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Rheumatoid arthritis (RA) is the most common systemic inflammatory rheumatic disease.

It is associated with significant burden at the patient and societal level. Extensive

efforts have been devoted to identifying a potential cause for the development of

RA. Epidemiological studies have thoroughly investigated the association of several

factors with the risk and course of RA. Although a precise etiology remains elusive,

the current understanding is that RA is a multifactorial disease, wherein complex

interactions between host and environmental factors determine the overall risk of disease

susceptibility, persistence and severity. Risk factors related to the host that have been

associated with RA development may be divided into genetic; epigenetic; hormonal,

reproductive and neuroendocrine; and comorbid host factors. In turn, environmental

risk factors include smoking and other airborne exposures; microbiota and infectious

agents; diet; and socioeconomic factors. In the present narrative review, aimed at

clinicians and researchers in the field of RA, we provide a state-of-the-art overview of

the current knowledge on this topic, focusing on recent progresses that have improved

our comprehension of disease risk and development.
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INTRODUCTION

Rheumatoid arthritis (RA) is a chronic immune-mediated multisystemic disease that mainly
localizes to the joints. It is the most common systemic inflammatory rheumatic disease (1, 2)
and it is associated with considerable morbidity and disability, as well as increased mortality
(3). In the last decades, the prognosis of RA patients has been dramatically improved by the
expansion of knowledge on the etiology and pathophysiology of the disease that paved the way
for the development of a number of currently available effective drugs (4). However, despite these
advances, there is still a substantial gap in themanagement of the disease, withmany patients failing
to attain profound and sustained clinical responses, ultimately demonstrating modest long-term
outcomes. Even more strikingly, the actual impact on the prevention or delay of the disease in
subjects at high-risk has overall been marginal.

Extensive efforts have been devoted in the last decades to investigate the epidemiological
association of several factors with the risk of developing RA, as well as its course and prognosis.
Tremendous progress has, nonetheless, been made. Although a precise etiology is yet to be
determined, it is apparent that RA is a multifactorial disease, with a complex interplay between

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2021.689698
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2021.689698&domain=pdf&date_stamp=2021-11-26
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jecfonseca@gmail.com
https://orcid.org/0000-0003-1432-3671
https://doi.org/10.3389/fmed.2021.689698
https://www.frontiersin.org/articles/10.3389/fmed.2021.689698/full


Romão and Fonseca Etiology and Risk Factors for RA

the host and the environment determining the overall risk of
disease susceptibility, persistence and severity (5, 6). In fact,
this intricacy is well-illustrated in the European League Against
Rheumatism (EULAR) definition of the stages that unfold until
the development of RA (Box 1) (7). The insights from the
wealth of epidemiological studies available, though not directly
proving causality, are important for understanding the etiology
and pathogenesis of RA. Additionally, they can provide support
to patient advice on modifiable risk factors.

Risk factors for developing RA can be generically divided
into host- and environment-related (Figure 1). Host factors
that have been associated with RA development may be further
grouped into genetic; epigenetic; hormonal, reproductive
and neuroendocrine; and comorbid host factors. In turn,
environmental risk factors include smoking and other
airborne exposures; microbiota and infectious agents; diet;
and socioeconomic factors. Herein, we provide a state-of-the-art
overview of the current knowledge on this topic, aimed at

BOX 1 | Stages preceding the development of RA as proposed by EULAR.

• Individuals may go through different phases prior to RA onset:

a. Genetic risk factors for RA

b. Environmental risk factors for RA

c. Systemic autoimmunity associated with RA

d. Symptoms without clinical arthritis

e. Unclassified arthritis

f. RA

• a. to e. may be present simultaneously at a given moment (e.g., a+c+d)

• ‘Pre-RA’ should only be applied retrospectively to patients with RA, do

describe a phase where any of a. to e. are present, individually or

in combination.

Adapted from Gerlag et al. Ann Rheum Dis 2012 (7).

FIGURE 1 | Summary of risk factors for the development of rheumatoid arthritis. Factors that are associated with decreased risk are represented in brackets. Factors

for which evidence is conflicting and uncertainty remains are followed by a question mark. AI, aromatase inhibitors; COPD, chronic obstructive pulmonary disease;

EBV, Epstein-Barr virus; FLS, fibroblast-like synoviocyte: GI, gastrointestinal; GU, genitourinary; HCV, hepatitis C virus; HDAC, histone deacetylases; HLA, human

leukocyte antigen; HPA, hypothalamic-pituitary-adrenal; IBD, inflammatory bowel disease; lncRNA, long non-coding RNA; miRNA, micro RNA; MS, multiple sclerosis;

OC, oral contraceptives; PBMCs, peripheral blood mononuclear cells; PTSD, post-traumatic stress disorder; SE, shared epitope.

clinicians and researchers in the field of RA.We specifically focus
on recent progresses that have improved our comprehension of
disease risk and development.

HOST FACTORS

As with many other immune-mediated diseases, the host is
closely linked to the risk for developing RA (Figure 1). This
includes, first and foremost, genetic factors, which account for
a major proportion of disease risk. More recently, epigenetic
mechanisms have been identified to be directly involved in
RA pathogenesis, modulating the risk of disease development.
Notably, they can be influenced by the environment, linking
extrinsic and intrinsic factors. Hormonal, reproductive and
neuroendocrine factors have long been proposed as contributing
to RA, given the observed female preponderance of the disease.
Finally, a number of concomitant pre-existing conditions have
been proposed to increase the risk of incident RA. We detail
the available evidence concerning each of these groups in the
following sections.

Genetic Factors
Data supporting a genetic component in RA first arose from
familial and twin studies. In fact, the risk of a monozygotic twin
of an RA patient for developing RA is 9–15%, which is up to
4-fold that seen for dizygotic twins, and much higher than the
general population [relative risk (RR) 25–35] (8–10). Likewise,
first-degree relatives have a RR of RA that varies from 2 to 5 and
is similar in men and women (11–14). In addition, the risk of
RA is also increased by 1.5–3-fold in offspring of parents with
other immune-mediated inflammatory diseases, such as systemic
lupus erythematosus, Sjögren’s syndrome, ankylosing spondylitis,
or Hashimoto thyroiditis (12). These studies have allowed the
estimation of the heritability of RA, that is, the quantification of
the genetic contribution of the disease, which was found to be 50–
65% (15). Interestingly, it has been recently shown to be higher
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in ACPA-positive RA (50%), compared to ACPA-negative disease
(20%) (11).

