. malabaricus [16] and of E. 
virescens [68], representing odd examples of accumulation 
of repetitive DNAs on the non-sex specific chromosome. In 
both cases, the accumulation of repetitive DNAs had a cen-
tral role in triggering the process of morphological differen-
tiation between the sex pair, making possible its identifica-
tion even in an early stage of differentiation, as in E. vires-
cens, or in a highly differentiated system, as in H. malabari-
cus. Remarkably, the distribution of repetitive DNAs in the 
sex chromosomes indicates that they follow distinct evolu-
tionary pathways among the H. malabaricus karyomorphs 
(Fig. 8) [69]. In fact, this accumulation does not follow a 
general rule and appears to be independent processes even 
among closely related species. Particularly in karyomorph F, 
an accumulation of DNA repeats (especially microsatellite 
motifs and transposable elements) was observed in the Y-
specific region, revealing the early stage of differentiation of 
this chromosome. Indeed, these sequences are considered 
early colonizers of sex chromosomes and their likely key 
role in the sex-specific chromosome differentiation have 
been suggested for several species [24, 40-42]. 
 Suppression of recombination between the sex chromo-
somes stretches out to neighboring regions permitting a large 
number of Y-linked genes to degenerate and create a male-
specific region on the nascent Y chromosome [70]. Here, 
this process appears to have started mainly through the ac-
cumulation and amplification of microsatellite motifs, 
probably due to the ability of these sequences for rapid ex-
pansion over other classes of repetitive DNAs in the sex-
specific chromosome, as demonstrated in distinct animal and 
plant species [44, 71, 72]. Among fishes, male (or female) 
specific regions are normally enriched by different types of 
Transposable Elements (TEs) (reviewed in [73]). TEs are 

 
Fig. (7). Whole chromosome painting in male (a) and female (b) metaphase plates of Hoplias malabaricus (karyomorph F) combining the 
HMA-X probe (X chromosome of karyomorph B - green) and the HMA-1 probe (chromosome 1 of karyomorph F - red) highlighting the 
independent origin of the sex chromosomes of these karyomorphs. Scale bar represents 5 µm. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this paper.) 
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also considered major drivers of sex chromosome differen-
tiation through the accumulation of functional insertions, 
promoting genome rearrangements and also playing an ac-
tive role in the formation of new sex determination (SD) 
genes [73, 74].  
 Why are sex chromosomes so often homomorphic in 
lower vertebrates? One possible explanation is the high rate 
of turnover events, where new master sex-determining genes 
appear and replace previously established sex chromosomes 
[8, 75]. Indeed, contrary to birds and mammals, sex deter-
mining mechanisms in reptiles, amphibians and fishes show 
a high turnover and new sex chromosomes appear again and 
again [76-79]. There is evidence that turnovers recently oc-
curred in several fish groups, such as Oryzias [80], Eigen-
mannia [19], Salvelinus [81] and sticklebacks [82]. In am-
phibians, different populations from the same species have 
been shown to display different sex chromosomes systems 
[83] or even several heterogametic transitions (i.e., transi-
tions from male to female heterogamety or vice versa) [84, 
85]. In Australian dragon lizards, non homologous sex 
chromosomes have evolved within a very short evolutionary 
time frame [52], where numerous transitions between sex 
chromosomes have been documented likely via independent 
evolution of nascent sex chromosomes [79].  
 A variety of sex chromosomes have also evolved among 
the H. malabaricus karyomorphs, where X and Y emerged 

independently and followed distinct patterns of differentia-
tion [20]. The lack of hybridization signals with HMA-X on 
the nascent XY chromosomes of karyomorph F highlighted 
that the XY chromosomes of karyomorphs B and F have 
evolved independently, though recruitment of non-
homologous autosomal pairs (Fig. 7). Why in H. malabari-
cus the path of the genetic sex determination has occurred in 
so many different ways and at so many different times? This 
species is well adapted to life in small populations with low 
vagility [86], which increase the probability of fixation of 
chromosomal rearrangements. In fact, it is noteworthy that 
karyomorphs possessing well-differentiated sex chromo-
somes (B, D and G) show a more restricted geographical 
distribution, indicating their derived origin [11, 12] and the 
highlighting the potential of small populations in accelerat-
ing the genomic diversity and in triggering rapid degenera-
tion of the sex specific chromosome. 

CONCLUSION 

 Our study clearly demonstrated that a nascent XX/XY 
sex chromosome system can be actually assigned to karyo-
morph F of H. malabaricus, as clearly evidenced by the par-
ticular distribution of distinct tandem DNA repeats in a male 
specific region on the young Y chromosome. It is notewor-
thy that our study added another example of independent 

 
Fig. (8). Idiograms of sex chromosomes of karyomorphs B, D and F highlighting the marked accumulation of distinct types of repetitive 
DNA sequences along these chromosomes. Data from [14, 16] and present paper. 
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origin of sex systems within this species complex, which is 
already characterized by several karyomorphs, ranging from 
single, multiple, cryptic and highly differentiated sex chro-
mosomes. In fact, H. malabaricus represents an assemblage 
of species with unresolved taxonomy, in which such frequent 
sex chromosome turnover might have played a central role in 
speciation, as well documented for other fish species [87-
91]. Therefore, this species complex provides a unique op-
portunity to gain insights into the evolutionary forces that 
drive the evolution of nascent sex chromosomes, the rela-
tionships among distinct sex chromosomes systems, specia-
tion and the role of accumulation and amplification of dis-
tinct types of repetitive sequences in the origin and differen-
tiation of sex chromosomes. 
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