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Abstract: Autonomous driving support systems and self-driving cars require the determination of
reliable vehicle positions with high accuracy. The real time kinematic (RTK) algorithm with global
navigation satellite system (GNSS) is generally employed to obtain highly accurate position informa-
tion. Because RTK can estimate the fix solution, which is a centimeter-level positioning solution, it is
also used as an indicator of the position reliability. However, in urban areas, the degradation of the
GNSS signal environment poses a challenge. Multipath noise caused by surrounding tall buildings
degrades the positioning accuracy. This leads to large errors in the fix solution, which is used as a
measure of reliability. We propose a novel position reliability estimation method by considering two
factors; one is that GNSS errors are more likely to occur in the height than in the plane direction; the
other is that the height variation of the actual vehicle travel path is small compared to the amount
of movement in the horizontal directions. Based on these considerations, we proposed a method to
detect a reliable fix solution by estimating the height variation during driving. To verify the effective-
ness of the proposed method, an evaluation test was conducted in an urban area of Tokyo. According
to the evaluation test, a reliability judgment rate of 99% was achieved in an urban environment, and
a plane accuracy of less than 0.3 m in RMS was achieved. The results indicate that the accuracy of the
proposed method is higher than that of the conventional fix solution, demonstratingits effectiveness.

Keywords: global navigation satellite system (GNSS); real time kinematic (RTK); position reliability
estimation; ratio-test; urban areas; multipath; height trajectory

1. Introduction

The global navigation satellite system (GNSS) is currently being used in a variety
of applications that employ position information. Among GNSS positioning methods,
real time kinematic (RTK) is one of the most accurate methods and provides cm-level
position estimation in an open sky environment [1]. In recent years, the development
of autonomous vehicles and self-driving support systems has progressed [2,3]. RTK
is occasionally employed, because automated driving requires highly accurate position
information, such as a planar error below 0.3 m. RTK is used not only for automated driving,
but also for automated guided vehicle (AGV) and other logistics transport robots, position
estimation using light detection and ranging (LiDAR), and simultaneous localization and
mapping (SLAM) integration [4–6]. It is moreover employed as a reference to evaluate the
position results estimated by SLAM [7,8].

Currently, RTK can be used easily in several ways. Some GNSS receivers are equipped
with RTK, whereas others use the open source software RTKLIB [1], which is an RTK appli-
cation that uses raw data from receiver, to estimate RTK. In other cases, RTK is performed
by a software receiver using an RF recorder [9,10]. RTK uses the carrier phase transmitted
from the satellite to estimate the position. The pseudo-range used in single positioning and
differential GNSS (DGNSS) is calculated by measuring the propagation time of the satellite
signal. Therefore, because the signals are transmitted at the speed of light, a clock error
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of 1 µs can result in an observation error of approximately 300 m. In contrast, the carrier
wave has a wavelength of approximately 0.2 m for an L1 signal, and the resolution of the
phase that can be measured is high. However, only the carrier phase can be measured,
and the number of waves being transmitted is unknown. This problem is called integer
ambiguity, and the solution is referred to as ambiguity resolution (AR). Various methods
have been proposed for AR. The most widely used is integer least-squares (ILS). Based
on ILS, there are the fast ambiguity resolution approach (FARA) [11], the least-squares
ambiguity decorrelation adjustment (LAMBDA) [12], and the least-squares ambiguity
search technique (LSAST) [13]. Other AR methods based on the Success Rate Criterion
(SRC) have also been proposed [14,15]. By accurately solving the integer ambiguity, we can
obtain a fix solution, which is a centimeter-class positioning estimation result.