Currently, over 100 loci have been associated with
increased RA risk in trans-ethnic populations (16, 17).
Due to its importance for the immune system, the major

histocompatibility complex (MHC) locus was the first to be
identified and remains the most studied region, accounting for
around a third of the disease genetic susceptibility (18). Certain
human leukocyte antigen (HLA) loci such as HLA-DRB1 have
been found to be strongly associated with RA inmost populations
(19). However, the risk varies according to specific alleles and
ancestry, being higher for HLA-DRB1∗0101/∗0401/∗0404 in
Caucasians, HLA-DRB1∗0405/∗0901 in Asians, and HLA-
DRB1∗1402 in Native American Indians (19, 20). A major
breakthrough was the identification of a sequence of five amino
acids in residues 70–74 (QKRAA, QRRAA, RRRAA) in the
third hypervariable region of the DRß1-chain, encoded by the
HLA-DRB1 gene, that was highly preserved in risk alleles for RA
and was therefore named shared epitope (SE) (19, 21). The SE
hypothesis proposed that this given sequence enabled binding
of a specific peptide to the HLA molecule of antigen-presenting
cells (APCs), which was recognized by T cells, eventually leading
to an autoimmune response. While such an antigen has not been
unequivocally identified so far, and the role of the SE-containing
alleles seems less important in some populations (19), the SE
hypothesis was vital in providing an etiological support to the
aforementioned epidemiological observations. Yet, this theory
fails to explain the differential risk conferred by SE alleles
(higher with ∗0401 and ∗0405 vs. ∗0101 and ∗0404, respectively)
suggesting that other genetic factors may be involved (22, 23).
Moreover, the presence of the SE is more strongly associated
with ACPA-positive than ACPA-negative RA (23–25), and has
been linked with more severe disease (23, 26), extra-articular
manifestations (23, 27) and radiographic damage (28).

Subsequent studies have complemented the SE hypothesis
and determined that almost all of the RA risk conferred by
the MHC region is explained by six amino acids in four HLA
molecules: HLA-DRB1 (positions 11/13, 71 and 74), HLA-B
(position 9), HLA-DPB1 (position 9), and HLA-A (position 77)
(17, 29, 30). It should be noted that despite most of these amino
acids being located outside the SE region, all are found in the
peptide binding grooves of HLA, strengthening the importance
of antigen presentation to T cells [both cluster of differentiation
(CD) 4+ and CD8+] for the pathogenesis of RA. Importantly,
these and other recent studies also confirmed the association of
HLA genes, including HLA-DRB1 SE alleles, with seronegative
RA, although with a smaller effect size and a differential pattern
from ACPA-positive disease (17, 31–33). Finally, it was proposed
that a 16-category hierarchy was adopted for RA susceptibility,
instead of the SE-positive/negative approach, based on the
positions 11/13, 71 and 74 of the HLA-DRB1 alleles (29). These
categories were also recently confirmed to be associated with
radiographic damage and mortality (34, 35).

Given that only 30% of the genetic risk for RA is explained
by the MHC region, significant effort has been devoted to
studying non-HLA genes. This has been done through candidate
gene association studies or large-scale genome-wide association

studies. Until now, more than 100 risk loci have been validated
across multiple populations (16, 17, 36, 37). Some important
conclusions have emerged: (i) each allele confers a small
risk increase [odds ratio (OR) usually <1.5–2.0] and multiple
susceptibility genes interact to determine the occurrence of
disease; (ii) the identified genes have contributed to better
understand themechanisms of disease, as most are directly linked
to the immune system; (iii) only 20% of risk loci include coding
variants, with the remaining 80% being linked to other processes
such as gene expression regulation, non-coding ribonucleic acids
(RNAs) or post-transcriptional changes; (iv) despite all of the
advances, non-HLA alleles explain only 5–6% of genetic variation
(16, 17, 36, 37).

Some of the most studied non-HLA genetic variants are
related to immune cell function and therefore deserve mention.
A single nucleotide polymorphism (SNP; R620W) in the PTPN22
gene, which encodes a protein tyrosine phosphatase involved in
antigen receptor signaling of B and T cells, has been the first
to be widely replicated and remains the second stronger genetic
risk factor for RA, with an OR just under 2 (38). This gain-of-
function variant alters T and B cells activation thresholds, leading
to changes in clonal selection and emergence of autoreactive cells
(38). The R620W SNP has only been associated with seropositive
RA, and support for this observation comes from studies showing
that it also results in enhanced peptide citrullination (33, 39).
Interestingly, this SNP is absent in East Asian (e.g., Japanese)
populations, that instead present common genetic variants of
PADI4, a gene encoding peptidyl-arginine deiminase (PAD, a
peptide citrullination enzyme), that are associated with increased
risk of RA (OR 1.31/allele copy) (38, 40, 41). Other loci and genes
involved in inflammatory pathways that have been implicated in
RA with a modest effect size include CTLA4 (negative regulator
of T cell activation) (41), STAT4 (transcription factor involved
in intracellular cytokine signaling) (42), TNFAIP3 [inhibitor of
nuclear factor κ-light chain enhancer of activated B cells (NF-
κB) signaling; it is required for termination of tumor necrosis
factor (TNF)-induced signals] (43), TRAF1-C5 (locus including
TRAF1, which encodes a negative regulator of intracellular
TNF signaling that binds to TNFAIP3, and C5, which encodes
complement factor C5) (44), IL2/21 [encoding interleukin (IL)-
2 and IL-21] (45), CD40 (surface receptor present in various
immune cells, including B cells, where it is crucial for B-T cell
interaction) (46), IL2RA/IL2RB (encoding IL-2 receptor alpha
and beta chains, respectively), (47, 48) IL6R [encoding the IL-6
receptor (IL-6R)] (49) or CCL21 (lymphocyte chemokine) (46),
among many others (16, 50, 51). While some genes, such as
STAT4 and CTLA4, have not been shown to be of genome-
wide significance, this is a rapidly expanding field with large-
scale studies identifying or confirming novel associations, most
often in loci associated with immune function and regulation
(17, 49–51). In addition, novel genes studied in other fields
such as oncology, are emerging in RA. For instance, the human
RNASET2 tumor suppressor gene has been associated with RA
development in Asian populations (52). This gene encodes for
ribonuclease T2, an enzyme implicated in cancer development,
and recently shown to regulate the innate immune response (e.g.,
macrophage function), which is implicated in RA development
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(53, 54). Importantly, besides disease susceptibility, some of the
non-HLA genes have also been associated with severity (55, 56)
and differences in seropositive and seronegative RA (31, 57).

Epigenetic Factors
In the last decade, the role of epigenetics in RA development
has started to be unraveled. Epigenetic mechanisms induce
heritable variations in gene expression without actual changes
in the deoxyribonucleic acid (DNA) sequence (58, 59). In
this way, they may help to explain the low concordance rate
observed between monozygotic twins (9–15%) (8–10) and the
incomplete contribution of genetic factors to the disease (15).
Indeed, a recent large epigenome-wide association study found
differentially variable methylation signatures in monozygotic
twin pairs discordant for RA (60). Additionally, because
epigenetic modifications can be induced by external stimuli
(e.g., drugs, smoke, diet), they might provide the link between
genome and environment interactions (61). Themajor epigenetic
changes include DNA methylation, post-translational histone
modifications and non-coding RNAs, all of which have been
shown to contribute to RA susceptibility (58, 59).

