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Di�erential proteomic of plasma
provides a new perspective on
scientific diagnosis and drug
screening for dampness heat
diarrhea in calves

Zunxiang Yan†, Kang Zhang†, Guibo Wang, Lei Wang,

Jingyan Zhang, Zhengying Qiu, Zhiting Guo, Kai Zhang* and

Jianxi Li*

Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu

Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of

Agricultural Sciences, Lanzhou, China

Dampness heat diarrhea (DHD) is one of the most common syndromes of calf

diarrhea. Its complex etiology and lack of objective diagnostic criteria bring

great challenges to the diagnosis and treatment of this disease. This study

aims to screen some prospective diagnostic biomarkers or therapeutic targets

for calves with DHD by investigating the di�erential protein profiles of plasma

between DHD calves and clinically healthy calves bymass spectrometry-based

proteomic. A total of 120 DHD calves and 90 clinically healthy calves were

divided into two groups randomly, 30 DHD calves and 30 clinically healthy

calves in the test group, and 90 DHD calves and 60 clinically healthy calves in

the validation group. In the test group, a total of 52 proteins were di�erentially

expressed between calves with DHD and clinically healthy calves, 13 proteins

were significantly increased and 39 proteins were significantly decreased. The

di�erentially expressed proteins were associated with the intestinal immune

network of IgA production, ca�eine metabolism, purine metabolism, and PI3K

signaling pathway. In the validation group, 13 proteins were selected from

52 di�erential expression proteins for parallel reaction monitoring validation

to verify their associations with DHD calves. The targeted proteomic results

showed that fibronectin precursor (FN1) and apolipoprotein C-IV precursor

(APOC4) were significantly associated with DHD in calves, and they were

downregulated in sick calves. In conclusion, the di�erential expression of

plasma proteins was associated with DHD pathogenesis in calves, and the

FN1 and APOC4 might be the potential clinical biomarkers for diagnosis

of DHD in calves, and the intestinal immune network of IgA production,

ca�eine metabolism, purine metabolism, and PI3K signaling pathway are the

candidate targets to treat DHD in calves. Our finding provides a reference for

further investigating the pathogenesis, developing techniques of diagnosis, and

screening treatment drugs for DHD in calves.
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Introduction

Diarrhea is one of the most common diseases worldwide in

the cattle industry and can be caused by various complicated

factors (1, 2). Especially, the morbidity andmortality of neonatal

calf with diarrhea are high, which imposes a heavy economic

burden on the cattle industry. According to the theory of

traditional Chinese veterinary medicine (TCVM), diarrhea can

be divided into dampness-heat diarrhea (DHD), dampness-

cold diarrhea, spleen deficiency diarrhea, and kidney deficiency

diarrhea (3–5). DHD is one of the most common syndromes in

Chinese cattle herds, and its main clinical symptoms in calves

are hyperthermia, sticky and loose stools with blood, mucus or

purulence, red tongue, and thick greasy tongue-coating (3, 6).

Although the management, feeding, nutrition, and equipment

of cattle farms have been greatly improved, the DHD in calves is

difficult to be effectively controlled in clinical practice due to the

complicated etiology. Therefore, it is of great clinical significance

to study the pathogenesis of calves with DHD from the whole

perspective and to find suitable biomarkers for the diagnosis and

targets for screening treatment drugs for this disease. However,

there is a lack of systematic studies on the pathogenesis of DHD

in calves, especially, since there are few of published evidence

at the proteomics level. As an important method for screening

biomarkers on various diseases, systems biology can help to find

suitable and less invasive markers for diagnosis and targets for

the treatment of calves with DHD.

With the rapid development of multi-omics analytical

techniques, they have been widely used to explore the

mechanism of various diseases, including gastrointestinal

diseases (7, 8), cardiovascular diseases (9), and cancers (10). Few

research on multi-omics techniques focused on calf diarrhea.

Recently, metabolomics was used to study the mechanism of

diarrhea in calves, and acetylcarnitine, indoxyl sulfate, and

oxindole have been recognized to be potential biomarkers for

calf diarrhea (11). Additionally, metabolites such as lecithin and

choline have been found to affect the progression of DHD by

interfering with the metabolism of arachidonic acid, linoleic

acid, and glycerophospholipids in calves (12). Previous studies

on the structure and function of fecal microflora of calves

with DHD indicated that DHD had a significant effect on the

intestinal microbial compositions in calves, including significant

changes in Escherichia-Shigella, Bacteroides, and Fournierella in

sick calves (12). These studies imply that systems biology makes

it possible to screen potential pathological targets for calves

with DHD.

At present, because there are few studies on the pathogenesis

of calves withDHD, veterinarians can only confirm the diagnosis

of this disease in calves by clinical manifestations. Biomarkers

are objective measurements of biological processes, which can

help diagnose DHD in calves more accurately and understand

the mechanism of the disease. Therefore, systems biology is

used to study calves’ DHD, which might offer new practical

information for the improvement of treatment strategies and

diagnostics. However, there is no report about the systematic

study on calves’ DHD from the perspective of differential

proteins. Blood samples in calves are easy to be obtained and

have abundant proteins, which make them more suitable for

clinical detection. The data-independent acquisition (DIA) is a

high-throughput, high-sensitivity, and accurate approach for the

identification of biomarkers in various diseases (13, 14).

This study aimed to identify potential biomarkers from

plasma protein associated with DHD of calves. The experiment

was conducted in two groups. In the test group, proteomic

analysis of plasma was performed using DIA-mass spectrometry,

the aim was to discover the proteins with significant changes

in calves with DHD. In the validation group, parallel reaction

monitoring (PRM) technology was used to validate the

differential proteins for improving the reliability of these

proteins as markers on calves with DHD. As a result, there

were 52 proteins differentially expressed between calves with

DHD and clinically healthy calves, 13 proteins were significantly

increased and 39 proteins were significantly decreased. FN1 and

APOC4 were significantly associated with DHD in calves. The

differentially expressed proteins were related to the intestinal

immune network of IgA production, caffeine metabolism,

purine metabolism, and PI3K signaling pathway.