To improve the robustness of GNSS, a method of integrating GNSS and the inertial
measurement unit (IMU) has been proposed [16–25]. GNSS cannot estimate the position in
places where the signal cannot be received, such as tunnels and under elevated buildings. In
such cases, the integration of IMU enables position estimation, even in places unreachable
by signals. There are two main types of GNSS/IMU integration: loose coupling [18,19],
which integrates the results of each sensor, and tight coupling [20,21], which integrates
the raw values of each sensor. A Bayesian filter following a normal distribution, such as
the Kalman filter, is commonly used for these integrations. Because the Bayesian filter
takes into account the error in the estimation, the accuracy of position estimation can be
improved [22–24]. Moreover, the integration of RTK and IMU allows for a very accurate
position estimation. In this case, the integration is based on trusting the fix solution of RTK.
Therefore, when integrating RTK and IMU, the accuracy and reliability of the fix solution
is highly important.

GNSS-based position estimation causes accuracy degradation in urban areas. In urban
areas, where there are numerous obstructions such as high-rise buildings, the number of
observation satellites decreases, and multipath occurs due to reflection and diffraction of
satellite signals [26,27]. In recent years, multi-GNSS has become more common owing to
the increase in the number of satellite systems [28–31]. The main multi-GNSS are the global
positioning system (GPS) of the United States, BeiDou navigation satellite system (BDS)
of China, global navigation satellite system (GLONASS) of Russia, and Galileo of the EU.
Multi-GNSS solves the problem of reduced number of observation satellites and improves
the utilization rate. In contrast, the signal multipath is directly related to the decrease in the
position estimation accuracy. The integration of GNSS/IMU is considered to be effective
for this problem [32,33]. However, the error due to multipath does not follow a normal
distribution. In the Kalman filter, where the error is assumed to be normally distributed, it
may diverge due to multipath noise. Understanding the error due to multipath is difficult.
Therefore, the integration of GNSS/IMU is not effective unless the amount of error due to
multipath is detected or the integration is performed by removing multipath noise [34].
One solution is to use a GNSS/IMU system; however, its use is limited due to its high cost.
Furthermore, multipath degrades the accuracy of the fix solutions of RTK. In urban areas,
a fix solution with a non-negligible error may be generated and this is referred to as the
missed fix. In such cases, it becomes difficult to use the fix solution as a reliability indicator.
Therefore, there is a risk of failure in integration that relies on the fix solution.

Therefore, we propose a novel method to determine the reliability of the fix solution.
The goal is to determine whether the position error is within 0.3 m, which is required for
applications such as automatic driving. The reliability of the proposed method is assessed
not by the horizontal plane, but by the height direction. Two reasons justify our focus
on the height direction. The first is that GNSS positioning errors in the height direction
tend to be larger than those in the plane due to geometric factors between the satellite and
the receiver. The second is because we can accurately estimate the vehicle motion with
multipath removed. For these two reasons, we can accurately determine the fix solution
even with low-cost GNSS/IMU by focusing on the height direction. If the proposed method
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is effective, conventional GNSS/IMU integration methods may also operate effectively in
urban areas.

The paper is organized as follows. In Section 2, we explain the generation mechanism
of the fix solutions with errors and conventional testing methods. Section 3 provides a
detailed description of the proposed method for determining the reliability. In Section 4,
we discuss the evaluation tests and results of the proposed method. Section 5 provides the
summary and conclusion of the paper.

2. LAMBDA Method and Ratio Test

RTK is a high-precision positioning method using the carrier phase. However, its
integer ambiguity is unknown. To address this problem, various methods have been
devised. In this study, we describe the LAMBDA method, which is used in RTK algorithm.
In RTK algorithm, the state variables are set as follows:

x =

(
a
b

)
, Q =

(
Qaa Qab
Qba Qbb

)
(1)

where x is the state vector, a is the integer ambiguity, b is the real value parameter, and Q is
the error covariance. The observation model is defined as follows:

y = Hx + v (2)

where y is the observation vector, containing the pseudo-range and carrier phase, H is the
observation matrix, and v is the observation noise. In RTKLIB, the first step is to solve
the problem using the Kalman filter with integer ambiguities as real values. The resulting
real-valued ambiguity is called the float ambiguity. Then, the float ambiguity is solved by
the ambiguity resolution (AR) as an integer value. A simple AR method is the integer least
squares method, which has the following evaluation function.