DifferentialDNAmethylation signatures have been described
in peripheral blood mononuclear cells (PBMCs) and fibroblast-
like synoviocytes (FLSs) of RA patients (62–65). These include
global hypomethylation of these cell populations (62, 64), as well
as hypo- or hypermethylation of specific promoter regions, which
lead to an increase or decrease, respectively, in the transcription
of pro- (e.g., IL-6, IL6-R, CXCL12, CD40L) or anti-inflammatory
[e.g., CTLA4 in T regulatory (Treg) cells] genes (58, 59, 63, 66,
67). Interestingly, treatment with methotrexate (MTX) has been
shown to reverse the global hypomethylation of B cells, T cells
and monocytes (64), as well as to restore Treg cell function
through demethylation of the FOXP3 locus (68), highlighting
the reversible nature of epigenetic changes and its potential as a
therapeutic target. Furthermore, recent epigenome-wide studies
have reported several differentially methylated genes in blood
samples of RA patients (69). A large study identified two clusters
located within (nine genes) or in close proximity (one gene) to
the HLA locus, suggesting that the genetic risk for RA conferred
by this region is, at least partially, mediated by DNAmethylation
(65). Likewise, other studies applied the same approach in
RA and control [osteoarthritis (OA)] FLSs and were able to
identify different methylation patterns in key genes involved in
RA pathogenesis (70–73). Surprisingly, within RA patients, two
separate groups recently identified joint-specific methylome and
transcriptome signatures that varied across several joint locations
(e.g., hip, knee, MCP), providing a possible explanation for the
distinctive articular pattern of the disease (74, 75).

Substantially less is known about the role of histone

modification in RA. Histones can be modified by processes
such as acetylation, methylation, phosphorylation, citrullination,
and others, resulting in alterations of chromatin structure and,
consequently, gene transcription (58, 59). Most studies have
focused on acetylation status in blood and synovial tissue of RA
patients, by measuring the expression and balance of the histone-
modifying enzymes histone deacetylases (HDACs) and histone
acetyl transferases. Both decreases (76) and increases (77–79)

in synovial tissue activity and expression of HDACs have been
reported, although the latter are likely to be more important
and have also been reported in blood (80). Different, sometimes
antagonistic, effects of specific HDACs or HDAC classes
may contribute to complexity (81, 82). Nonetheless, various
studies have demonstrated the impact of HDAC inhibitors in
suppressing inflammation [notably, IL-6 and type-I interferon
(IFN) responses], angiogenesis, and function and survival of
FLSs and macrophages (79–84). Importantly, it was recently
demonstrated that smoking, a major environmental risk factor
for RA, increases the levels of two key HDACs [sirtuin (SIRT) 1
and SIRT6], again reinforcing the importance of epigenetics for
gene-environment interface (85, 86).

Non-coding RNAs are yet another mode of epigenetic
regulation and include microRNAs (miRNAs, around 22
nucleotides) and long non-coding RNAs (lncRNAs, over 200
nucleotides), both of which have been extensively studied in RA
susceptibility, severity and treatment (58, 87, 88). miRNAs are
non-coding RNAs that bind messenger RNA (mRNA), leading to
its destruction or blocking its translation. Due to this regulation
effect on gene expression, they have been the object of significant
attention in areas like oncology, metabolic diseases and
inflammatory arthritides (87). A wealth of miRNAs have been
studied in RA, of which themost established in terms of relevance
for RA pathogenesis include miRNA-155, miRNA-146a, miRNA-
223 and miRNA124a (58). The earliest and best-studied are
miRNA-155 (89) and miRNA-146a (90) which were shown to
be increased in many cells (B, T and NK cells, macrophages,
FLSs) and tissues (blood, synovial tissue/fluid) of RA patients
and to have pleiotropic, but opposite, roles in promoting or
suppressing, respectively, several inflammatory, proliferating
and bone erosion pathways (58, 87). Specific gene targets of
these miRNAs have been validated, confirming their role in
RA pathogenesis (58). miRNA-223 and miRNA-124a have also
been shown to be increased and decreased, respectively, in RA
synovial tissue/fluid, FLSs and blood cells, directly contributing
for regulation of osteoclastogenesis, FLS proliferation, and T
cell and macrophage-mediated inflammation (58, 91, 92). In
recent years, lncRNAs have started to be investigated in RA,
due to their function as nuclear and cytoplasmic regulators of
gene transcription and mRNA translation (58, 88). Several dozen
lncRNAs have been reported to be differentially expressed in RA,
and in just over ten the functional role was shown to involve
regulation of inflammation and matrix degradation pathways in
FLSs, T cells and monocytes (58, 88). The most characterized
lncRNA is HOTAIR, which represses the expression of matrix
metalloproteinase (MMP)-2 and MMP-13 (93). It was found to
be increased in PBMCs of RA patients (94), as well as in FLSs
from lower vs. upper extremity joints (74), implicating it as
another mechanism involved in RA joint patterning (93).

Hormonal, Reproductive and
Neuroendocrine Factors
Considering the female preponderance in the distribution of RA,
hormonal and sex-related factors have long been investigated
as predisposing to the disease (95). The sex imbalance is
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commonly attributed to estrogens, generally described as being
pro-inflammatory, in opposition to the anti-inflammatory effects
of progesterone and androgens, which are decreased in male and
female RA patients (96). However, their actions are far more
complex and, in fact, estrogens also possess anti-inflammatory
properties in a number of cells and tissues (96, 97). The
global net effect is likely dependent on other factors such
as serum and tissue concentration, predominant cell types
and estrogen receptors involved, as well as the reproductive
stage (95, 97). These mechanistic aspects are important to
understand the conflicting findings reported for a number of
hormonal and reproductive factors in the risk of RA. Parity,
breastfeeding, pregnancy loss, early menarche, age at first
pregnancy, OCs and hormone replacement therapy have all been
associated with increased, unchanged or decreased likelihood
of development of RA (95). Although in some instances the
evidence points slightly more strongly in one direction [e.g.,
breastfeeding (98) as protective factor in recent meta-analyses],
in other cases [e.g., OCs (99) and parity (100, 101)] there
is controversy even between separate meta-analyses. Thus, the
true effect of such aspects is currently not fully understood, as
additional factors such as varying estrogen dosage, differential
impact in seropositive/seronegative disease, or interactions with
other reproductive or environmental factors may contribute to
heterogeneity. On the other hand, situations associated with an
abrupt decline in global estrogen load, such as early menopause
(102), post-menopausal stage (103), puerperium (104) and
anti-estrogen agents [selective estrogen receptor modulators
(105) and aromatase inhibitors (105, 106)], have been more
consistently identified as risk factors for RA (95). However,
a recent robust study failed to confirm an association with
tamoxifen or aromatase inhibitors with the risk of incident RA
in women with breast cancer (107). Finally, pregnancy itself has
been historically associated with both reduced incidence and
major clinical improvement of RA during the gestational period,
an observation that still stands today and is attributed to the
profound hormonal (sharp rise in estrogen and progesterone)
and immunological [T helper (Th) 1-to-Th2 shift] maternal
changes (104, 108).

Although with more limited evidence, other related risk
factors for RA include pre-eclampsia (109) and both low and
high birth weight (110, 111). The former was hypothesized
to be explained by fetal microchimerism (i.e., the exchange
and persistence of fetal cells in maternal circulation), which is
increased both in women with pre-eclampsia (112) and with RA
(113), where it is thought to mediate maternal acquisition of the
SE. On the other hand, birth weight has been shown to have a U-
shaped association with decreased adult hypothalamic-pituitary-
adrenal (HPA) function (114). As RA patients have decreased
cortisol levels and responsiveness (115), birth weight extremes
were proposed to contribute to RA through downregulation of
the HPA axis, setting it to function at a reduced level (110).

