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Stroke is a common and disabling global health-care problem, which is the third most common cause of death and one of the main
causes of acquired adult disability in many countries. Rehabilitation interventions are a major component of patient care. In the last
few years, brain stimulation, mirror therapy, action observation, or mental practice with motor imagery has emerged as interesting
options as add-on interventions to standard physical therapies. The neural bases for poststroke recovery rely on the concept of
plasticity, namely, the ability of central nervous system cells to modify their structure and function in response to external stimuli.
In this review, we will discuss recent noninvasive strategies employed to enhance functional recovery in stroke patients and we will
provide an overview of neural plastic events associated with rehabilitation in preclinical models of stroke.

1. Introduction

Stroke is an acute neurological syndrome caused by disrup-
tion of the cerebral blood supply. About 80% of strokes are
ischaemic, resulting from an obstruction of blood flow, while
about 15% are due to a primary intracerebral hemorrhage.
Stroke is one of the leading causes of chronic adult disability
and death in western industrialized countries [1]. Neurolog-
ical deficits reflect the location of the tissue damage and, in
particular, the extent of the neuronal loss. Neurons deprived
of their normal metabolic substrates cease to function in
seconds and show signs of structural damage after only 2min-
utes. As energy-dependent processes fail, neurons are unable
to maintain their normal transmembrane ionic gradients,
resulting in ion and water imbalance that triggers apoptotic
and necrotic cell death cascades and, ultimately, leads to focal
neurological signs and symptoms. According to the WHO’s
international classification of function, disability, and health
(ICF, WHO 2001), the impairment of brain functions may
originate different activity limitations (disability) and partic-
ipation restriction (handicap).

Motor impairments, including hemiparesis, incoordina-
tion, and spasticity, are themost commondeficits after stroke.
However, functional recovery frequently occurs following
stroke, although its extent is highly variable. Some patients
with initial severe hemiparesis may eventually achieve full
recovery, while others have little or no improvement and
remain permanently disabled.There aremany reasons for the
variable degrees of recovery, including the age of the patient,
the location and extent of the lesion, and individual variations
in anatomical and functional connections [2].

The neural bases for poststroke recovery rely on the con-
cept of plasticity [3], namely, the ability of central nervous
system (CNS) cells to modify their structure and function in
response to a variety of external stimuli (experience). The
plastic/reparative properties of the brain are determined by
the balance between cell-intrinsic mechanisms and extrin-
sic regulatory molecules, which is regulated by activity-
dependent processes and different kinds of interaction with
the external world [4, 5]. Molecules in the adult CNS milieu,
such as myelin-associated proteins (e.g., Nogo, MAG, and
Omgp), factors secreted by astrocytes near the stroke site
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(e.g., chondroitin sulfate proteoglycans), and repulsive axonal
guidance cues (e.g., semaphorins, netrins, and members of
the ephrin family), constrain axonal sprouting and hamper
the formation of new connections [6]. In preclinical stroke
models it has been shown that pharmacological blockade
of Nogo, Nogo receptor antagonism, or digestion of chon-
droitin sulfate proteoglycans by chondroitinase induce axonal
sprouting and promote functional recovery [7–9]. Blocking
the semaphorin pathway reduces cortical damage after stroke
[10]. Other growth inhibitors, such as EphA4 and ephrin-
A5, have also recently been identified, which limit functional
recovery and are promising targets for repair after stroke [11,
12]. Interestingly, inhibition of ROCK, a downstream target
of several growth inhibitors, greatly improves outcome after
ischemic stroke [12]. Several studies have also uncovered
pharmacological targets that promote a neuronal growth state
in the adult CNS. For example, inosine triggers a serine/thre-
onine kinase (Mst3b), enhancing axonal sprouting [13, 14].

The therapeutic potential of replacement strategies in
laboratorymodels of stroke is also under investigation. Trans-
plantation of neural progenitor cells, bone marrow-derived
mesenchymal stem cells or human-induced pluripotent stem
cells into the ischemically lesioned brain have been proved to
be a safe and efficient approach to promote significant func-
tional recovery in experimental animals [15–17]. Nonetheless,
the mechanisms underlying the beneficial effects of cell
transplantation in the ischemic CNS remain uncertain, and,
most importantly, to date there is no clear evidence that
donor cells may directly contribute to the structural repair of
neuronal circuits.

In addition to pharmacological or replacement therapies,
clinical and preclinical studies are currently focusing on non-
invasive strategies for post-stroke rehabilitation. Clinical data
show that neurologic deficits following stroke can be treated
by physical therapy [18]. Motor rehabilitation after hemi-
paretic stroke typically involves combinatory approaches,
including neurofacilitation techniques, task-specific training,
and task-oriented training [19, 20]. Furthermore, stroke units,
in which patients have access to daily skill training therapies
in highly stimulating environments, such as during physi-
cal, occupational, or language therapy, result in decreased
deficits, increased performance on self-care tasks, lower 1-
year mortality, and lower probability to be in a nursing home
at followup [21]. Finally, in recent years brain stimulation,
mirror therapy, action observation, or mental practice with
motor imagery is emerging as interesting options as add-on
interventions to standard physical therapies [22].

Here, we will provide an overview of recent noninva-
sive strategies employed to enhance functional recovery in
patients after stroke and discuss the current knowledge of
rehabilitative strategies and the associated neural plastic
events in preclinical models of stroke.