C
(

a f ix

)
= argmin

(
a f ix − a f loat

)T
Qaa

−1
(

a f ix − a f loat

)
(3)

When the error covariance of the float ambiguity is a true diagonal matrix, rounding
off the float solution is used to obtain the optimal solution of the fix solution. However, the
actual error variance is not a diagonal matrix. Because there are error correlations for each
float ambiguity, estimation by search is required instead of rounding. Consequently, the
search cost is high.

Therefore, the LAMBDA method transforms the variables, such that the error vari-
ance becomes a diagonal matrix. By applying the transformation and making the errors
uncorrelated, it is possible to reduce the search cost for integer solutions [35,36]. For this
transformation to preserve the integer nature of the ambiguity, the transformation matrix
Z must obey the following conditions:

• Z is composed of all integer values.
• The inverse of Z exists.
• The inverse of Z likewise consists of all integer values.

With Z satisfying this condition, the float ambiguity is subjected to a variable transfor-
mation.

z = ZTa, Qzz = ZTQaaZ (4)

In this situation, the integer least squares method is used to search for the optimal
solution that minimizes the evaluation function corresponding to the variable transformation.

C
(

z f ix

)
= argmin

(
z f ix − z f loat

)T
Qzz

−1
(

z f ix − z f loat

)
(5)
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Once the search for the optimal solution z is completed, the inverse z-transform is
applied to convert it to the actual position parameters.

a = Z−Tz (6)

b f ix = b f loat − QbaQaa
−1
(

a f loat − a f ix

)
(7)

In this manner, cm-class position estimation is performed in RTK.
Further, a test is performed to determine whether the fix solution obtained using the

evaluation function of the LAMBDA method is plausible. This test is referred to as the
ratio-test [37–39]. The ratio-test is evaluated by the ratio of the evaluation functions of the
first and second solutions obtained by the search of the LAMBDA method and is defined
by the following equation.

I f Ratio =

(
z f ix.No2 − z f loat

)T
Qzz

−1
(

z f ix.No2 − z f loat

)
(

z f ix.No1 − z f loat

)T
Qzz−1

(
z f ix.No1 − z f loat

) {
≥ threshold use z f ix.No1
< threshold use z f loat

(8)

If the value obtained in Equation (8) is above a certain threshold, the fix solution
is considered to be an accurate search solution and is converted into a position result
using Equation (7). In contrast, if the solution does not pass the test, the search solution is
considered to be inaccurate, and the float solution is converted to the position result. Thus,
the ratio-test makes a judgment based on whether the float ambiguity is close in value to
the first solution. This is how the fix solution was tested in the past, and the method is also
employed in RTKLIB.

However, when multipath noise occurs, the ratio-test may break down. If the ratio-test
fails, a fix solution will be generated with an error. Figure 1 illustrates this situation. The
following is a description of the mechanism behind the occurrence of the fixed solution
with the error.
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Figure 1. Description of ratio-test and its failure; In the red boxes th stands for threshold for Ratio (Equation (8)).

Multipath noise due to high obstructions affects the pseudo-range and the carrier
phase. Due to multipath noise, the observed noise becomes non-normally distributed.
Because the Kalman filter assumes a normal distribution, it may fail to estimate the float
ambiguity. Even the failed float ambiguity is searched by the LAMBDA method. Typically,
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the LAMBDA method fails in the search or is considered unsuccessful by the ratio-test.
However, there are cases where the LAMBDA method searches for the first solution near
the failed float solution, even though it is far from the true value. In this case, the ratio-test
considers it as a pass and outputs it as a fix solution. In reality, it is the fix solution that is far
from the true value, and it contains a large error. Under these conditions, the ratio-test fails
and outputs the fix solution with a large error. Therefore, we believe that it is necessary to
determine the fix solution in a way different from that of the ratio-test.