Indeed, ever since the first anecdotal reports of major
clinical improvement induced by incident Cushing’s disease
(116) or focal neurological lesions (117), disturbances in the
neuroendocrine system and its relation with the immune
system have been implicated in RA (118, 119). During

systemic inflammation, both the HPA axis and the autonomic
nervous system are physiologically activated centrally, in an
attempt to suppress peripheral inflammation. This is achieved,
respectively, through anti-inflammatory hormones (cortisol,
adrenal androgens) and neurotransmitters [norepinephrine (ß
receptors), adenosine (A2 receptors) and endogenous opioids (µ
receptors)] (118). Several studies have shown that these pathways
are dysregulated in RA, leading to a proinflammatory ambient at
the joint level and, consequently, to synovitis (120).

Hypothalamic hyporesponsiveness to stress and inflammation
was first suggested (115), but a state of relative adrenal
insufficiency with inappropriately low levels of cortisol and
adrenal androgens upon chronic inflammation has since been
established as the key pathogenic mechanism (118, 121, 122).
Changes in the circadian rhythm of secretion of cortisol and
of proinflammatory hormones melatonin and prolactin, also
likely play a role (115, 123, 124). At the synovial tissue level,
there is impaired ability to reactivate inactive cortisone (125);
increased levels, local synthesis and action of melatonin (126);
upregulated aromatase activity with enhanced androgen-to-
estrogen conversion and high estrogen-to-androgen ratio (126,
127); and a preponderance of estrogen receptor-ß over estrogen
receptor-α (120, 128).

These endocrine imbalances are paralleled by changes in the
sympathetic and sensory nervous systems that also contribute
to RA (118, 119). Loss of synovial sympathetic nerve fibers,
probably due to the production of nerve repellent factors by
macrophages and FLSs, and preservation of sensory nerve fibers
(at a 1: 10 ratio) have been described in the rheumatoid synovium
(120, 129). This leads to a proinflammatory environment, due to
the predominant effects of the sensory neuropeptide substance
P and a shift in sympathetic signaling from anti-inflammatory
ß and A2 receptors to inflammatory α and A1 receptors
(118). Moreover, there is an increased systemic sympathetic
tone, which is thought to be a physiological response to the
decreased HPA axis function and that results in the uncoupling
of these two systems (119, 130). Overall, defects in physiological
neuroendocrine mechanisms contribute to immune system
dysregulation and lead to the establishment and perpetuation
of RA. This is best exemplified by the effect of psychological
stress (131), including childhood traumatic stress (132) and
post-traumatic stress disorder (133–135), in predisposing for or
aggravating RA (136).

Another important endocrine mediator with
immunomodulatory properties is vitamin D. The close
relationship with the immune system has been revealed in the last
20 years and, currently, vitamin D is known to exert pleiotropic
anti-inflammatory effects through direct action in several
immune cells (macrophages, dendritic cells, lymphocytes, FLSs)
that express the vitamin D receptor (137). This fact, together
with the replicated observation that reduced vitamin D levels
and vitamin D deficiency were common in RA patients (138),
led to the investigation of vitamin D as a potentially protective
factor for RA (139). The present situation is still equivocal as
large prospective cohort studies have either found (140) or failed
to find (141) an inverse association of RA incidence and vitamin
D intake. These studies were later meta-analyzed and a 24%

Frontiers in Medicine | www.frontiersin.org 5 November 2021 | Volume 8 | Article 689698

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Romão and Fonseca Etiology and Risk Factors for RA

risk reduction was observed in high vs. low vitamin D intake
(142), although the main issue is that dietary questionnaires
are likely not the best method to assess vitamin D status, which
can be affected by time fluctuations, sun light exposure and
other confounding factors (137). Interestingly, a subsequent
study of the same cohort that had negative results for vitamin
D intake, reported that higher cumulative ultraviolet-B light
exposure, which is the primary source of vitamin D, significantly
decreased RA risk (143). Further suggestions of a link between
vitamin D and RA come from studies reporting associations with
SNPs from the vitamin D pathway genes VDR (144) (encoding
vitamin D receptor), GC (145) (encoding vitamin D-binding
protein) and CYP27B1 (146) (encoding 25-hydroxy-vitamin
D-activating enzyme 1α-hydroxylase) (137, 139). Nevertheless,
the true role of vitamin D as a protective factor for RA remains
unclear and a large randomized controlled trial (RCT) failed to
demonstrate a preventive effect of daily calcium and vitamin
D supplementation on RA risk (147). Instead, more robust
evidence supports the association of vitamin D deficiency and a
poor prognosis in RA patients, determined by increased disease
activity, functional impairment and poor HRQoL (137–139).

Finally, evidence supporting obesity as a risk factor for RA
is mounting (6, 148–151). Two recent meta-analyses including
up to 13 studies have confirmed a positive association of obesity
with RA (pooled RR 1.21–1.31) and a dose-response effect of
body mass index (BMI) on RA risk (149, 150). There are also
some indications that this association is stronger in women
and, potentially, seronegative disease, although in the latter
case the two meta-analyses have conflicting results (149, 150).
These findings are in accordance with the secular rise in BMI
and obesity prevalence at RA presentation observed in the last
two decades (148, 152). While obesity may be regarded as
a surrogate for other environmental and lifestyle risk factors
(see below), its predisposing effect for RA may be explained
by metabolic and endocrine mechanisms. Plausible hypotheses
include increased adipocyte secretion of proinflammatory
cytokines and adipokines, as well as perturbation of sex hormone
metabolism, with increase in estrogen levels due to enhanced
aromatase-mediated conversion in the adipose tissue (153,
154). Moreover, hyperlipidemia, which is linked to obesity, has
been reported to be increased in individuals who develop RA,
particularly in women (155–157). In line with this, higher statin
use has been shown to be protective of incident RA in large
cohort (158) and nested case-control studies (157, 159) (more
than 500,000 participants in one study that found a 23% decrease
in risk) (159). This effect has been hypothesized to be linked both
to lower lipid blood levels and to the anti-inflammatory actions
of statins. However, the role of statins as risk factors is still not
entirely understood. A case-control study found a contrasting
increased risk of RA (though with no cumulative dose trend)
(160) and other two very large [n > 1,000,000 (161) and n >

2,000,000] (162) prospective cohort studies failed to detect an
association with incident RA. In one of these studies there was
even a potential increase of RA risk in the first year after statin
commencement, that progressively returned to normal (161).
Discrepancies are likely due to methodological and definition
issues, but clearly a definite conclusion cannot yet be drawn.

Comorbid Host Factors
There have been epidemiological associations of other, apparently
unrelated, concurrent diseases with increased future risk of
developing RA. This is different from comorbidities affecting
established RA patients (e.g., cardiovascular disease, infection,
lymphoma, osteoporosis), which occur at higher rates than the
general population and have a significant impact in the prognosis
of the disease (see below) (2, 163).