Materials and methods

Animal recruitment

The trial was carried out on a commercial dairy farm

in Hui Autonomous Prefecture of Changji, Xinjiang Uygur

Autonomous Region, northwest of China. The breed of the

calf is Holstein, and all enrolled calves were similar in genetic

background and age (10- to 20-day old), and housed individually

in a calf shed under the same conditions. The calves were

fed colostrum at a dose of 4 kg/calf only on the first day of

postpartum, and then fed the pasteurized normal milk at a dose

of 6 kg/day, and the calf feed was fed from the third day of

postpartum, and the feeding and drink tools were washed and

disinfected two times daily. The diagnosis of calves with DHD

followed the protocol in our previous study (12), which means

that the DHD case was mainly characteristic with diarrhea as

well as the symptom of red tongue coated with thick greasy

tongue-fur or the symptom of feces with mucus, blood, or

purulence. At the same time, the DHD case must show two

out of total minor symptoms in Table 1. The inclusion and

exclusion criteria of DHD cases are presented in Table 2. All of

the clinically healthy calves showed normal body temperature

without any abnormal clinical manifestations. The inclusion and

exclusion criteria for the clinically health cases are presented

in Table 3. The specific clinical syndrome differentiation was

carried out by a senior expert and a Ph.D. student, their
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TABLE 1 Diagnostic criteria for DHD calves.

Symptoms Clinical signs

Major symptoms 1. Diarrhea

2. Mucus or bloody or purulent stool

3. Red tongue and thick greasy tongue-fur

Minor symptoms 1. Hyperthermia, dry nose

2. Abdominal pain, tenesmus

3. Anal red and swell

4. Thirst and small amount, shortness of urination

Diarrhea, calf excreted semiliquid or watery feces. Mucus or bloody or purulent stool,

mucus, blood, or purulence was observed in feces. Red tongue, the color of tongue in

sick calf was redder than the normal color (reddish) of tongue in the healthy calf. Thick

greasy tongue-coating, the surface of the tongue was covered fully or partly by a yellow

thick tongue fur. Hyperthermia means high body temperature. Shortness of urination,

the volume of urine was reduced in sick calves. Abdominal pain, the intestine or colon of

sick calf showed the feeling of pain. Anal was red and swell. Loose stools like water, much

of water was in feces. Tenesmus, sick animal excreted frequently feces, but the volume of

feces was obviously reduced per time. Dry nose, the tip of nose was dry. Thirst and small

amount, the desire to drink water was strong, but the intake volume of water was less.

TABLE 2 Inclusion and exclusion criteria for DHD calves.

Inclusion criteria Exclusion criteria

Compatible with the diagnostic

protocol

With pneumonia or other clinical diseases

Age <3 weeks old Age more than 3 weeks old

Untreated with antibiotics or

other drugs

Treated with antibiotics or other drugs

major is traditional Chinese veterinary medicine and clinical

diagnosis. The screening protocol of DHD cases and clinically

healthy calves were performed according to veterinary clinical

examination such as the diagnosis protocol of DHD and the

inclusion and exclusion criteria. The test calves were recruited

from early of June to the end of July 2020. The enrolled calves

were separated into a test group and a validation group. The

test group consisted of 30 calves with DHD and 30 clinically

healthy calves. The validation group consisted of 90 calves

with DHD and 60 clinically healthy calves. The study protocols

were approved by the guidelines of the Laboratory Animal

Ethics Commission of the Lanzhou Institute of Husbandry and

Pharmaceutical Sciences of CAAS (SYXK [Gan] 2019-0002).

Plasma sample collection

Blood samples were drawn from the jugular vein and

collected in tubes containing ethylene diamine tetraacetic

acid (EDTA). Approximately 10ml of venous blood was

centrifuged at 5,000 g for 15min at 4◦C to obtain plasma.

After all plasma samples of enrolled animals were collected,

TABLE 3 Inclusion and exclusion criteria for clinically healthy calves.

Indexes Inclusion criteria Exclusion criteria

Mobility Actively mobile Slight depression

Body temperature Normal Over 39◦C

Appetite Good Slightly poor

Stool form Formed stool Unformed and abnormal stool

Age Less than 3-week-old More than 3-week-old

30 plasma samples of DHD cases and 30 plasma samples of

clinically healthy calves were divided into the test group, and

90 plasma samples of DHD cases and 60 plasma samples

of clinically healthy calves were divided into the validation

group. Before protein extraction, every 10 individual similar

samples with equal volume were mixed to generate one pooled

sample. Therefore, 3 DHD and 3 healthy pooled samples

were, respectively, subjected to protein extraction for proteomic

analysis in the test group, and 9 DHD and 6 healthy pooled

samples were, respectively, subjected to protein extraction

for proteomic analysis in the validation group. The plasma

samples were immediately stored in liquid nitrogen until further

protein extraction.

Protein sample preparation

After the pooled plasma samples were thawed at 4◦C,

which were transferred to a new centrifuge tube containing

lysis buffer (2% SDS, 7M urea, 1 mg/ml protease inhibitor

cocktail) and homogenized by an ultrasonic homogenizer

(PS-60AL, Leidebang Electronics Co., LTD, Shenzhen,

China), proteins were isolated by centrifugation at 21,000 g

for 15min at 4◦C (Eppendorf 5427R, Eppendorf, German)

and their concentrations were measured using the BCA

protein assay kit (Beyotime Biotechnology Co., LTD,

Shanghai, China).