3. Proposed Method
3.1. A method for Determining the Reliability of Fix Solutions Using Height Trajectories

The ratio-test, which has been applied in the conventional method, may fail in urban
areas. We propose a novel method to re-estimate its reliability using the height variation
as a restraint. In this paper, we refer to the variation of height as “height trajectory”.
Figure 2 shows the outline of the proposed method. There are two major components of
the proposed method. The first part is the estimation of the height trajectory. The height
trajectory is estimated by the pitch angle and vehicle speed considering the vehicle motion.
The second part is to estimate the reliability by comparing the height trajectory with the
fix solution.
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Figure 2. Schematic of confidence determination method.

The determination of the reliability targets the fix solution with an error of 0.3 m or
less in the horizontal plane. In the conventional method [34], the position is estimated by
constraining the traveling trajectory on a plane. In this method [34], GNSS positioning
solutions, with errors that do not match the shape of the trajectory, are detected in the
process. However, the flatness accuracy of the trajectory is 0.5 m per 100 m, which is not
sufficiently accurate to make a decision. Further, if the fix solution is output over a long
distance with the offset, the trajectory shapes may match. In such a case, this would result
in a wrong decision. We are able to estimate the height trajectory with an accuracy of
0.3 m per 100 m. In contrast, GNSS is prone to errors in the height direction due to factors
in the geometric arrangement of satellites. The height accuracy is approximately three
times worse than the horizontal accuracy. Therefore, the proposed method determines the
reliability of GNSS with a larger error from the height trajectory that can be estimated with
high accuracy. By taking advantage of this feature, the proposed method determines the
fix solution with high reliability, and it is defined in Table 1.
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Table 1. Status naming definition of judgment by the proposed method.

Proposal Method High Reliability Low Reliability

Status Name Positive Fix Negative Fix

3.2. Estimation of Height Trajectory

This section describes the estimation of the height trajectory in the proposed method.
Figure 3 shows the flowchart of the estimation. The height trajectory H is estimated using
the vehicle speed V and pitch angle θ, according to the following Equation:

H = H0 +
∫

Vsinθdt (9)
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In Equation (9), an initial value of H0 is set for the height, as the relative trajectory is
calculated from the vehicle speed and pitch angle. Because the pitch angle is not output
from the IMU, it must be estimated. We estimate the pitch angle using the acceleration of
the IMU and the vehicle speed. When the vehicle motion is considered, the relationship is
as shown in Figure 4 and can be expressed by the following equation.

Gx = gsinθ +
dV
dt

(10)

where Gx is the acceleration in the longitudinal direction, g is the acceleration due to gravity,
and dV/dt is the acceleration due to change in velocity upon the car driver’s choice. In
Equation (10), the pitch angle can be estimated by solving for the pitch angle.

If we assume that low-cost IMUs are used, we must take into account the error caused
by the bias, etc., of the IMU. We define an error model for the acceleration of the IMU
as follows:

Gx
true = s f · Gx

imu + δGx
imu (11)

where sf is the scale factor of acceleration, and δGx is the offset due to bias. If the error
model in Equation (11) is not considered, the estimation performance by the low-cost IMU
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is reduced significantly. In summary, using the vehicle speed and the acceleration of the
low-cost IMU, the height trajectory is obtained from Equations (9)–(11) as follows:

Himu = H0 +
∫

V(
s f · Gx

imu + δGx
imu − dV

dt
g

)dt (12)
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Therefore, it is necessary to accurately estimate the bias and scale factor, which repre-
sent errors in the acceleration, to accurately estimate the height trajectory.

In the proposed method, the error in the acceleration is estimated using the fix solution.
A schematic of the acceleration error estimation is shown in Figure 5. First, the height
trajectory H−

imu is estimated using Equation (12) without estimating the acceleration error.
As shown in Figure 5, the difference in the fix solution naturally increases with time (or
distance) due to the acceleration error. We estimate the acceleration error, such that the
height trajectory H−

imu is fitted to the shape of the fix solution. Specifically, we estimate the
bias and scale factor of the acceleration, such that the evaluation function defined below
is minimized.