Psychiatric conditions appear to have a particularly
interesting link with RA. As mentioned above, an association
between post-traumatic stress disorder and an increased risk
of RA has been described in both men (133) and women
(134). This has been hypothesized to be related to the
previously described dysregulated neuroendocrine-immune
mechanisms induced by chronic stress (136). Most recently,
depression, a well-known common RA comorbidity found
in 15–17% of patients, was also proposed as a risk factor
for RA, suggesting a bidirectional relationship (164–166).
This observation follows the publication of three large
longitudinal cohort studies that identified depression to
confer a 28–65% increase in the risk of developing RA (167–
169). Interestingly, one of the studies showed that the use of
antidepressants among depressed patients was protective of
RA development [hazard ratio (HR) 0.74, 95% CI 0.71–0.76]
(168), whereas another study found it to be associated with
subsequent seronegative RA (HR 1.75, 95% CI 1.32–2.32)
(169). Novel insights into the pathogenesis of depression,
suggesting prominent systemic inflammatory mechanisms,
were proposed as a possible explanation for the association
with RA (165). Similar, recently identified relations with
other rheumatic (psoriatic arthritis), gastroenterological
(inflammatory bowel disease) or dermatological (alopecia
areata, vitiligo) immune-mediated diseases, further support this
hypothesis (165).

In contrast, a puzzling consistent negative association has
been recognized with schizophrenia for over eight decades
now (170, 171). These epidemiological data were revisited in
two updated meta-analyses also including the latest studies,
which confirmed the significant protective effect of schizophrenia
for the development of RA (OR 0.48–0.65) (172, 173). A
possible infectious cause was first proposed as an explanation for
this intriguing observation, but recent data have strengthened
the genetic-immunologic theory (170, 174, 175). Studies have
demonstrated a negative SNP-genetic correlation between the
two conditions (174) and identified pleiotropic SNPs in
established HLA risk genes that differentially contributed for
RA and schizophrenia (i.e., based on the specific allelic variant
within the same gene) (175). Although still a matter of debate,
these interesting complex genetic mechanisms help to explain
how a given disease can reduce the chance of developing another
seemingly unconnected condition.

Atopy and allergic diseases (e.g., asthma, allergic rhinitis,
atopic dermatitis) were initially suggested to be negatively
associated with the risk of RA, an observation that was
hypothesized to be related to the predominance of Th2-
dependent pathways, as opposed to a Th1 phenotype in RA
(176). Since then, several epidemiological studies have rebutted
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this view and reported an increase in RA incidence in allergic
populations (177–180). Although the literature is controversial,
most high-quality population-based cohort studies point toward
a positive, rather than negative, association between atopy and
RA (177). This has been reinforced by large recent studies
(181–183), and linked to possible shared genetic (e.g., HLA-
DRB1, IL-6R, CD40L), immunological [e.g., natural killer (NK),
Th1 and Th17 cells, TNF] and environmental (e.g., smoking)
mechanisms (16, 177). In addition, respiratory diseases, both
acute and chronic, and of the upper or lower airway tract, have
recently been associated with an increased risk of seropositive
and seronegative RA (184). The association, though, was limited
to non-smokers, suggesting possible separate, or complementary,
pathogenic pathways in smoking and respiratory disease. Other
studies have also confirmed the association of chronic obstructive
pulmonary disease with subsequent RA (179, 183, 185, 186).

Several other diseases have been identified as risk factors for
incident RA, most notably other non-rheumatological immune-

mediated diseases, such as autoimmune thyroid disease (i.e.,
Hashimoto thyroiditis and Graves’ disease) (187, 188), type
1 diabetes mellitus (187, 189), alopecia areata (190), vitiligo
(191), inflammatory bowel disease (192) and, possibly, multiple
sclerosis (193) (less robust evidence) (187). Various common
genetic risk determinants have been identified and other host
and external factors are also likely to be important (16, 17, 38,
45, 50, 61, 188, 189). Interestingly, despite being an important
RA comorbidity, one population-based case-control study has
associated type 2 diabetes mellitus with increased risk of incident
RA, (194) although no effect had been reported in an earlier
similar study (189).

Finally, large longitudinal cohort studies have recently
suggested that sleep disorders (195), including both obstructive
sleep apnea (195, 196) and non-apnea sleep disorders (195, 197),
could be additional risk factors for RA. The influence of sleep
disturbances on immune dysregulation has also been proposed
as a possible explanation for the 91% increased risk of RA
found in patients with migraine (198), highlighting the complex
multifactorial nature of the disease.

ENVIRONMENTAL FACTORS

Although the data above support a large impact of host
on the development of RA, the environment also plays
a fundamental role in determining the ultimate risk of
disease. In fact, extrinsic factors have been identified to
interact with at-risk subjects and confer a multiplicative
increase in the likelihood of developing RA (Figure 1).
Environmental factors can be roughly grouped into four
categories: airborne exposures, notably including smoking;
microbiota and infectious agents; diet; and socioeconomic
factors, including occupational and recreational exposures.
Extensive data are available directly implicating these numerous
aspects in the etiology of RA.

Smoking and Other Airborne Exposures
The recognition of the lung as a major site of early pathogenic
events has been one of the great breakthroughs in the

understanding of the disease and is well-exemplified by the strong
association of several airborne noxious agents with RA (199, 200).

Smoking is the most important of such exposures and
has been established as one of the main risk factors for the
development of RA (199). Its association with RA has been
extensively replicated since the first description more than three
decades ago (201), and smoking is currently thought to explain
20–25% of overall RA risk and up to 35% of ACPA-positive
RA (202, 203). A meta-analysis of 16 studies estimated an
overall OR for ever smoking of 1.40 (95% CI 1.25–1.58) (204).
The effect was stronger for RF-positive RA (OR 1.66, 95%
CI 1.42–1.95) and in men (OR 1.89, 95% CI 1.56–2.28), with
a multiplicative interaction (RF-positive men: OR 3.02, 95%
CI 2.35–3.88) (204). Moreover, there is a clear dose-response
relationship, with significantly higher risks for current or heavy
vs. past or light smokers, respectively, and a linear increase in
risk with smoking pack-years (203, 204). Accordingly, smoking
cessation was shown to progressively decrease the risk of RA
development, returning to that of never smokers after a period of
20–30 years (202, 203, 205). This is, therefore, a practical advice
that should be routinely given to patients, especially to those at
higher risk of developing the disease. Passive smoking should
also be avoided, as studies have additionally suggested a possible
link with prenatal (111, 206, 207), childhood (207, 208) and adult
(203) passive exposure to cigarette smoke.

A key discovery was the gene-environment interaction
of smoking with SE alleles and seropositive RA, with a
multiplicative dose effect of both smoking load (e.g., OR 6.3,
12.0, 24.6, and 37.6 in homozygotic SE carriers with 0, <10,
10–19 or ≥20 pack-years, respectively) and SE risk alleles
(e.g., RR 21.0, 6.5, and 1.5 in ever smokers carrying two, one
or no copies of SE genes, respectively) (199, 202, 209). All
of these epidemiological observations have provided the basis
for a novel model of RA pathogenesis, in which smoking is
responsible for in situ protein citrullination (i.e., the conversion
of arginine to citrulline) in the lungs of SE-positive individuals,
with the subsequent generation of ACPAs and, eventually, RA
(199, 209). Subsequent demonstration that both activity and
expression of the citrullination enzyme PAD2 are increased in
the bronchioalveolar compartment of smokers (210) and that,
after citrullination, peptides such as vimentin or fibrinogen
bind specifically to SE-containing HLA molecules and induce
the emergence of autoreactive T cells (211), further supported
this hypothesis (209). In line with it, cigarette smoke, rather
than tobacco or nicotine per se, seems to be crucial in the
process, as it leads to chronic airway inflammation (200),
whereas non-inhaled moist snuff tobacco does not increase
the risk of RA (212). Moreover, the RA risk associated with
smoking has been shown to be influenced by SNPs and deletions
in genes encoding enzymes involved in the detoxification of
smoke carcinogens [e.g., glutathione S-transferases (213, 214),
N-acetyltransferases (215) or heme-oxygenase (214)], again
demonstrating the importance of smoke-induced changes in the
respiratory airway. Finally, carbamylation (i.e., the conversion
of lysine to homocitrulline) has also been reported to be
associated with smoking, generating novel autoantigens that are
targeted by the RA immune-specific response (216). Indeed,
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anti-carbamylated protein antibodies have been described in
the serum of pre-RA subjects, and predict the development of
RA (217).