2. Novel Noninvasive Strategies for
Patients Rehabilitation

Stroke rehabilitation aims to guarantee that stroke survivors
reach the maximum physical, functional, and psychosocial
recovery possible within the limits of their impairment. In

order to help stroke patients to fully participate in life, the
final goal of rehabilitation should be to maximize perfor-
mance of activities of daily living and independence.Through
learning-dependent processes, rehabilitation facilitates and
shapes the recovery that would occur spontaneously. Recov-
ery of stroke patients is extremely heterogeneous and deter-
mined by a combination of processes including functional
restoring of damaged nervous tissue, relearning of lost skills
through reorganization of spared pathways (plasticity), adap-
tation, and compensation for deficits. Compensation reflects
the use of alternate behavioral strategies in order to solve
a specific task. Most recovery of specific neurological focal
deficits occurs during the first 3 to 6months after stroke, but it
is largely accepted that improvements can continue for years
after stroke [23].

General principles of stroke rehabilitation include the
start of intensive rehabilitation programs carried out in a
stroke unit within the first few days after stroke [24, 25]. Evi-
dence demonstrates that comprehensive intensive rehabilita-
tion, as well as the presence of a structured multidisciplinary
team, may be more effective than less intense programs [26].
In agreement with the learning nature of the rehabilita-
tive process, involvement, engagement, and motivation of
patients, families and caregivers are crucial to obtain good
outcome.

Most recent neurorehabilitative approaches are based on
a task-oriented model of motor learning, whose main feature
is an intensive training with specific tasks in an environmen-
tal context (task-specific and context-specific trainings; [27–
30]). In this context, a number of new rehabilitative tech-
niques potentially capable of stimulating cerebral plasticity
have been proposed and tested in the last years. Among these
techniques, large interest is devoted to treatment approaches
aimed to improve motor functions, including constraint-
induced movement therapy, mental practice, mirror therapy,
virtual reality, robotics, and brain stimulation techniques.

Constraint-InducedMovementTherapy (CIMT) involves
the restriction of usage of the unaffected limb, forcing the use
of the paretic one, and aiming to contrast the maladaptive
“learned nonuse” of the paretic limb (the subject learns to
ignore the damaged limb because of its lack of functionality
and learns to use exclusively the healthy limb). A number
of studies including randomized controlled trials and a
Cochrane review have shown that CIMT is effective in
improvingmotor performance in human patients after stroke
[31, 32] with a large effect size and robust effects especially
on arm function [33]. In particular, the ECXITE trial [31]
demonstrated that daily intensive CIMT training for upper
limb paresis was superior to the control treatment 3 to 9
months after stroke, and that a modest improvement in
motor function persisted in the CIMT group after 2 years.
Important limitations to the routine use of CIMT training
derive from the fact that it is labor intensive and suitable only
for patients with some conservation of motor functions (in
particular wrist and finger), thus its use is recommended only
for selected patients.

Mental practice with motor imagery is considered a
promising additional treatment to improve motor functions
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of severely affected upper limb [33], although its clinical effec-
tiveness is not yet clearly proven. This approach grounds on
the statement that imaging a movement requires activation
of brain circuits involved in the preparation and execution
of the same movement and consists in a repetitive cognitive
training during which the patient imagines performing a task
or body movement without actually physically performing it.
It has been demonstrated that mental practice may modu-
late cerebral perfusion and neural activity in brain regions
similar to those activated during actual movements [34, 35].
Following few systematic reviews [36, 37] suggesting that
mental practice may be beneficial for post-stroke disabilities
in addition to conventional treatments, a recent Cochrane
review [38] concluded that there is only limited evidence
that mental practice may increase the effectiveness of usual
physiotherapy and occupational therapy.

Another approach based on multisensory stimulation
is represented by the mirror therapy. In this technique a
mirror is placed at 90∘ in the patient midsagittal plane, so
that the paretic limb is hidden behind the mirror and the
patient watches the image on the mirror of the unaffected
arm as if it was the affected arm. In a certain sense, the
patient receives the impression that the affected limb is
functioning. It has been demonstrated [39] that viewing
the image of one’s moving hand reflected by the mirror
increases the excitability of neurons in the ipsilateral primary
motor cortex more than directly viewing the inactive hand.
Mirror therapy effects (as well as those related to mental
practice) may be related to the activity of the so-calledmirror
neurons, which discharge both following performance of
motor acts and simply observing the same action done by
another individual [40, 41]. In fact, by means of fMRI it
has been demonstrated [42] that prolonged and repetitive
observation of an action may enhance the activity in the
ventral premotor cortex, the supplementary motor area, and
the superior temporal gyrus. A recent systematic review [43]
including 14 studies and a total of 567 patients treated with
mirror therapy concluded that, when compared to other
rehabilitative approaches, this treatment has a significant
effect on motor function even though this result is strongly
influenced by the type of intervention used as control. Thus,
it remains unclear if mirror therapy should replace other
treatments for motor rehabilitation after stroke, while its role
as additional intervention is confirmed. Moreover, mirror
therapy improves activities of daily living, but this statement
is limited by the small number of studies (four) examining
this effect.

Virtual reality technologies represent a relatively new
approach for rehabilitation.Thevirtual reality idea is based on
the possibility that a computer can generate a three-dimen-
sional graphical environment from numerical data [44], so
that, by using visual, aural, or haptic devices, the operator can
experience the environment as if it were a part of the world. A
key feature of all virtual reality applications is interaction: vir-
tual environments are created to allow the user to interact also
with virtual objects within the environment. In some systems,
the interaction may be achieved via a mouse or a joystick
button, while in others, a representation of the user’s hand
may be generated within the environment with movement

of the virtual hand reflecting the user’s hand, thus allowing
a more natural interaction with objects. Therefore, virtual
reality represents a unique instrument to achieve several
requirements for effective rehabilitation, such as repetitive
practice, feedback about performance, and motivation to
endure practice [45, 46]. Specifically, by using virtual reality it
is possible to drive and control exercises for patient rehabilita-
tion within a functional, purposeful, and motivating context
[45]. Moreover virtual reality technologies play a pivotal role
in the construction of telerehabilitation systems.