The initial value of the height trajectory H0 in Equation (13) represents the first fix
solution in the interval to be optimized. After estimating the error in acceleration using
Equations (13) and (12) it is employed to estimate the exact height trajectory H+

imu. The
error in the acceleration can be regarded as constant within a certain amount of time.
Therefore, in Equation (13), time series data over a long period of time (several hundred
meters to several kilometers) are used for optimization. By using the long time series data,
the acceleration error is plausibly estimated. This estimation procedure enables accurate
estimation of the height trajectory.

3.3. Fix Solution Verification

We describe the re-determination of the fix solution reliability. The flowchart of the
estimation is shown in Figure 6. Primarily, the trajectory of the height is fitted to the fix
solution. For fitting, we integrate the height trajectory and the fix solution such that the sum
of squares is minimized. Hence, the initial value of the height trajectory, H0, is estimated
such that it is minimized by the following equation:

C(H0) = argmin
N

∑
t=t0

(
H+

imu − H f ix

)2
(14)

C
(

s f , δGx
imu
)
= argmin

N

∑
t=t0

(
H−

imu − H f ix

)2
(13)

At this time, as shown in Figure 7, there may be a fix solution whose shape does not
match the height trajectory. If the distance from the height trajectory is above a certain
threshold (0.3 m in this study), the fix solution is assumed to have an error. Because the fix
solution is considered to have errors, we assign it as negative fix, as the reliability is low. In
contrast, if the error is within the threshold, the solution is classified as a positive fix, as the
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reliability is high. In this manner, the proposed method determines the reliability of the fix
solution. Further, we use 100 m for determining the reliability, instead of several hundreds
of meters or kilometers like estimating acceleration error. This is because the data of a
longer distance will cause more degradation of judgment accuracy, considering the case of
residual errors in acceleration and vehicle speed. If the number of fix solutions obtained in
a 100 m interval is low, we assume that the reliability of the estimate will decrease, and we
consider it as negative fix.
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However, the proposed method suffers from causal issues, such as “Which came first,
the chicken or the egg?”. The estimation of acceleration error requires the fix solution with
high reliability. However, to determine the reliability of the fix solution, it is assumed that
the acceleration error is accurately estimated. This implies that the method is subject to
conflict. Therefore, we solve this problem by iterating these estimates. Figure 8 and the
iterative estimation method are shown below.

1. Estimate the acceleration error without determining the fix solution.
2. Determine the fix solution using the estimated acceleration error.
3. Update the time.
4. Estimate the acceleration error using the judged fix solution.
5. Repeat these steps.
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By repeating the procedure in this manner, we can improve the estimation accuracy.
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4. Evaluation Test
4.1. Summary of Evaluation Test Conditions

To verify the effectiveness of the proposed method, an evaluation test was conducted
in an urban area of Tokyo. Two evaluation routes were prepared for the test. The first route
(Route A) represents a standard urban area with numerous buildings and viaducts. The
second route (Route B) is a dense urban area surrounded by high-rise buildings. The list
of sensors used in the evaluation test is shown in Table 2. The sensor configurations are
low-cost. The GNSS receiver is a U-blox F9P mounted on the vehicle, and the acquisition
period is set to 5 Hz. The satellite systems GPS, QZSS, and BeiDou are used to calculate
the position of the F9P. The vehicle speed was obtained from the CAN bus of the vehicle.
The MEMS-IMU is made by Tamagawa, and it is capable of measuring six axes with an
acquisition period of 50 Hz. The position measured by POSLV220, a high-precision position
measurement system manufactured by Applanix, is used for the reference device. The
POSLV system comprises kinematic positioning, a high-precision gyro used in aircraft, and
a high-resolution vehicle speed indicator (DMI). By integrating these measurements in a
post-processing step, the system can estimate the position of a vehicle with an accuracy of
less than 0.3 m even in an urban environment. The appearance of the vehicle equipped
with the system is shown in Figure 9.

Table 2. List of equipment used in experiment.