Several other inhaled agents are thought to exert similar
harmful effects and increase the risk of RA (200). The first to
be recognized and best studied is silica, a common occupational
exposure (e.g., mining, construction or ceramic industries) that
is independently associated with RA (OR around 2–3) (218, 219).
Similarly to smoking, it is specifically associated with ACPA-
positive RA and both exposures have an additive effect (OR 7.36
in silica-exposed smokers), which increases with pack-years of
smoking (220, 221). Additionally, textile dust (OR 2.8, 95% CI
1.6–5.2, similar for ACPA-positive and ACPA-negative RA, but
with an interaction with HLA-SE in the former: OR 39.1, 95%
CI 5.1–297.5) (222) and inorganic dust (e.g., asbestos, cement)
(223) were also linked to RA (224). In contrast, despite a few
contradicting reports (225), ambient air pollution does not seem
to be a consistent risk factor for RA (226).

Microbiota and Infectious Agents
The “infectious hypothesis” has long been proposed as a
likely explanation for the development or triggering of RA
(227). The decline in RA incidence observed in various
populations following the improvement in health and sanitary
conditions was one of the main facts indirectly supporting this
possibility (228–230). It was reinforced by epidemiological and
translational studies directly involving specific viruses, bacteria
and other microbial agents, that could contribute to RA through
non-specific immune activation, molecular mimicry or other
mechanisms (227, 231). However, after decades of research, no
single infectious agent has been consistently identified to be
the cause or to increase the risk of RA (231). Notably, in the
last years, the aforementioned mucosal immunity, together with
oral/intestinal dysbiosis and chronic infections have been closely
implicated in the etiology and pathogenesis of RA (199, 232).

Periodontitis, the main of such factors, results from
dysbiosis of the oral microbiota and has been associated with
increased risk of RA (233). The relationship between both
diseases is bidirectional (i.e., RA patients also have higher
likelihood to develop periodontitis) and profound, as they
share similar genetic (e.g., HLA-SE alleles) and environmental
(e.g., smoking, nutrition) risk factors and both lead to chronic
inflammation, bone erosion and tissue destruction (233, 234).
Porphyromonas gingivalis (P. gingivalis) is a major cause of
periodontitis and the most important agent that has been
specifically associated with RA (233). Its involvement is not
just circumstantial but an etiologic role has been proposed
through mechanisms similar to those previously described
for smoke (235). In fact, P. gingivalis is unique in that
it has its own PAD, that can cause chronic citrullination
of bacterial and host proteins (236), leading to breach of
immune tolerance, ACPA production and, eventually, through
molecular mimicry and/or epitope spreading, culminating in
RA (233, 235). This theory is supported by several studies
demonstrating PAD activity, protein citrullination and ACPA
generation in the inflamed periodontium (237–239); gingival
citrullination patterns in periodontitis that mirror those seen

in the rheumatoid joint (239); increased ACPA titers in
periodontitis patients (240); cross-reactivity between RA-specific
anti-human α-enolase ACPAs and P. gingivalis (241); and
increased antibodies against P. gingivalis in at-risk subjects
and in patients with periodontitis, pre-RA, RA and ACPA-
positive RA, that additively interacted with smoking and
HLA-DRB1 (233, 242–244). Of note, a recent study further
demonstrated that oral dysbiosis, enriched in P. gingivalis,
was present even in periodontally healthy sites of ACPA-
positive at-risk individuals (245). In addition, another pathogenic
periodontitis agent, Aggregatibacter actinomycetemcomitans (A.
actinomycetemcomitans), has been directly implicated in RA
through different mechanisms involving neutrophil-mediated
citrullination (239). Nonetheless, despite all of the rationale
and evidence supporting the periodontitis-RA link, it should be
noted that themore robust, largest, population-based prospective
studies have either failed to demonstrate an association of
periodontitis with incident RA (246–248) or did so with a small
effect size (OR 1.16–1.17) and without adjustment for major
confounding factors such as smoking (249, 250). Whether this
is the result of methodological and disease-definition issues
or actually reflects a smaller role of periodontitis in RA risk
is unclear.

Growing interest has been devoted in the last decade to
gut microbiota and its role in immune homeostasis and the
development of disease (251). Intestinal dysbiosis has been
linked to a number of inflammatory rheumatic diseases,
including RA (251, 252). Evidence supporting this association
firstly stems from animal studies demonstrating that microbial
flora is indispensable for the development and aggravation
of experimental arthritis (232, 251, 253). In addition, human
studies reported changes in the composition of gut microbiota
of RA patients, with decreased microbial diversity, enrichment
of Prevotella copri, Lactobacillus spp. and Clostridium spp. and
decrease in Bacteroides spp. andHaemophilus spp (232, 251, 253–
257). Interestingly, a comprehensive metagenome-wide
association study demonstrated remarkable concordance
between fecal and oral dysbiosis patterns, which could
differentiate RA patients from controls with remarkable accuracy
[area under the curve (AUC) 0.94 and 0.87, respectively] (232). It
is important to mention that all clinical association studies have a
cross-sectional design and, thus, do not clearly imply an etiologic
role. Nevertheless, a direct causal effect has been suggested by
recent studies showing that RA gut dysbiosis induces activation
of autoreactive T cells (253) and that HLA-DR-presented
Prevotella copri peptides can generate RA-specific Th1 and Th17
responses (258). In line with this, Prevotella spp has been shown
to be enriched in subjects at risk for RA, further implicating
intestinal dysbiosis in the pathophysiology of RA (257, 259).
Moreover, the fact that oral and gut microbiome dysbiosis
patterns of new-onset untreated RA patients were correlated
with disease activity and improved with conventional synthetic
DMARD (csDMARD) treatment, also provides indirect evidence
of pathogenicity (232).