Different virtual reality approaches have been used, in
particular, for upper limb motor rehabilitation. A Cochrane
review published two years ago [47], analyzing 19 randomised
and quasi-randomised trials of virtual reality that involved
565 participants, concluded that there is a limited evidence
that virtual reality and interactive video games may be
beneficial in improving arm function and activity of daily
living function when compared with the conventional treat-
ments. Another, contemporary meta-analysis [48], including
12 studies (5 randomized controlled trials and 7 observational
studies) for a total of 195 patients, showed that in the
large majority (11 over 12) of these studies virtual reality
added a significant benefit on arm motor recovery after
stroke.However, to gain convincing evidence of virtual reality
effectiveness in poststroke rehabilitation, further research is
needed based on good randomized controlled trials.

In the last years a growing interest has been addressed
to robot-assisted rehabilitative treatments after stroke. In
theory, robotic devices may help administer an intense
repetitive training to facilitate recovery. Several studies have
demonstrated a significant result in motor recovery of the
upper limb of patients who trained with robotic devices but
no significant effect on functional ability [49]. However, the
conclusion of a randomized controlled trial (UL-Robot [50])
and a Cochrane meta-analysis [51] limited the significance of
these results. In the UL-Robot trial two groups of patients
receiving 36 therapy sessions over 12 weeks of robot-assisted
therapy or intensive conventional physical therapy, respec-
tively, were compared with patients receiving usual (not
intensive) care. The study failed to demonstrate a superiority
of the intensive robot therapy when compared to intensive
conventional physical therapy, but both techniques were
superior to usual care, suggesting that intensity of training
may be a crucial factor for motor recovery. The Cochrane
review [51], including 19 trials and 666 patients, concluded
that electromechanical and robot-assisted arm training after
stroke may improve generic activities of daily living as well as
paretic arm function, but not arm muscle strength.

A phase III randomized and controlled trial (LEAPS-
[52]), designed to test the efficacy of a popular technique
that utilizes partial body-weight support with treadmill
training, was concluded in 2011.TheLEAPS trial included 408
patients randomly assigned to three groups: two groups were
subjected to a locomotor training with treadmill and body-
weight support (one group initiating treatment 2months after
stroke and the second 6 months after stroke), the third group
received a home exercise program.The results were someway
surprising: no significant difference was found between the
three groups concerning the improvement in walk speed,
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motor recovery, balance, functional status and quality of
life. Thus, locomotor training with body-weight support and
treadmill cannot be considered superior to a structured,
progressive, and intensive at home treatment. Also, in this
trial all intensive interventions were more effective when
compared to non-intensive and structured care.

A promising robotic interface has been recently devel-
oped by Courtine’s group to evaluate, enable, and train pat-
tern generation and balance during walking in rats. The
devise continuously and independently assists or perturbs
propulsion and balance along four degrees of freedom, while
rats are progressing overground within a large workspace. In
amodel of stroke, this robotic interface improves equilibrium
maintenance, thereby contributing to skilled locomotion
[53].

The use of noninvasive techniques of brain stimulation to
stimulate adaptive plasticity is very appealing, and the results
obtained are exciting. Two main techniques are available to
obtain both cortical enhancement and inhibition: repetitive
transcranial magnetic stimulation (rTMS) and transcranial
direct current stimulation (tDCS). rTMS, using a coil placed
on the scalp, generates a focal magnetic field, which induces
(transiently, focally, and reversibly) an electric current in the
underlying cortex. Low frequency stimulation (in the range
of 1Hz) reduces cortical excitability, while higher stimulation
frequencies increase the cortical excitability. In tDCS, weak
direct currents are delivered to the cortex through two
electrodes that polarize the underlying tissue. Electrode
position is crucial to modulate the distribution and direction
of the current flow: anodal stimulation has an excitatory
effect by cortical neuron depolarization, while cathodal tDCS
hyperpolarizes neurons by decreasing cortical excitability.
In general, two different approaches can be described using
noninvasive brain stimulation: one addressed to increase
excitability of ipsilateral damaged hemisphere (e.g., by stim-
ulating primary motor cortex), and the other one directed to
reduce the activity of intact surrounding or contralateral area
that can produce intra- or interhemispheric inhibition.

The purpose of these applications is to restore the
unbalance between intact and lesioned hemisphere according
to the interhemispheric competition model [54]. Moreover,
Bestmann and coworkers suggested an unexpected role of
the contralesional dorsal premotor cortex, with an elegant
demonstration by means of rTMS which showed the sup-
porting activity of contralesional dorsal premotor cortex to
ipsilesional sensorimotor regions in particular for greater
clinical and neurophysiological impaired patients [55]. The
application of these approaches have produced very promis-
ing results, in both acute and chronic stroke patients, recently
reviewed by Corti et al. [56]. That review suggests that rTMS
applied to the affected hemisphere is safe and could be
considered effective for modulating brain function and con-
tributing tomotor recovery after stroke.However, the authors
stressed the need of double-blinded, sham-controlled Phase
II and Phase III clinical trials involving larger sample sizes to
validate this treatment. In a meta-analysis of 18 randomized
controlled trials dedicated to the effects of rTMS on upper
limb motor impairment, Hsu et al. [57] found a significant