Equipment Manufacturer Model

GNSS Antennas Aero AT1645-540T
GNSS receiver U-blox F9P

IMU Tamagawa AU7684
Speed Toyota Sienta CAN

Reference Applanix POSLV220
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4.2. Test in Urban Area (Route A)

The results of evaluation tests under standard urban conditions are presented. The
driving route used in the evaluation test is shown in Figure 10. This route is approximately
12.5 km long. Each of the locations shown in Figure 10 is a place where GNSS positioning
results are likely to deteriorate. Part A is a route that runs under the elevated railroad tracks,
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where the number of available satellites is likely to decrease, and signal disconnection is
expected to occur. In part B, the signal is expected to be reflected and diffracted in situations
where buildings are lined up, and the signal passes under a pedestrian bridge. In such a
situation, it is not only difficult to obtain a fix solution, but it is also likely to generate one
with errors.
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Figure 10. Test route A in urban environment.

The results of the fix solution using RTK obtained for this route are shown in Figure 11.
Figure 11a shows the results of the overall fix solution, and 11b shows the error distribution
of the fix solution. In Figure 11a, the areas with errors of 0.3 m or more are highlighted in
the obtained fix solutions. Numerous fix solutions with errors were obtained on the routes
A and B shown in Figure 11a. In this result, the wrong fix solution accounts for 2.1% of the
obtained fix solutions.
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Figure 11. Results of real time kinematic (RTK) performed on test route A. (a) Fix solution for the entire route, (b) Error
distribution of fix solution.
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The overall result of the judgment using the proposed method is shown in Figure 12.
Figure 13a shows the plane and height errors, and Figure 13b shows the error distribution
in the plane. Table 3 shows the mean, maximum, standard deviation (SD), and root
mean square (RMS) of the plane (2D) and height errors. The total number of the fix
solutions determined by the proposed method is summarized in Table 4. By comparison of
Figures 11 and 12, most of the conventionally fix solutions have errors of 0.3 m or above,
while the positive fix solutions by the proposed method are mostly within 0.3 m. From
Table 3, the RMS of the plane decreases from 4.16 to 0.17 m, which means that the fix
solution can be determined with high reliability. Table 4 shows that the positive fix of 99.9%
(6369/6373) is within the error of 0.3 m with the proposed method. Therefore, the proposed
method can determine the reliability more accurately than the conventional one.
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Further, there are four positive fixes with large errors in Table 4. This is attributed to a
large error in the horizontal plane, even though there is no error in the height direction. In
such a case, the reliability can be determined by combining it with the determination by
planes in the method [34].

4.3. Test in Dense Urban Area (Route B)

The results of the evaluation test in a dense urban environment with many high-
rise buildings in the city center are described. Figure 14 shows the test route used for
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the evaluation (6.6 km). This evaluation route is lined with buildings over 100 m high.
Consequently, multipath is likely to occur, and accurate satellite positioning is difficult.
The RTK results for this route are shown in Figure 15.
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Figure 13. Error of positive fix by proposed method for Route A. (a) Positive fix plane and height error, (b) Error distribution
of positive fix.

Table 3. List of errors from evaluation tests for Route A.

Error Max
(m)

Error Mean
(m) Error SD (m) Error RMS

(m)

Fix
2D 78.5 0.07 2.08 4.16

Height 186.6 0.64 6.77 6.79

Positive Fix
2D 5.58 0.01 0.08 0.17

Height 0.30 0.05 0.06 0.06

Table 4. Number of confidence levels determined by Route A evaluation tests.

Number Conventional Fix Proposal Positive Fix Proposal Negative
Fix

Error < 0.3 m 6372 6369 3
Error > 0.3 m 134 4 131

Similarly to the test for Route A, Figure 15a shows the results of the overall fix solution,
and 15b shows the error distribution of the fix solution. From Figure 15, we see that there
are fewer fix solutions obtained than for the results of Route A, and more fix solutions with
large errors. The fix solutions with errors account for 8.6% of the obtained fix solutions,
which is below that of Route A.