A total of 50 µg protein of each pooled sample was

suspended in 50 µl deionized water and incubated at

55◦C for 1 h after adding 1 µl 1M dithiotreitol (DTT),

then added 5 µl 20mM iodoacetamide and alkylated at

37◦C for 1 h in dark. Subsequently, 300 µl cold acetone

was added to precipitate protein at −20◦C overnight.

The precipitate was washed twice with prechilled acetone

and then resuspended in 50mM ammonium bicarbonate.

Finally, the protein was digested with sequence-grade

modified trypsin (Promega, Madison, WI) according

to a substrate/enzyme ratio of 50:1 (w/w) at 37◦C

for 16 h.
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High-performance liquid
chromatography-tandem mass
spectrometry (HPLC-MS/MS) analysis

The pooled sample was re-dissolved in 30 µl solvent A

(A: 0.1 % formic acid in water) and analyzed by online

nanospray LC-MS/MS on an Orbitrap Fusion Lumos coupled to

EASY-nLC 1200 system (Thermo Fisher Scientific, MA, USA).

Three microliters plasma peptides were loaded onto the nano

column (Acclaim PepMap C18, 75µm × 25 cm) with a 120-

min gradient, from 5 to 35% in solvent B (B: 0.1% formic acid

in ACN). The column flow rate was maintained at 200 nl/min

with a column temperature of 40◦C. The electrospray voltage

of 2 kV vs. the inlet of the mass spectrometer was used. The

mass spectrometer was run under data independent acquisition

mode and automatically switched between MS and MS/MS

mode. Three replicates were performed for pooled samples in

the protein identification. The specific parameters are in the

Supplementary material.

Protein functional annotation and
enrichment analysis

The biological significance and ontological functions of the

differential proteins were analyzed using Gene Ontology (GO)

annotation. The pathway of the proteins was annotated using the

Kyoto Encyclopedia of Genes and Genomes (KEGG). Pathway-

based analysis was used to further understand how different

proteins coordinate each other to perform their biological

functions. Significant ontological functions and pathways were

examined within differentially expressed proteins with P <

0.05. We used the interaction relationships in the STRING

protein interaction database (http://string-db.org) to analyze

the differential protein interaction network and construct the

protein interaction network diagram (15).

Database search and data analysis

Raw Data of DIA were processed and analyzed by

Spectronaut X (Biognosys AG, Switzerland) with default settings

to generate an initial target list. Spectronaut was set up to search

the database of cattle along with the contaminant database

assuming trypsin as the digestion enzyme. Carbamidomethyl

was specified as the fixed modification for cysteine. Oxidation

was specified as the variable modification for methionine.

Comparisons between the DHD group and healthy group were

performed using Student’s t-test. Q-value cutoff on precursor

and protein level was applied at 1%. Proteins with significant

differences between groups must meet the absolute value of

the fold change (FC) >1.5 times, and the Q value obtained

by correcting the P-value should be <0.05. The R packages

“ggpubr” and “ggthemes” were applied to construct a volcano

plot of the different proteins between the DHD and clinically

healthy calves.

Parallel reaction monitoring (PRM) and
data analysis

To verify the reliability of the differential plasma proteins

as diagnostic biomarkers for calf diarrhea, the expression levels

of 13 proteins were further quantified by LC-PRM/MS analysis.

These proteins were screened according to the unique peptides

detected by mass spectrometry (>1), mass charge ratio, and

the stability of retention. A total of 38 unique peptides were

detected from these 13 differential proteins, which can be

used for PRM. The PRM analysis was performed by Applied

Protein Technology (Shanghai, China). The plasma proteins

were isolated by centrifugation at 21,000 g for 15min at 4◦C,

and their concentrations were measured using the BCA protein

assay kit (Beyotime Biotechnology Co., LTD, Shanghai, China).

Two hundred micrograms of protein of each sample was added

to DTT at a final concentration of 100mM. The samples were

boiled for 15min and cooled at room temperature. Then, each

sample was mixed with 200 µl UA buffer (8M urea, 150mM

Tris-HCl, pH 8.0) and centrifugated in an ultrafiltration tube

at 14,000 g for 40min. Discard the filtrate and add 100 µl

IAA buffer [50mM IAA (Bio-Rad, 163-2109) in UA] to shake

at 150 g for 1min. After incubation at room temperature for

30min, each sample was centrifuged at 14,000 g for 20min.

Subsequently, each sample was washed with 100 µl UA buffer

three times and with 100 µl NH4CO3 buffer (50mM) for two

times, and centrifuged at 14,000 g for 20min. After adding 40

µl NH4CO3 buffer containing trypsin (1:50; Promega, 317107),

the samples were shaken at 150 g for 1min and incubated

for 16 h at 37◦C. Centrifugation at 14,000 g for 20min and

another 30min following adding 40 µl NH4HCO3 buffer was

used to collect the peptides. After desalting and lyophilization,

the peptides were redissolved in buffer A (0.1% formic acid

in water). The peptide content was estimated by UV light

spectral density at 280 nm. Tryptic peptides were loaded onto

a trap column (100µm × 50mm, 5 µm-C1) connected to

a home-made tip column (75µm × 200mm, 3 µm-C18)

for desalting before reversed-phase chromatography on an

Easy nLC-1200 system (Thermo Fisher Scientific, MA, USA).