effect size (0.55–95% CI, 0.37–0.72) for motor outcome func-
tion, with more clear effects for subcortical stroke and low-
frequency rTMS applied to the unaffected hemisphere. Talelli
et al. questioned about the real duration and anticipated size
of the treatment effects in chronic stroke patients. In such
patients they showed with a small semirandomized clinical
trial that rTMS application does not augment the gains from
a late rehabilitation program [58]. The need for randomized
controlled trial is even more evident to validate efficacy of
tDCS, considering that its use in stroke patients is quite new
[59, 60]. Recently, Khedr et al. provide an interesting evidence
that both anodal and cathodal tDCS are superior to sham
stimulation in enhancing the effect of rehabilitation training
to improve motor recovery after subacute stroke in a pilot
randomized controlled trial [61]. However, it must be stressed
that our knowledge about mechanisms underlying brain
stimulation are largely incomplete.Thus, different paradigms
of brain stimulation will likely appear in the next future.

3. Noninvasive Therapies in
Animal Models of Stroke

3.1. Enriched Environment. Rehabilitative conditions in
stroke units, such as physical therapy and various kinds of
stimulating activities, can be partially mimicked in animal
studies by housing the animals in an enriched environment
(EE). EE is awidely employed paradigm to study the influence
of external stimuli on brain plasticity in animal models both
in physiological conditions and after damage [62]. Environ-
mental enrichment refers to housing conditions that facilitate
enhanced sensory, social, cognitive stimulation, and motor
activity. Home cages used for enrichment are larger than
standard cages to allow room for several objects, which
generally vary in composition, shape, size, texture, smell, and
colour. Enrichment may also involve access to running
wheels for enhanced voluntary exercise (Figure 1). Key
aspects appear to be the provision of environmental complex-
ity, with objects that offer a range of opportunities for visual,
somatosensory and olfactory stimulation, and environmental
novelty, obtained by changing the objects and their position
in the cage, which might provide additional cognitive
stimulation. Increased complexity and novelty also lead
to greater levels of physical activity. Social interactions are
also favored by housing rather large groups of animals of
both sexes together (see for review [63]). Several studies
show that in experimental models of stroke, EE strongly
promotes recovery of motor functions, such as skilled limb
function [64–68] and gait [69]. Compensatory mechanisms
have been shown to substantially contribute to functional
improvement after stroke [70, 71]. Compensation reflects
the use of alternate behavioral strategies in order to solve a
specific task [70, 72]. To what extent EE enhances functional
outcome after stroke due to compensation for lost functions
rather than their restoration is not entirely clear. Witte and
coworkers addressed this question by focusing on the time
course of functional recovery versus motor compensation
in skilled forelimb movements after cerebral ischemia in
rats. The skilled reaching task allows the distinction between
recovery and compensation by quantitative (reaching
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Figure 1: Figure 1 summarizes some of the most used noninvasive strategies to promote neural plasticity and functional recovery in
experimental models of stroke.

success) and qualitative (movement pattern) analysis. It has
been shown that EE facilitates effective compensation in
skilled reaching, while it does not promote restitution of
function. Namely, rotatingmovements of the forelimb during
reaching are permanently impaired and require functional
compensation through intensified use of the upper body [68].

Interestingly, in one of the first studies on the effects of
EE on stroke animals, Ohlsson and Johansson [64] addressed
whether preoperative and postoperative environments can
differently influence functional outcome after focal brain
ischemia. Rats were subjected to ligation of the right middle
cerebral artery (MCA) then transferred from a non enriched
to an enriched environment or reared in an EE already before
the operation. Rats kept in an EE before and after the MCA
ligation improved sooner and to a slightly higher degree
than those placed in the EE only after the ischemia. The
beneficial effects of EE in the animals enriched before MCA
ligation suggest that complex experiences during healthy
conditions may provide a “brain reserve” against late brain
damage, according to previous findings [73–78]. Among the
EE-induced changes in physiological conditions, the devel-
opment of new synapses [79, 80] and dendritic spines [81–
83] has been demonstrated. In addition, there is evidence that
exposure to EE reduces the expression of growth-inhibitory
molecules in the intact CNS tissue [84, 85]. Therefore, it
is conceivable that reduced inhibitory mechanisms together
with a “reserve” of synapses in enriched animals may provide
neuroprotection and facilitate functional compensation after
stroke.

3.2. Motor Training. A bulk of evidence highlights the func-
tional benefits induced bymotor training after focal ischemic
injury in humans. A useful method of training for chronic
and acute individuals after a stroke is treadmill training [86]
(Figure 1). When applied to ischemic rats starting 24 h after
ischemia, it leads to a significant reduction of infarct volume
and improves neurological function [87]. Interestingly, func-
tional recovery after stroke (such as forelimb foot placing,
parallel bar crossing, and rope or ladder climbing) can be
further improved by complex motor training (which can
be obtained by using rotarod) rather than simple repetitive
exercise, such as treadmill training [88]. This suggests that
repeated complex movements involving motor balance and
coordination are more effective for functional recovery after
stroke than either simple activity or inactivity.

In line with this view, specific behavioral experience,
such as skilled-reaching training (Figure 1), after focal exper-
imental infarct, provides substantial behavioral recovery of
skilled hand function in monkeys [89]. In experimental
animals, skilled reaching training consists of daily practice
of the impaired forelimb to retrieve food pellets. This kind
of rehabilitation provides positive reinforcement (i.e., food
reward) associated with use of the impaired limb, thereby
encouraging animals to practice “spared” motor function or
promoting development of compensatory motor strategies,
resulting in lessened functional deficiency.