We apply and evaluate the proposed method in this course as well. Figure 16 shows
the results of the judgment using the proposed method. The plane and height errors
are shown in Figure 17a, and the error distribution in the plane is shown in Figure 17b.
As in Route A, Table 5 shows the mean, maximum, SD, and RMS of the plane (2D) and
height errors. The total number of fix solutions determined by the proposed method is
summarized in Table 6.

Figure 16 shows that several fix solutions are determined as negative fixes by the
proposed method. Therefore, the reliability determination operates accurately even in
a multipath environment lined with buildings. As shown in Figure 17, most of the fix
solutions, which are considered positive fixes, are within 0.3 m error. The RMS of the plane
in Table 5 likewise shows that the proposed method reduces the error compared to the
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conventional fix method. Table 6 shows that the percentage of the error within 0.3 m is
99.7% (5370/5384) for the positive fix. Therefore, it is confirmed that the proposed method
can be used to determine the reliability with high accuracy in this evaluation test as well.
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Figure 15. Results of RTK performed on test route B. (a) Fix solution for the entire route (b) Error distribution of fix solution.

However, compared to the evaluation test A, the accuracy of the reliability determi-
nation has deteriorated. In part A of Figure 17a, the correct judgment is not made, even
when the height error is 0.3 m or more. This is thought to be due to the fact that the
number of fix obtained is small, and therefore, the error in acceleration cannot be estimated
correctly, resulting in an error in the pitch angle. An error in the pitch angle leads to an
error in the relative height trajectory, and thus an accurate determination is impossible. In
this case, it is necessary to estimate the bias and pitch angle of the accelerometer without
using the fix solution. Therefore, by improving the fix solution itself and the accuracy
of the height trajectory, a highly accurate reliability determination is expected, even in
urban environments.
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Table 5. List of errors from evaluation tests for Route B.

Error Max (m) Error Mean (m) Error SD (m) Error RMS (m)

fix
2D 390.7 0.37 7.38 14.8

Height 808.7 0.85 13.9 13.9

Positive Fix
2D 1.07 0.05 0.10 0.22

Height 0.73 0.11 0.10 0.13
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Table 6. Number of confidence levels determined by Route B evaluation tests.

Number Conventional Fix Proposal Positive Fix Proposal Negative Fix

Error < 0.3 m 6577 5370 1207
Error > 0.3 m 619 14 605

5. Conclusions

Autonomous driving support systems and self-driving cars require highly accurate
and reliable vehicle positions. The fix solution of kinematic positioning is often used as a
factor to show the reliability of GNSS positioning results. Most fix solutions are determined
by the combination of the LAMBDA method and ratio-test. However, fix solutions with
large errors are typically generated in urban areas. Therefore, in this study, we propose
another method to determine the reliability in place of the ratio-test. In this study, we
consider two aspects. One is that the height variation of the vehicle is small and can be
estimated more accurately. The other is that GNSS errors are more likely to occur in the
height direction than in the plane direction. Based on these considerations, we proposed
a method for detecting a reliable fix solution by using the high trajectory during driving.
According to the evaluation tests, the proposed method achieved a decision accuracy of
99.9% on route A, which is an urban area. This determination resulted in a flatness accuracy
(RMS) of 0.17 m, achieving the target of 0.3 m or below. In Route B, which is a dense urban
area with a harsh environment, the judgment accuracy was 99.7%. Here, the RMS of the
plane was 0.22 m, indicating that the confidence level was estimated with high accuracy.
Because these results were determined with a higher judgment accuracy than the ratio test,
the proposed method is considered to be effective.

However, we have not yet been able to completely assess the reliability. In Route B of
the evaluation test, correct assessments could not be made even when the height error was
0.3 m or more. To improve these problems, it is necessary to improve the accuracy of the
height trajectory and combine the assessment in horizontal directions. Further, we must
solve the multipath problem of GNSS and improve the accuracy of the fix solution.
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