One-hour liquid chromatography gradients with acetonitrile

ranging from 5 to 35% in 45min were used. PRM analysis was

performed on a Q Exactive HF mass spectrometer (Thermo

Scientific, USA). Methods optimized for collision energy, charge

state, and retention times on the most significantly regulated

peptides were generated experimentally using unique peptides

of high intensity and confidence for each target protein. The
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FIGURE 1

The di�erential plasma proteins in DHD calves and clinically healthy calves. C indicates clinically healthy calves and Q indicates DHD calves. (A)

Normalized box diagram. The distribution of the normalized quantitative value of the peptide showed that the signal intensity of each group was

basically the same. (B) Heatmap of the di�erentially expressed proteins. Plasma samples represent in the columns, and the di�erentially

expressed proteins are delineated in rows. The color of each cell shows that red represents upregulation and blue represents downregulation.

(C) Volcano plot of proteins with the most significantly di�erent abundance levels in plasma samples of calves with DHD. Increased protein

levels are presented on the positive X-axis and decreased levels are presented on the negative X-axis.
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TABLE 4 List of significantly regulated proteins in plasm of DHD calves vs. healthy caves.

Protein ID Symbol Description P-value log2fc Regulation

ENSBTAP00000038329.3 SERPINA3–7 TPA: Endopin 2C-like [Bos taurus] 0.000 3.393 Up

ENSBTAP00000071329.1 HP haptoglobin precursor [Bos taurus] 0.000 2.354 Up

ENSBTAP00000020413.3 ALDOB ALDOB protein [Bos taurus] 0.000 1.246 Up

ENSBTAP00000054283.2 ALDOB Fructose-bisphosphate aldolase B, partial [Bos mutus] 0.000 1.246 Up

ENSBTAP00000059332.1 ALDOB ALDOB protein [Bos taurus] 0.000 1.246 Up

ENSBTAP00000069401.1 ALDOB ALDOB protein [Bos taurus] 0.000 1.246 Up

ENSBTAP00000054782.1 AFM Afamin precursor [Bos taurus] 0.000 1.114 Up

ENSBTAP00000054563.2 TADA2B TPA: Ada2b-like [Bos taurus] 0.000 0.861 Up

ENSBTAP00000056462.2 TADA2B Transcriptional adapter 2-beta [Bos taurus] 0.000 0.861 Up

ENSBTAP00000030521.5 IGHM Immunoglobulin M heavy chain secretory form [Bos

taurus]

0.006 0.648 Up

ENSBTAP00000021534.4 FGL1 PREDICTED: fibrinogen-like protein 1 isoform X1

[Bos taurus]

0.000 0.631 Up

ENSBTAP00000015839.5 PRG4 Proteoglycan 4 precursor [Bos taurus] 0.008 0.614 Up

ENSBTAP00000062921.1 PRG4 TPA: Proteoglycan 4 [Bos taurus] 0.008 0.614 Up

ENSBTAP00000028617.6 COL3A1 Collagen alpha-1(III) chain precursor [Bos taurus] 0.001 −0.623 Down

ENSBTAP00000014865.4 C1qc Complement C1q subcomponent subunit C precursor

[Bos taurus]

0.000 −0.628 Down

ENSBTAP00000014871.3 C1QB complement C1q subcomponent subunit B precursor

[Bos taurus]

0.000 −0.635 Down

ENSBTAP00000006074.6 COMP RecName: Full= Cartilage oligomeric matrix protein;

Short= COMP; Flags: Precursor

0.000 −0.635 Down

ENSBTAP00000040403.4 HAVCR1 Hepatitis A virus cellular receptor 1 precursor [Bos

taurus]

0.003 −0.640 Down

ENSBTAP00000060898.1 HAVCR1 Hepatitis A virus cellular receptor 1 precursor [Bos

taurus]

0.003 −0.640 Down

ENSBTAP00000058812.1 IGHG2 IgG3 heavy chain constant region, partial [Bos taurus] 0.000 −0.658 Down

ENSBTAP00000028708.5 EBNA1BP2 TPA: EBNA1 binding protein 2 [Bos taurus] 0.006 −0.667 Down

ENSBTAP00000027391.2 APOC4 Apolipoprotein C-IV precursor [Bos taurus] 0.001 −0.683 Down

ENSBTAP00000058852.1 IGLV1–40 PREDICTED: immunoglobulin lambda-like

polypeptide 1 isoform X2 [Bos taurus]

0.000 −0.712 Down

ENSBTAP00000059956.1 IGLV1–40 PREDICTED: immunoglobulin lambda-like

polypeptide 1 isoform X2 [Bos taurus]

0.000 −0.712 Down

ENSBTAP00000017167.6 CRISP3 Cysteine-rich secretory protein 3 precursor [Bos taurus] 0.000 −0.731 Down

ENSBTAP00000058161.1 CRISP3 Cysteine-rich secretory protein 3 precursor [Bos taurus] 0.000 −0.731 Down

ENSBTAP00000010922.5 FN1 Fibronectin precursor [Bos taurus] 0.000 −0.829 Down

ENSBTAP00000023402.5 SERPINA6 PREDICTED: corticosteroid-binding globulin [Bos

taurus]

0.000 −0.898 Down

ENSBTAP00000009559.5 F13A1 coagulation factor XIII A chain [Bos taurus] 0.000 −0.919 Down

ENSBTAP00000058593.1 IGLV1–40 PREDICTED: Immunoglobulin lambda-like

polypeptide 1 isoform X2 [Bos taurus]

0.005 −0.935 Down

ENSBTAP00000024666.5 JCHAIN Immunoglobulin J chain precursor [Bos taurus] 0.004 −0.959 Down

ENSBTAP00000017420.3 COL1A1 Collagen alpha-1(I) chain precursor [Bos taurus] 0.004 −1.024 Down

ENSBTAP00000064749.1 Igh-1a Membrane-bound immunoglobulin gamma1 heavy

chain constant region, partial [Bos taurus]