Interestingly, by combining both enriched living con-
ditions and daily skilled-reaching training, Biernaskie and
Corbett [66] obtained dramatic long-term improvement both
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in skilled use of the impaired forelimb and digits and in
limb placement in stroke rats. These findings reinforced the
idea that skilled learning therapy coupled with enriched
surroundings may facilitate neurologic recovery in humans.
It should be noted, however, that the effect of forced exercise
on functional recovery after stroke is controversial. Forced
exercise, such as treadmill running or constraint-induced
movement therapy, has been shown to enhance the functional
recovery of motor skills after experimental ischemic stroke
[90, 91]. Other studies, however, demonstrate that tread-
mill running produced negative physiological adaptations
induced by stress [92], and a constraint-induced movement
study did not show improved functional outcome after brain
ischemia [93].

3.3. Social Stimuli. Patients with high levels of social support
or large social networks exhibit more rapid and extensive
functional recovery after stroke than socially isolated individ-
uals [94, 95]. The importance of social influences on stroke
outcome have been also highlighted in experimental animals
by Johansson and Ohlsson [96] (Figure 1). These authors
assessed the relative importance of postoperation physical
activity and social interaction for functional outcome. Rats
were housed together in a large cage with no equipment or
housed individually in cages with free access to a running
wheel and compared to rats kept in an EE. Interestingly, rats
housed together in a large cage with no activity-stimulating
facilities improve more than rats housed in individual cages
with access to a running wheel. However, rats housed in an
EE improve significantly more than the other two groups,
suggesting that, although increased physical or social activity
alone might result in some of the beneficial effects observed
with enrichment, they do not fully account for the broader
behavioural improvements observed following exposure to
complex stimuli.

To study social influences on experimental stroke out-
come, DeVries’ group addressed the effects of social isola-
tion versus pair housing on stroke-induced infarct size and
functional recovery in mice.They observed that pair housing
decreased infarct size and improved functional outcome
of stroke mice when compared to socially isolated mice
[97]. Social interaction influences locomotor activity [98]
and introduces auditory, olfactory, and visual stimuli, which
in turn may influence pathophysiological mechanisms and
recovery. Further, the same authors asked whether one aspect
of social interaction, namely, physical contact, may mediate
the effects of social interaction [99]. To control for the ele-
ment of physical contact during pair housing, the experiment
included the use of standard cages fitted with a grid partition
that allowed the experimentalmouse to see, hear, and smell its
partner but not engage in physical contact. Interestingly, only
paired animals that were in unobstructed physical contact
showed smaller infarct volumes and exhibited recovery of
locomotor activity following MCA occlusion, indicating that
physical contact during social interactions influences stroke
outcome. Further clinical research is, therefore, needed to
determine the influence of physical contact on patient recov-
ery.

3.4. Tactile Stimulation. Another potential noninvasive treat-
ment that might have a significant impact upon recovery
of skilled motor behaviors after stroke is tactile stimulation
(Figure 1). When stroke rats are given tactile stimulation,
which involves petting animals individually with a baby
hairbrush or a paintbrush, they show dramatic improvement
in the single pellet reaching task relative to untreated lesioned
animals [100].These data suggest that massage therapymight
be beneficial in resolving motor deficits in human stroke
patients.

Interestingly, intermittent single whisker stimulation, if
initiated within 2 h of permanent MCA occlusion in the rat,
induces complete protection from ischemic stroke by 24 h
after injury, preventing the expected damage and deficits.
Namely, animals that receive early stimulation treatment
showno sign of infarct. An initial absent or severely disrupted
whisker functional representation is followed by gradual
recovery to baseline responses over the treatment period.
Evoked subthreshold activity and spiking and blood flow
levels, which are severely decreased immediately after occlu-
sion, return gradually to preocclusion levels. Blood flow data
suggest that the protection induced by early stimulation is
due to reorganized blood flow via collateral vessels (interar-
terial connections). In contrast, animals that do not receive
treatment until 3 h post-MCA occlusion show compromised
function and large infarcts [101, 102]. These studies raise
hope for the development of stimulation-based strategies to
mitigate stroke pathology in humans.

3.5. Noninvasive Brain Stimulation Techniques

3.5.1. tDCS. Recent studies employed animal models to
investigate the positive effects of tDCS and define the optimal
time window of its application after stroke (Figure 1). Both
early (1 day after ischemia) and late (1 week after ischemia)
anodal tDCS treatments exert beneficial effects on cognition,
behavioral function (i.e., improvedBarnesmaze performance
and motor behavioral index scores), and neural plastic-
ity, without exacerbating ischemic volume and metabolic
alteration [103]. However, only the rats receiving late tDCS
treatment showed improvement in the beam balance test
[103]. Accordingly, in the study by Jiang et al. [104] anodal and
cathodal tDCS applications from day 1 to day 3 after cerebral
infarction do not improve the beam walking test scores of
rats on day 3, but significant amelioration of motor function
is observed if the animals receive continuous application of
tDCS till day 7 or 14. These findings suggest that late applica-
tion of tDCS may result in stronger motor function improve-
ment than earlier intervention after stroke. Accordingly, one
study, in which anodal tDCS was applied during five daily
sessions to the ipsilesional primary motor cortex in acute
stroke patients starting on the 2nd day, did not reveal any
significant difference in motor function between the tDCS
and sham groups, indicating that tDCS application from day
2 to day 5 after stroke does not promote functional recovery
[105]. LTP and LTD may be candidates processes to explain
the cellular correlates for tDCS-induced effects [106, 107].
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3.5.2. rTMS. Despite the observed beneficial effects in
humans (see for review [108]), the cellular/molecular mech-
anisms underlying rTMS action are far from clear. It is likely
that rTMS induces LTP or LTD, which, in turn, produce
enduring changes on neocortical excitability and synaptic
connections [109–111]. In humans, an increase in motor-
evoked potential amplitude [110, 112], regional cerebral blood
flow, glucose metabolism [113], and EEG response amplitude
[109] has been reported. Studies in animal models (Figure 1)
have shown that rTMS effects depend on changes in NMDA
receptor activity [114]. Interestingly,Wang et al. [115] provided
the first evidence that rTMS induces changes in BDNF-TrkB
signaling in the rat brain, which are reflected in lymphocytes.
Transcription of glial fibrillary acidic protein (GFAP) is
increased in astrocytes of the mouse dentate gyrus (the mag-
nitude of this response depends on the number of stimulus
trains), suggesting that rTMS induces the first stage of a
reactive response that is similar to what occurs following
nervous tissue injury [116]. However, the consequences of
rTMS on experimental animals after stroke have been poorly
investigated. Zhang et al. [117] report a significant recovery of
neurological severity score in stroke rats treated with TMS,
which is accompanied by increased expression of c-Fos and
BDNF in the cerebral cortex surrounding the infarction areas.