As mentioned, external infectious agents have been
implicated as risk factors for RA for decades (227). Besides the
discussed relation with the decrease in RA incidence over time,
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putative mechanisms linking infection and RA include molecular
mimicry, epitope spreading, B cell amplification/proliferation,
non-specific inflammatory activation and superantigens (260).
Several studies supported this concept by demonstrating
increased prevalence of microbial-specific antibodies in the
serum of RA patients and identifying bacterial/viral proteins
or genetic material in rheumatoid synovial fluid and/or tissue
(231). Commonly reported agents include Epstein-Barr virus
(EBV), cytomegalovirus (CMV), parvovirus B19, rubella virus,
mycoplasma, Proteus mirabilis, Escherichia coli, hepatitis B/C
virus, Borrelia burgdorferi (Lyme’s disease), Chikungunya virus,
and others (5, 227, 231, 260). However, the epidemiological
associations are inconsistent and the overall study quality is
poor (260). This was revealed in a recent meta-analysis of 48
studies that concluded that only parvovirus B19 (OR 1.77, 95%
CI 1.11–2.80), hepatitis C virus (OR 2.82, 95% CI 1.35–5.90)
and, possibly, EBV [anti-VCA (OR 1.5, 95% CI 1.07–2.10)
and anti-EA (OR 2.74, 95% CI 1.27–5.94) but not anti-EBNA
antibodies], but not hepatitis B, CMV or other viruses were
associated with RA (260). A previous meta-analysis of 23 studies
of EBV seroprevalence had failed to demonstrate an increased
risk of RA, especially when only higher quality studies were
considered (261). These findings are in disagreement with
extensive experimental research implicating EBV in RA through
potent B cell stimulation, molecular mimicry (including cross-
reactivity with citrullinated host antigens and recognition of
anti-EBV antibodies by HLA-DR), increased blood and synovial
tissue viral load and impaired viral-specific T cell response
(231, 262). The association therefore remains equivocal for
most, if not all, infectious agents. An important confounding
issue is the fact that these infections per se can cause RA-like
polyarthritis in the acute phase (e.g., parvovirus B19, rubella),
chronic polyarthralgia/polyarthritis following the disease (e.g.,
Chikungunya, Lyme’s disease) and even generate ACPAs or
RF (e.g., hepatitis C virus), thus making it harder to ascertain
case definition (231, 260). Moreover, limited available evidence
failed to demonstrate temporal or spatial clustering of incident
RA that could be related to a common infectious exposure
(263). Surprisingly, recent self-reported bacterial urogenital and
gastrointestinal, but not respiratory, infections were found to
be associated with a decreased risk of incident RA in a large
population-based case-control study (264). This effect was
hypothesized to be due to antibiotic- and/or infection-induced
changes in the microbiota that could, in this case, be protective.

Nonetheless, taking all the data into account, it is likely that,
as with other environmental factors, infectious agents have some
kind of role in priming, triggering or potentiating disturbed
immune mechanisms in a genetically predisposed host. Novel
evidence supporting this concept comes from an important
study that elegantly demonstrated a mechanism mediated by
protective/predisposing HLA alleles, through which infection
(and microbiota) can influence the risk of ACPA-positive RA
(265). Cross-recognition by CD4+ T cells of an epitope (DERAA)
that is found both in synovial citrullinated vinculin and in
several microbes (including gut bacteria such as Lactobacillus,
enriched in RA) (232, 254, 255) and which is presented by
predisposing HLA-DQ molecules (HLA-DQ5, DQ-7.3 and DQ8,

all in tight linkage disequilibrium with HLA-DR SE alleles), leads
to increased ACPA production and, eventually, RA (265).

Diet
The epidemiological association of dietary factors with RA has
been extensively studied. In spite of the difficulties in accurately
assessing patient nutritional behavior before RA onset and
isolating the effect of a given food, drink or nutrient, some
findings are consistent. Importantly, they also provide clues on
RA etiology and pathogenesis, as shown by the influence of the
modulation of the intestinal microbiome by diet on the risk of
developing RA (251, 252).

Low-to-moderate alcohol consumption is protective of RA
development. A meta-analysis that included only cohort or
nested case-control studies (n = 8; 195, 029 participants),
reported a 14% decrease in the risk of RA (RR 0.86, 95% CI
0.78–0.94) (266). The effect was dependent on dose (J-shaped
non-linear trend, with greater benefit for 9g/day vs. 3 or 12g/day),
time (17% reduction if consistent intake for ≥10 years) and
sex (19% reduction in women) and unrelated to beverage type
(266). Alcohol-induced downregulation of the immune response
and proinflammatory cytokine production has been proposed
as an explanation for this observation (267). Most recently,
a population-based study confirmed the protective nature of
alcohol in both ACPA-positive and ACPA-negative RA and
reported an additive interaction with HLA-SE and smoking for
development of the former (OR 25.3, 95%CI 17.7–36.2 for never-
drinkers, ever smokers, HLA-SE-positive patients) (268). The
mechanism justifying this interaction is currently unclear.

Similarly, general healthy eating behaviors have also been
associated with decreased risk of RA (251, 252). Long-term
adherence to a healthier diet (assessed through a standard dietary
quality score) in women from the Nurses’ Health Study (n
= 169, 989) was protective of younger-onset (≤55 years-old)
seropositive RA development (HR 0.60, 95% CI 0.51–0.88) (269).
Subgroup analysis revealed that lower red/processed meat (OR
0.58, 95% CI 0.43–0.79) and sodium (OR 0.65, 95% CI 0.44–
0.98) consumption were associated with a significant decrease in
RA risk (269). A previous analysis of the same study had also
associated daily consumption of sugar-sweetened soft drinks with
a 63% increased risk of seropositive RA, which was higher in RA
starting after the age of 55 (HR 2.64, 95% CI 1.56–4.46) (270).
Similar findings implicating high red meat intake as a risk factor
for RA had been reported in another prospective cohort (271).
Interestingly, sodium has been shown to interact with smoking
to increase RA incidence only in smokers (OR 2.26, 95% CI
1.06–4.81), particularly that of ACPA and/or HLA-SE-positive
disease (272).

In contrast, an important component of a healthy diet is the
consumption of food rich in polyunsaturated oils (e.g., omega-
3 fatty acids), such as fish and olive oil. Most evidence supports
the protective role of fish (273, 274), omega-3 and omega-6 fatty
acids (274, 275), and olive oil (251, 276). Although a few studies
failed to find a beneficial association with these foods, compelling
mechanistic evidence has been recently provided by a nested-case
control study that demonstrated an inverse relation between RF-
(OR 0.27, 95% CI 0.10–0.79) and ACPA-positivity (OR 0.42, 95%
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CI 0.20–0.89) in SE-positive individuals at risk for RA (251, 277).
Moreover, RCTs have demonstrated that fish oil improves pain
outcomes and clinical response to csDMARDs, corroborating a
possible role in RA pathogenesis (251, 278).

Fruits and vegetables are a hallmark of a balanced diet and a
major source of fiber and antioxidant elements such as vitamin
C. Both have been associated with a decreased risk of RA in
robust prospective studies, (276, 279, 280) although data from
another large cohort could not confirm these findings (269).
Nonetheless, the overall picture is clear in pointing toward a
trend for a protective role of healthier nutritional behaviors
in RA development. A Mediterranean diet, usually richer in
fruits, vegetables, olive oil and fish, has been proposed as a
possible explanation for the North-to-South gradient of RA seen
in Europe, complementary to other genetic and environmental
(e.g., sun exposure) factors (6, 251, 252). As an intervention, it
has been shown to improve RA inflammation, pain and function
(251). However, a positive effect of adherence to a Mediterranean
diet could not, thus far, be demonstrated (281). This could be due
to statistical and epidemiological issues, as, for example, a follow-
up analysis of one of such negative studies, with a larger sample
size and longer follow-up did demonstrate a benefit of healthier
diet, close to the Mediterranean diet definition, in RA risk (269).