0.000 −1.048 Down

ENSBTAP00000066754.1 ADAMTS13 PREDICTED: LOWQUALITY PROTEIN: A

disintegrin and metalloproteinase with

thrombospondin motifs 13 [Bison bison bison]

0.000 −1.093 Down

(Continued)
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TABLE 4 (Continued)

Protein ID Symbol Description P-value log2fc Regulation

ENSBTAP00000028350.3 CIB1 Calcium and integrin-binding protein 1 [Bos taurus] 0.001 −1.251 Down

ENSBTAP00000066513.1 CIB1 Calcium and integrin-binding protein 1 [Bos taurus] 0.001 −1.251 Down

ENSBTAP00000020163.3 F13B Coagulation factor XIII B chain precursor [Bos taurus] 0.000 −1.405 Down

ENSBTAP00000058124.1 F13B PREDICTED: coagulation factor XIII B chain-like

[Bubalus bubalis]

0.000 −1.405 Down

ENSBTAP00000031493.4 IGKV2–29 IGK protein [Bos taurus] 0.003 −1.623 Down

ENSBTAP00000022772.3 AFP Alpha-fetoprotein precursor [Bos taurus] 0.004 −1.653 Down

ENSBTAP00000074267.1 AFP Alpha-fetoprotein precursor [Bos taurus] 0.004 −1.653 Down

ENSBTAP00000019538.6 LGB Beta-lactoglobulin precursor [Bos taurus] 0.003 −1.789 Down

ENSBTAP00000026377.6 PIGR PREDICTED: polymeric immunoglobulin receptor

[Bos indicus]

0.000 −1.841 Down

ENSBTAP00000050920.3 PIGR PREDICTED: polymeric immunoglobulin receptor

[Bos indicus]

0.000 −1.841 Down

ENSBTAP00000016620.4 XDH TPA: xanthine dehydrogenase/oxidase [Bos taurus] 0.000 −2.098 Down

ENSBTAP00000032520.4 XDH TPA: xanthine dehydrogenase/oxidase [Bos taurus] 0.000 −2.098 Down

ENSBTAP00000061483.1 XDH RecName: Full= Xanthine dehydrogenase/oxidase;

Includes: RecName: Full= Xanthine dehydrogenase;

Short= XD; Includes: RecName: Full= Xanthine

oxidase; Short= XO; AltName: Full= Xanthine

oxidoreductase; Short= XOR

0.000 −2.098 Down

ENSBTAP00000066957.1 XDH TPA: xanthine dehydrogenase/oxidase [Bos taurus] 0.000 −2.098 Down

ENSBTAP00000070504.1 XDH RecName: Full= Xanthine dehydrogenase/oxidase;

Includes: RecName: Full= Xanthine dehydrogenase;

Short= XD; Includes: RecName: Full= Xanthine

oxidase; Short= XO; AltName: Full= Xanthine

oxidoreductase; Short= XOR

0.000 −2.098 Down

ENSBTAP00000022744.5 HSPG2 TPA: heparan sulfate proteoglycan 2 [Bos taurus] 0.001 −2.333 Down

ENSBTAP00000056896.1 Lrmda PREDICTED: leucine-rich repeat-containing protein

C10orf11 homolog [Equus asinus]

0.005 −2.420 Down

ENSBTAP00000067201.1 Lrmda PREDICTED: leucine-rich repeat-containing protein

C10orf11 homolog [Bos indicus]

0.005 −2.420 Down

Protein ID, ID number of the protein. Symbol, Symbol name of the protein. Description, Functional description of the protein. P-value, P-value for inspection. Log2fc, the fold difference

was treated by log2 , and the DHD group was divided by the healthy group. Regulation, Trend of protein change in the DHD group compared with the healthy group.

working parameters of the mass spectrometer were shown in

Supplementary material 1. The raw data were analyzed using

Skyline (MacCoss Lab, University of Washington), where signal

intensities for individual peptide sequences for each of the

significantly altered proteins were quantified relative to each

sample and normalized to a standard reference.

Results

Identification of di�erentially expressed
proteins in calves with diarrhea

As shown in Figure 1A, the box plot analysis showed that

the log10 protein intensity medians of all pooled samples were

nearly at the same levels, which suggested that there was no

bias toward samples. We used the local normalization method

in Pulsar software to normalize the peak intensity of the overall

sample spectra. After normalization, a total of 679 proteins were

identified in the test group, in that 52 proteins were significantly

different between healthy and DHD calves (|FC| > 1.5, P <

0.05; Table 4), and 13 proteins of them were upregulated and

39 proteins of them were downregulated in calves with DHD

compared with clinically healthy calves (Figure 1B). The specific

information of these significantly different proteins, such as gene

names, fold change, and annotation information were listed in

Table 2. Volcano plots revealed that haptoglobin precursor (HP)

and endopin 2C-like (SERPINA3–7) were significantly increased

(the right part of the axis), and xanthine dehydrogenase/oxidase

(XDH), heparan sulfate proteoglycan 2 (HSPG2), leucine-rich
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FIGURE 2

GO analysis of significantly di�erential proteins between DHD calves and clinically healthy calves. (A) Biological process-based analyses of

significantly di�erential proteins. (B) Cellular component-based analyses of significantly di�erential proteins. (C) Molecular function-based

analyses of significantly di�erential proteins. (D) Subcellular location-based analyses of significantly di�erent expression proteins.

repeat-containing protein C10orf11 homolog (Lrmda), and

polymeric immunoglobulin receptor (PIGR) were significantly

decreased (the left part of the axis; Figure 1C).