4. Is There a Critical Period for
Successful Rehabilitation?

After clinical stroke, the initiation of physical rehabilitation
programs varies from days to several weeks after the insult.
Determining whether there is a period during which the
poststroke brain is most sensitive to physical rehabilitation is
essential to maximize the functional gains from such therapy.
Biernaskie et al. [118] hypothesized that implementing reha-
bilitative treatment early after the strokewould enhance func-
tional outcome. To characterize a potential “critical period”
for successful rehabilitation after stroke, animals received
enriched rehabilitative training at 5 d, 14 d, or 30 d after MCA
occlusion. Early initiation of enriched rehabilitation (5 d after
stroke) provides enhanced functional outcome relative to
ischemic animals receiving delayed rehabilitation, suggesting
that the poststroke brain is in a state of heightened sensitivity
to behavioral experience. In line with those findings, Barbay
et al. [119] demonstrate a time-dependent, rehabilitation-
induced map reorganization after ischemic injury in pri-
mates. Similarly, early treadmill training (started 24 h post-
MCA occlusion) was found to have significant effects in
reducing brain infarct volume and in improving neurologic
function, when compared with late training (started 1 week
post-MCA occlusion, [87]). Nevertheless, some evidences
suggest that early training after focal brain ischemia in rats
exacerbates brain damage and worsens the general outcome
after excessive use of the impaired limb. Namely, when the
intact forelimb is constrained immediately after the surgical
procedure, thus forcing the animal to overuse the impaired
forelimb for postural support and movements, functional
improvement is reduced [120, 121]. The intensity of training
may contribute to early exclusive use-dependent exaggeration
of injury. For example, in the study by Yang et al. [87],

the intensity of treadmill training for 30min/day seems to
be mild compared to forced use by casting procedures.
Excessive sensorimotor activation too early after the insult
may exacerbate injury through a use dependent, NMDA-
mediated process, possibly stimulating an excitotoxic cascade
[122]. This process may dissipate over days, explaining why
rehabilitative experience beginning 3–5 d after insult does
not worsen injury size or behavioral outcome [89, 123].
In addition, during the first week after injury, the tissue
surrounding the infarct is reported to show decreased phasic
inhibition and thus become hyperexcitable [124]. However,
Carmicheal’s group show that while phasic GABA signaling is
reduced in the first weeks after stroke, tonic GABA signaling
is potentiated in peri-infarct motor neurons. Behavioral and
electrophysiological studies in mice suggest that the overall
effect in terms of motor cortex circuitry is a diminished
neuronal excitability, which when reversed leads to recovery.
Therefore, the precise signaling systems in brain excitability
that are deleterious in the early phases, become beneficial
in later phases of recovery (see for a comprehensive review
on brain excitability in stroke [125]). Rehabilitation may
act by affecting this delicate balance between hypo- and
hyperexcitability of neuronal circuits in peri-infarct cortex.

Interestingly, immediate exposure to EE improves func-
tional outcome, despite exacerbation of ischemic injury [67,
126], perhaps as a consequence of removal of functionally
abnormal neurons. Nonetheless, early EE combined with
training enhances recovery when compared with conditions
inwhich rehabilitation is started later and is not accompanied
by any exacerbation of injury [118]. In addition, a “window of
opportunity” extends also to neurovascular changes, which
can facilitate full protection [101].

In summary, the efficacy of rehabilitative therapy after
stroke is influenced by the time of its initiation, with mild
intensity physical training provided early after brain injury
being beneficial for functional improvement. Delaying the
beginning of rehabilitation may instead reduce the efficacy
of treatment and, as a consequence, more intense or longer
duration therapies are required to achieve the same func-
tional gains.