Protein functional annotation and
enrichment analysis

GO annotation of the significantly di�erent
proteins

Gene Ontology analysis was conducted to explore the

ontological functions of 52 differential proteins. Totally, 21

proteins were annotated and classified as participating in certain

biological processes, 19 proteins were annotated as related to

some molecular function, and the cellular components of 22

proteins were noted. Biological process analysis showed that

the majority of the significantly altered proteins were involved

in biological regulation (10.36%), cellular process (10.36%),

regulation of biological process (9.96%), and single-organism

process (9.59%), and the proteins involved in these biological

processes included FN1, PIGR, coagulation factor XIII A chain,

and complement C1q subcomponent subunit C&B precursor

(Figure 2A). Molecular functional analysis demonstrated that

the proteins were associated with binding (61.90%), catalytic

activity (16.67%), and structural molecule activity (7.14%;

Figure 2C). The differential proteins associated with these

GO terms include FN1, PIGR, alpha-fetoprotein precursor

(AFM), and collagen alpha-1(I) chain precursor (COL1A1).

Furthermore, cellular component analysis showed that these

significantly altered proteins were located in the organelle

(16.78%), extracellular region (14.77%), cell part (11.41%), and

organelle part (7.38%; Figure 2B). We also used WoLFPSort

to predict the more detailed subcellular localization of these

proteins (Figure 2D). They were mainly located in extracellular

space (48.08%) and cytoplasm (30.77%), accounting for more

than 70% of all significantly different proteins. In addition,

these proteins were found in the nucleus, anchored components

of the plasma membrane, endomembrane system, and plasma

membrane. To further determine which functional categories

were closely associated with DHD calves, the significantly
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FIGURE 3

GO enrichment analysis of the significantly di�erential proteins between DHD calves and clinically healthy calves. (A) GO enrichment analysis on

the ontology of molecular function, cellular component, and biological process of the significantly increased proteins. (B) GO enrichment

analysis of the significantly decreased proteins.
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FIGURE 4

KEGG pathway enrichment analysis of the di�erentially expressed proteins. (A) The first 20 pathways with the lowest P-value were used for the

diagram, with the ordinate as pathways and the abscissa as enrichment factors (The number of di�erential proteins in that pathway divided by

the number of all proteins. The size indicated the number of di�erent proteins, and the more red the color, the smaller the P-value). (B) KEGG

enrichment analysis of the significantly increased proteins. (C) KEGG enrichment analysis of the significantly decreased proteins.

Frontiers in Veterinary Science 10 frontiersin.org

https://doi.org/10.3389/fvets.2022.986329
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Yan et al. 10.3389/fvets.2022.986329

increased proteins and significantly decreased proteins were

analyzed, respectively, by GO function annotation. For cellular

components, the increased proteins were significantly enriched

in organelles, whereas decreased proteins were enriched in

the extracellular region. The major molecular functions of

the increased proteins and the decreased proteins were both

bindings. For the biological process, the increased proteins

were mainly involved in biological regulation, while decreased

proteins participated in the cellular process (Figures 3A,B).

KEGG annotation of the significantly di�erent
proteins

We used KEGG to annotate the information of the

significantly different proteins at the level of biological pathways

(16). As a result, 57 relevant KEGG signal pathways for 52

differential proteins were annotated, and these proteins were

significantly enriched in 31 pathways (P < 0.05). The first

20 significantly enriched pathways were shown in Figure 4A,

such as caffeine metabolism, intestinal immune network for

IgA production, Fc epsilon RI signaling pathway, and NF-κB

signaling pathway.

Further comparison of the KEGG pathway enrichment

analysis revealed that the increased proteins in calves with DHD

were mainly enriched in metabolic pathways, HIF-1 signaling

pathway, and fructose and mannose metabolism (Figure 4B),

and the decreased proteins were mainly enriched in caffeine

metabolism, purinemetabolism, and intestinal immune network

for IgA production (Figure 4C).

Network Analysis

The protein-protein interaction (PPI) network consisted

of 52 nodes and 113 edges with an average node degree

of 8.96 (Figure 5). The expected number of edges for this

analysis was 113. FN1, as an important node in the PPI

network, was negatively correlated with fibrinogen-like protein

1 isoform X1 (FGL1) and endopin 2C-like (SERPINA3–7),

and positively correlated with 15 proteins, such as xanthine

dehydrogenase/oxidase (XDH), polymeric immunoglobulin

receptor (PIGR), and complement C1q subcomponent subunit

C precursor (C1qc). These data indicated that there was a

partially biological connection among the differential proteins.

PRM analysis of the di�erentially
expressed plasma proteins

The results of the PRM pre-experiment showed that 13 of

the 52 differential proteins in the test group were detected in the

validation group. Thirteen differential proteins corresponding to

38 peptides were selected for PRM validation to verify whether

they are associated with DHD. The results of the difference trend

and t-test showed that fibronectin precursor and apolipoprotein

C-IV precursor in plasma of calves with DHD were significantly

lower than those in clinically healthy calves (P < 0.05), which

were consistent with the results from the test group (Table 5).

Therefore, the reliability of these two proteins as potential

biomarkers for diagnosis of DHD was further validated.

Discussion

Calf diarrhea is a growing concern worldwide because

it can cause serious economic losses. DHD is a common

type of diarrhea in calves, but the exact pathogenesis has

not been determined yet, so the current treatment strategy

cannot satisfactorily control the occurrence of DHD in calves.

Therefore, it is necessary to further study the pathogenesis of

DHD in calves. Proteomics is an effective technique to help

characterize diseases by identifying subtle changes in protein

abundance between the sick and healthy states of the body (17).

To date, although the proteomic has been widely used in the

study of many diseases including diarrhea, little information

is available about the protein profiles of DHD in the calf. In

the present study, proteomics was used to identify significantly

differential proteins in calves with DHD, and their possible

related functions were analyzed to elucidate the pathogenesis of

DHD in calves at the proteomic level.

Intestinal tissue from animals cannot easily be sampled in

general, especially in calves, the individual economic value is

high. In contrast, the plasma is an ideal sample for studying the

pathogenesis of calves with DHD because of its relative chemical

and physical stability, abundant protein content, and relatively

reliable collection methods in large animals. In this study,

52 proteins were detected to be significantly altered in calves

with DHD. KEGG annotated that these proteins are involved

in caffeine metabolism, Fc epsilon RI signal pathway, purine

metabolism, intestinal immune network for IgA production,

NF-κB signal pathway, and PI3K/Akt signal pathway. Caffeine

metabolism and purine metabolism are important metabolic

processes in the body, and their metabolic disorder will lead

to the occurrence of many diseases, such as rheumatic immune

diseases and obesity (18, 19). Caffeine was verified to be closely

related to inhibiting diarrhea, the reason is related to its function

of sterilization and anti-inflammatory effect (20, 21). Purines are

natural substances found in virtually all foods, and they can be

metabolized into uric acid in the body, which has antioxidant

properties (22). Besides, purines as chemical messengers could

transmit throughout tissues and species, and cross-linked with

other transmitter networks to coordinate numerous aspects

of cell behavior such as proliferation, migration, apoptosis,

and other physiological processes of organisms (18). It has

also been shown that regulation of purine metabolism can

effectively alleviate colitis (23). Fc epsilon RI signal pathway
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FIGURE 5

Mapping of significantly di�erential proteins onto a composite network based on predicted PPI. The edges of the network symbolize di�erent

interactions between proteins, based on the actions view of STRING v11.0. The green edges indicate a negative correlation and the red edges

indicate a positive correlation. The green nodes indicate upregulated proteins and the yellow nodes indicate downregulated proteins.

plays a central role in the IgE-mediated allergic response and

mast cell inflammation, which could be activated in some

diseases with increased inflammation such as digestive diseases

and heart diseases (24, 25). The significant increase in IGHM

associated with this pathway in calves with DHD may indicate

an enhanced inflammatory response in sick calves. PI3K/Akt

signal pathway participates in the pathogenesis of diarrhea-

related diseases by regulating various inflammatory factors (26).

The NF-κB transcription factor is a typical pro-inflammatory

signaling factor, and the activation of NF-κB can promote

the occurrence and development of downstream inflammatory

reactions (27). Abnormal regulation of these pathways has been

found in several diseases presenting with diarrhea (28, 29).

Most of the significantly differential proteins (39/52) in this

study were decreased in calves with DHD, including fibronectin,

coagulation factor XIII B chain, and coagulation factor XIII

A chain. Fibronectin is a glycoprotein that is involved in

various biochemical processes, such as wound healing, cell

adhesion, and blood coagulation (30, 31). Fibronectin decreased

in calves with DHD, which may be responsible for the increased

mucosal permeability (32). Adhesion is a crucial step in bacterial

infection. Fibronectin was found to be associated with adhesion

in many intestinal pathogens (33). Previous studies have

considered fibronectin as a biomarker for some diseases, such as

sepsis, where low fibronectin levels seem to be a marker of poor

prognosis, and meningitis and asthma, where fibronectin levels

are significantly increased (34, 35). But it is the first time that

fibronectin could be a biomarker for calf diarrhea. Coagulation

factor XIII is a coagulation factor with many cellular functions,

which is involved in the wound healing process, proangiogenic
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TABLE 5 Di�erential proteins identified in plasma samples of DHD calves and clinically healthy calves by PRM.

Protein name Average

health

Average

diarrhea

Ratio discovery

group

(diarrhea/health)

Ratio

validation group

(diarrhea/health)

T-Test validation

group

(diarrhe/health)

Coagulation factor XIII A chain 0.2071 0.1617 0.528944 0.7808 0.1432

Fibronectin precursor 5.8009 3.6124 0.562785 0.6227 0.0021

Complement C1q subcomponent subunit C precursor 1.3160 1.1665 0.64712 0.8864 0.5312

Complement C1q subcomponent subunit B precursor 0.9890 0.8203 0.644032 0.8294 0.1728

Fibrinogen-like protein 1 isoform X1 0.1047 0.0969 1.548264 0.9258 0.7931

Apolipoprotein C-IV precursor 0.1169 0.0337 0.622963 0.2882 0.0004

Immunoglobulin M heavy chain secretory form 1.5678 2.1028 1.566478 1.3412 0.3602

IGK protein 0.1038 0.1001 0.324764 0.9646 0.9166

Endopin 2C-like 1.1420 0.8088 10.50241 0.7083 0.6404

IgG3 heavy chain constant region 4.0449 4.4027 0.63393 1.0885 0.8002

Immunoglobulin lambda-like polypeptide 1 isoform X2 12.8527 16.0433 0.610376 1.2482 0.7057

Hepatitis A virus cellular receptor 1 precursor 1.0260 0.7950 0.641591 0.7749 0.3276

Haptoglobin precursor 0.1093 4.3719 5.11288 39.9925 0.2805

Average health means a relative expression of the target peptide in clinically healthy calves. Average diarrhea means a relative expression of target peptides in DHD calves. Ratio test group

(DHD/health) means the ratio of average expression of target protein between DHD calves and clinically healthy calves in the test group. Ratio validation group (DHD/health) means the

ratio of average expression of target protein between DHD calves and clinically healthy calves in the validation group. T-test (P-values) validation group (DHD/health), P-values of t-tests

on differential expression of target proteins between DHD calves and clinically healthy calves in the validation group.

function, and monocyte/macrophage functions (36). It has

been reported that the levels and activity of coagulation factor

XIII antigen were reduced in inflammatory bowel disease

(37). Plasma coagulation factor XIII could promote cross-

linking of the extracellular matrix components fibrin and

fibronectin in response to tissue injury (38). The cross-linking

of coagulation factor XIII A to fibronectin could promote the

wound healing process (39). In this study, the reduction of

these proteins may slow down the healing process of intestinal

injury in calves with DHD. Heparan sulfate proteoglycans,

complex molecules in cell membrane and extracellular matrix,

play vital roles in tumorigenesis due to its mediating cell

adhesion, differentiation, migration, and signal transduction.