5. Cellular and Molecular Correlates of
Rehabilitation-Induced Plasticity

5.1. Neuritic Plasticity, Reorganization of Connectivity, and
Circuit Rewiring. Much of the recovery after stroke is likely
due to brain plasticity, with some areas of the brain taking
over the functions previously performed by the damaged
regions. Proposed mechanisms include: (i) redundancy of
brain circuitry with alternative pathways taking over when
another one has been damaged; (ii) unmasking of previously
existing but functionally inactive networks; (iii) sprouting
of fibers from surviving neurons with formation of new
synapses [127, 128]. The mechanisms involved likely depend
on the extent of injury. When damage to a functional system
is partial, within-system recovery is possible, whereas after
complete destruction, substitution by a functionally related
system may be the only alternative [129].
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In stroke patients, improved arm and hand movement
and clinical scores have been found in correlation with an
enlargement of the hand region in the ipsilesional cortex
[130–135]. However, the exact mechanisms behind these
changes remain elusive. Activity changes in specific corti-
cal areas may result from a reduction in inhibition from
horizontal or callosal connections [136]. Alternatively, new
connections may form due to lesion-induced sprouting at
the cortical or subcortical level [137, 138]. Reorganization
of neuronal connectivity around the lesion site and also in
the undamaged contralateral cortex has been detected [139–
141]. Interestingly, following an ischemic subtotal lesion of the
rat forelimb motor cortex, spontaneous recovery of forelimb
function is correlated with hindlimb corticospinal neurons
forming new connections with cervical, forelimb-related,
spinal cord neurons [142].

Rewiring of connections after stroke is further enhanced
by rehabilitation. For example, while an ischemic lesion
confined to a small portion of the representation of one hand
results in a further loss of hand territory in the adjacent,
undamaged cortex, early rehabilitative training prevents the
loss of hand territory adjacent to the infarct. In some instan-
ces, the hand representation expands into regions formerly
occupied by representations of the elbow and shoulder.
Functional reorganization in the undamaged motor cortex is
accompanied by behavioral recovery of skilled hand function
[89]. Moreover, stroke rats housed in an EE or receiving
tactile stimulation [100] have significantly increased dendritic
branching and spine density on pyramidal cortical neurons
than control stroke rats, suggestive of increased sprouting of
intracortical connections in the enriched/stimulated group
[143]. Indeed, EE can influence a number of factors, such
as functional enforcement of existing neuronal circuits,
sprouting, formation of new connections, and angiogenesis
[63, 144]. EE may also modulate ischemia-induced glutamate
excitotoxicity, thus leading to attenuated oxidative damage
and neurodegeneration [145]. One candidate mechanism
underlying the beneficial effects of EE on functional recovery
after stroke involves upregulation of neurotrophic factors
[146, 147], which may stimulate neuritic remodeling and
synaptogenesis.

Cortical neurons that sprout a new connection after
stroke activate a neuronal growth program that consists of
transcription factors, cell adhesion, axonal guidance, and
cytoskeletal modifying molecules [148]. It is known that EE
modulates the expression of several genes in the infarcted
cortex [149]. Namely, postischemic EE or social interaction
modulate the expression of substances associated with neu-
ronal plasticity, such as nerve growth factor-induced gene
A (NGFI-A) and NGFI-B. NGFI-A (also known as Egr1,
krox24, zif/268, and TIS8), a transcription factor belonging
to the early growth response family [150], is associated with
stabilisation of LTP and learning [151, 152]. NGFI-A target
genes are synapsin-I and -II, which are involved in synaptic
vesicle trafficking and release as well as synaptogenesis [153–
155]. Synapsin-I and –II are increased in the ipsilateral cortex
of stroke rats following skilled training [156]. In addition,
NGFI-A is a master switch for the initiation of inflammatory

gene expression under ischemic stress [157]. NGFI-B (also
known as Nur77, N10, TIS1, or TR3), a member of the
steroid/thyroid receptor family without any known ligand
[158], has also been associated with LTP [159]. At one month
following MCA occlusion the mRNA expression of NGFI-
A and NGFI-B is increased after EE in the cerebral cortex
and the hippocampus [160]. However, other reports show a
decreased expression of NGFI-A in both cortices of EE rats
[161–163], likely reflecting the suppression of postischemic
inflammation in the brain. Differences in the intensity and
the duration of exercise administered to the rats may account
for the different results obtained.

5.2. Compensatory Neurogenesis. Postlesional plasticity in
the adult brain is not restricted to structural modifications at
the level of axons, dendrites, and synapses but also comprises
the generation, differentiation, and maturation of new
neurons in circumscribed brain regions (reviewed by [164]).
Numerous studies utilizing different experimental models
have shown that an ischemic CNS lesion leads to a substantial
increase in proliferation of neural stem cells and subsequently
increased generation of new neurons in the subgranular zone
of the dentate gyrus and in the subventricular zone (SVZ)
(see for review [143]). Dentate neurogenesis is stimulated
by focal ischemic infarcts even when the site of the injury is
located in remote cortical brain areas [165, 166]. Newborn
neurons in the SVZ are recruited to infarcted areas and may
start to express region-specific mature neuronal markers
[167–172]. However, newborn cells expressing mature
and region-appropriate neuronal markers have only been
observed in the ischemic striatum but not in the cerebral
cortex, with low fractions of newly generated cells surviving
into maturity [167, 168, 173]. Possible reasons for the reduced
incidence of neuronal replacement in the ischemic striatum
and cortex could be low cell survival or hampered neuronal
phenotypic maturation due to detrimental factors in the
perilesional environment, lack of neurotrophic support
and of necessary developmental cues. Notably, ablation
of doublecortin-positive neuronal precursors from the
rostral SVZ and dentate gyrus abolishes neurogenesis and
associated neuronal migration induced by focal cerebral
ischemia. This results in increased infarct size and worsened
neurologic deficits, indicating that neurogenesis contributes
to neuroprotection and short-term functional outcome after
experimental stroke in mice [174]. Those beneficial effects
may depend on the release of chemical mediators (e.g.,
growth factors) by immature neurons [175].