It also has been considered as an important target for the

treatment and diagnosis of colorectal cancer (40). Xanthine

dehydrogenase (XDH) and Xanthine oxidase (XO) are two

interconvertible forms of Xanthine oxidoreductase (XOR). XO

activity could be inhibited in some diseases that can lead

to intestinal injury (41). Metabolism of intestinal tissue is

usually very active, even short periods of hypoxia or ischemia

may cause oxidative damage to the intestinal mucosa, which

is due to an increase in the amount or activity of XO. It

has been demonstrated that XDH is converted to XO when

intestinal mucosa was oxidative damaged (42). Therefore, this

may also be one of the reasons for the significant decrease

in XDH in calves with DHD. In addition, alpha-fetoprotein

(AFP) (43), IGK protein (44), and collagen alpha-1 (I) chain

precursor (COL1A1) (45) were also used as biomarkers for some

intestinal diseases.

The significantly increased proteins of plasma in calves

with DHD included haptoglobin precursor, afamin precursor,

and ALDOB protein. Haptoglobin, an acute phase response

protein secreted by the liver, has the activities of antioxidant,

immunomodulatory, antibacterial, and anti-inflammatory (46,

47). The aberrant glycosylation of haptoglobin is associated with

many diseases, especially cancer (48). In addition, as a biomarker

of diabetic cardiovascular disease and steroid-resistant nephrotic

syndrome, haptoglobin can also be used to evaluate and

diagnose diarrhea in calves due to its significantly increased

expression in calves with DHD (49–51). The significantly

increased haptoglobin in the plasma of calves with DHD may

be associated with an acute inflammatory response caused by

diarrhea. Afamin is a vitamin E-binding glycoprotein expressed

mainly in the liver and is associated with many metabolic

diseases, such as type 2 diabetes, metabolic syndrome, and

obesity (52–54). Afamin is also considered to be a marker of

increased hepatic lipid content, and fatty liver has been found

in damp-heat diarrhea in rats (52, 55). Although this protein

has not been reported in diarrhea-related diseases, it is one

of the biomarkers for the detection of gastric cancer (56),

and it plays an important role in the anti-apoptotic cellular

processes related to oxidative stress, which may be the reason

for the significantly increased afamin precursor in the plasma

of calves with DHD (57). ALDOB played an important role in

glycolysis and was annotated by metabolic pathways, carbon

metabolism, glycolysis/gluconeogenesis, and HIF-1 signaling

pathway by KEGG pathway analysis. ALDOB is mainly used

for the diagnosis of liver diseases and is used as a biomarker
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for acute liver injury (58). ALDOB has also been poorly studied

in relation to diarrhea, but the plasma glucose and lactate

concentrations could change in calves with DHD (59), which

could account for the significant changes in ALDOB protein.

In addition, proteoglycan 4 is a protein that is critical for

the virulence factor binding to the cell surface, so it plays an

important role in colitis (60).

In the biomarker validation group, the reliability of FN1

and APOC4 as biomarkers for a calf with DHD was verified

by targeted quantification. FN1 is related to tissue repair and

host defense, and it is also annotated by KEGG into the PI3K-

Akt signaling pathway, focal adhesion, and bacterial invasion

of epithelial cells. Apolipoprotein could be synthesized in the

intestine and reduced inflammatory responses (61). A significant

reduction of Apolipoprotein has also been reported in some

cases of diarrhea, which may be related to its important role

in lipid metabolism in intestinal diseases (62, 63). Therefore,

these two proteins may be potential biomarkers for diagnosis

and targets for therapy on DHD in calves. In addition, although

there were no significant differences in coagulation factor

XIII A chain, IGK protein, and haptoglobin precursor in the

invalidation group, their changing trends were consistent with

those in the test group. These proteins may be closely associated

with the pathogenesis of DHD in calves.

This is a preliminary study that indicates the feasibility of

plasma proteins as a potential diagnostic biomarker approach

for calves with DHD. Since our experiments were conducted

on one farm, there are significant limitations in the results

and conclusion. In our follow-up experiments, the number of

clinical samples and farms should be increased, andmore testing

methods, such as enzyme-linked immunosorbent assay (ELISA)

and western blot, are needed to verify these potential biomarkers

for the clinical diagnosis and reliable targets for therapy DHD

in calves. In addition, a more in-depth analysis of plasma

proteomics in combination with other omics can provide a more

complete and accurate understanding of calves with DHD.

Conclusion

Dampness heat diarrhea disturbed the composition of

plasma proteins in calves. The changes in plasma protein

levels, especially fibronectin precursor, haptoglobin precursor,

coagulation factor XIII A chain, and apolipoprotein C-IV

precursor, might affect the progression of DHD in calves

by interfering with complement and coagulation cascades,

PI3K-Akt signaling pathway, and focal adhesion. The

reliability of fibronectin precursor and apolipoprotein C-

IV precursor as biomarkers of calf with DHD was verified

using PRM analysis. The findings provide a new insight

for further exploring the mechanism of DHD in calves and

evaluating the clinical meaning of fibronectin precursor and

apolipoprotein C-IV precursor for diagnosis or treatment of

the disease.
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