Studies on the effects of EE and exercise on the adult
germinal niches in intact animals have shown that both these
paradigms lead to increased neurogenesis in the hippocam-
pus and the SVZ [63]. However, environmental and physical
activities affect the lesioned brain differently. For example,
postischemic EE enhances cell proliferation in the SVZ, with
stronger effects in the chronic poststroke phase [171, 176],
while wheel-running exercise after neocortical infarction
attenuates the early poststroke activation of the SVZ germinal
niche [176]. Interestingly, no effect of EE or exercise on
hippocampal progenitor cell proliferation is reported after
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transient global ischemia in rats [177], suggesting that com-
mon pathways of regulation by lesion and environmental
interventions may exist [178–180]. In contrast, specific reha-
bilitative training of the impaired forelimb (skilled reaching
training) is able to increase dentate neurogenesis relative
to nontrained stroke rats, although at lower levels when
compared with sham-operated animals. Moreover, increased
levels of newborn granule cells generated in the dentate gyrus
correlate with better functional outcomes [181, 182].

Interestingly, postischemic EE combined with spatial
learning (which simulates occupational therapy in human
rehabilitation and activate hippocampus and prefrontal cor-
tex) restores the perturbed dentate gyrus neuroblast pro-
duction resulting from focal ischemic insult and increases
neuroprotection in the ischemic penumbra [183].

5.3. The Contribution of Glial Cells to Postlesion Plasticity
and Repair. The lack or inadequacy of endogenous neuronal
replacement after brain lesions encouraged investigations on
the role of glial cells in poststroke recovery process. Increas-
ing evidence indicate that glial cells crucially contribute to the
degenerative and regenerative processes following ischemic
brain lesions [184, 185]. Also, some of the beneficial effects
of EE on the postischemic brain might be mediated by a
dynamic modulation of different glial populations.

It is well known that astrocytes are essential for optimal
neuronal function and take an active part in synaptic genera-
tion and plasticity as well as in maintenance of neuronal and
synaptic homeostasis [186–188]. Recently, it has been revealed
that astroglia may represent neural stem cells in the adult
brain and may also direct neuronal differentiation of adult
neural stem cells [189–191].

After brain insults like stroke, astrocytes play a multi-
faceted role [184].They immediately proliferate in response to
the lesion, increase their expression of GFAP, and contribute
to the formation of the glial scar [192, 193]. Reactive astroglia
might provide a protective environment in the perilesional
zone by shielding neurons from oxidative stress [194, 195]
or producing antiapoptotic and trophic factors. Accordingly,
they might promote neuronal survival, synaptic remodelling,
and neurite outgrowth [184, 196–199]. Postischemic EE or
daily training of the impaired forelimb enhances astrogliosis
in the perilesional area [171, 176, 193]. Reactive astroglia,
although representing an impediment for axon growth, may
fulfill important protective and reparative functions after
ischemic injuries and rehabilitation [199–203].

Immediately after the ischemic insult, resting microglia
change their morphology from a ramified to an activated
hyperramified phenotype and express the CD68 antigen
[204]. The activated microglia migrate towards the lesion,
remove the necrotic tissue by phagocytosis, and thereby
become macrophages [205, 206]. Some macrophages derive
from monocytes that cross the blood-brain barrier after
the ischemic lesion [207, 208]. Besides the degradation of
necrotic cells, activated microglia and macrophages release
growth factors and scavenge-free radicals [209, 210]. How-
ever, activated microglia could also harm the injured brain
with the synthesis of potentially toxic substances like nitric

oxide and reactive oxygen radicals or the release of gluta-
mate and proinflammatory cytokines [209, 211–216]. Indeed,
recent studies show that suppression of activated microglia
and macrophages significantly improve functional recovery
after focal ischemic infarcts [217, 218]. In stroke animals
exposed to EE or training a reduction of proliferating
microglia andmacrophages is observed, which may favor the
better functional outcome observed [193].

Finally, proliferation and survival of immature and
mature oligodendrocytes are only slightly influenced by EE.
It has been shown that EE increases the number of NG2-
positive glia, in intact ipsi-and contralateral cortical regions
remote from the infarct [219]. NG2-positive cells possess
some characteristics of multipotent progenitor cells, may
support neuronal function, and can turn intomyelin-forming
oligodendrocytes [220–223]. However, the role of this cell
population in the injured brain is still obscure.

6. Conclusions

Novel noninvasive interventions for stroke patients, such as
mental practice, mirror therapy, virtual reality, robotics, and
brain stimulation techniques, are emerging as potentially effi-
cient strategies to promote functional recovery, but in most
cases only when provided in combination with physical reha-
bilitation [43, 224]. The expansion of rehabilitative programs
with a wide range of possible interventions is more likely the
key to obtain optimal results, by stimulating different repara-
tive and adaptive brain processes. Particularly, the use of non-
invasive techniques of brain stimulation to promote adaptive
plasticity, such as tDCS and rTMS, is very appealing, and the
results obtained in preclinical and clinical models of stroke
are exciting. In this context, however, randomized controlled
trials are needed to validate the efficacy of these techniques.
Moreover, a deeper understanding of the underlying mech-
anisms is necessary. This knowledge may allow the identifi-
cation of biological markers suitable to monitor plastic pro-
cesses in human patients undergoing specific rehabilitative
programs, predict the outcome of the treatments, and opti-
mise existing procedures. In conclusion, in the last few years
there has been an enormous progress in the field of rehabil-
itative trials after stroke, for example, in terms of standard-
ized interventions and tools for assessment of function and
patient selection (e.g., recruitment of homogeneous groups
of patients). Crucial issues, however, remain to be addressed
in future studies, including the sample wideness, repeatability
of the results, and effective outcome measurements.
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