Finally, coffee, tea and caffeine have been inconsistently
associated with RA. A meta-analysis including five studies (2
cohort and 3 case-control) and 134,901 participants found an
increased risk with total coffee consumption (RR 2.43, 95 % CI
1.06–5.55) and no association with tea intake (282). Subgroup
analyses investigating cohort studies, caffeinated-decaffeinated
coffee, caffeine dose or seronegative RA were not significant, but
a homogeneous modest association was seen with seropositive
RA (RR 1.33, 95% CI 1.16–1.52). More recently, another large
prospective cohort study (n = 76,853) found no increased RA
incidence with coffee (caffeinated or decaffeinated) consumption,
whereas caffeinated tea intake conferred a 40% increase in risk
(HR 1.40, 95% CI 1.01–1.93) (283). This is in disagreement with
the meta-analysis andmost previous studies and, as such, the link
between coffee, tea and RA remains equivocal.

Socioeconomic and Other Environmental
Factors
A lower socioeconomic status seems to increase RA risk,
although it probably has a stronger link with poor disease
outcome (5, 6). Several studies have demonstrated that a
lower level of education is independently associated with RA,
particularly with seropositive disease (111, 284–286). Although
earlier reports did not find a significant effect of education
or other socioeconomic factors on RA risk (287, 288), the
associations observed in the positive studies could not be
attributed to smoking or other known socioeconomic or lifestyle
factors. Moreover, low childhood (i.e., parental) household
education and other poor early life socioeconomic status (food
insecurity, young maternal age) have also been linked to
greater development of adult RA, further supporting the positive
epidemiologic observations (111). These studies suggest that
socioeconomic deprivation may be an identifiable risk factor for

RA, possibly through unmeasured environmental exposures (e.g.,
infections, low quality diet).

Additionally, a low socioeconomic status may also be more
common in individuals with manual, blue collar jobs, which,
likewise, have been associated with increased RA incidence (185,
224, 285, 289, 290). This association is also seen with paternal
occupation (110) and may be related to various factors. First,
many blue collar jobs are associated with exposure to silica,
inorganic dust, textile dust and other respiratory harmful agents
that, as previously discussed, are important RA risk factors
(218, 222–224). Second, other blue collar professionals such as
auto mechanics and farmers frequently deal with mineral oil
(289) and pesticides (291, 292), respectively, both of which have
been associated with RA. Interestingly, in two large women
cohorts, common direct and indirect (i.e., by others, such as
the spouse) pesticide exposure have been reported in adulthood
(292), as well as during childhood (293), with a dose-response
effect. Third, prolonged repetitive physical workload, typical of
blue collar jobs, was recently revealed to be associated with an
increased risk of both ACPA-positive and ACPA-negative RA,
with an interaction with HLA-SE in the former (290). Fourth,
a curious complementary study demonstrated that working in
a cold environment increased the odds of developing RA by
50%, both ACPA-positive (60%) and ACPA-negative (40%), also
with a dose-response relationship (for indoor work) and an
additive interaction with another environmental work-related
factor, repetitive hand/finger movements (294). Finally, other
work-related factors such as work stress, conflict at work and
shift work, have also been shown to increase the risk of RA
(124, 131).

In contrast to professional activity, two large separate
prospective cohort studies [n = 30,112 (295) and n = 113,366
(296)] have recently shown that higher levels of recreational
physical activity significantly decrease the risk of incident RA by
up to 33–35% (295, 296). This effect was found to be cumulative
throughout life and was only partially explained by a decrease in
BMI, being possibly linked to the anti-inflammatory properties
of exercise (295, 296).

DISCUSSION

Overall, the body of evidence regarding the etiology of, and
risk factors for, incident RA that is available thus far is
robust and allows for better understanding of the disease. RA
can be regarded as the prototypical multifactorial immune-
mediated disease. Multiple susceptibility genes, subjected to
expression regulation via epigenetic mechanisms, significantly
modulate the individual risk of disease. Concomitant hormonal
and neuroendocrine determinants, together with comorbid
conditions, further determine the likelihood of incident RA.
Subsequently, throughout a subject’s life, external environmental
factors continuously interact with the predisposed host, slowly
adding additional breaches to the immune tolerance barrier.
Over time, this complex interplay gives rise to multiple cellular
and molecular pathophysiological changes that culminate in the
crumbling of the entire defense structure against self-aggression.
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Ultimately, a particular event triggers the final steps that lead to
clinically evident overt disease.

A special word is warranted for the impact of cohort studies
in the identification of such risk factors. Indeed, robust large-
scale longitudinal prospective long-term cohort studies, such
as the Nurses’ Health Study (297) or the Women’s Health
Initiative (298), have been instrumental in the unraveling of
the relationship between host and environmental factors and
incident RA. Although difficult to develop and carry out,
requiring extensive investment of time, funds, and effort, these
are the most powerful studies to investigate risk factors of a given
disease, greatly limiting potential biases of other, more accessible,
and feasible study designs, such as cross-sectional, case-control
or retrospective cohort studies. As an example, among many
other findings, the Nurses’ Health Study (NHS) has provided
high-quality evidence of the association between diet (299, 300),
smoking (205, 207, 299), UV light (143), hormonal/reproductive
factors (103, 301), obesity (302), physical activity (296) or
depression (169), and RA development. Just as the landmark
Framingham Heart Study was pivotal in determining the major
risk and protective factors of heart disease (e.g., diet, smoking,
exercise, aspirin), saving countless lives at a global level, so too
can similar large-scale prospective studies accurately inform on
the risk of RA.

Besides providing valuable clues into the etiology of RA,
additional insights can be gained from such epidemiological
studies. The realization that genetic factors contribute to
around one half to one third of RA risk, and that most
of the genes implicated are directly linked to the immune
system puts immune dysregulation at the core of disease
pathogenesis. Moreover, the prominence of the MHC region
as the main genetic risk factor, and the importance of
HLA-SE molecules as key determinants of disease, confirm
that antigen presentation-driven mechanisms are pivotal early
pathophysiological steps. The synergic interaction between
these genetic variants and environmental factors such as
smoking, microbiota and diet bring additional clarity to the
events taking place outside the joint. Epigenetic changes,
possibly induced by external stimuli, regulate the expression
of crucial genes and further determine the final risk of
disease. Notably, modulating gene expression through epigenetic
regulators is an attractive groundbreaking therapeutic avenue
being currently pursued.

On a different level, this knowledge and understanding paves
the way for an entirely novel field in RA, which is that of disease
prevention (303). In fact, we are currently in the early steps of
the path toward what may become, on a short-to-medium term,
a new paradigm in medicine in general and rheumatology in
particular: being able to correctly identify high-risk individuals
at a broad population-level, and institute concrete non-
pharmacological and pharmacological interventions aimed at
preventing, or delaying, the onset of RA. In this regard, the first
step is to stratify subjects according to risk of progression to
clinically evident RA (304). Pinpointing those at high risk of
developing RA, such as first-degree relatives of patients with RA,
ACPA/RF-positive asymptomatic individuals, or patients with
clinically suspicious arthralgia, is particularly relevant. Based on

the evidence discussed above on the modifiable factors that are
strongly associated with RA development, there is rationale to
make specific recommendations to these subjects, which may
hamper the risk of disease. These high-risk individuals may
be advised to stop smoking, maintain a proper oral health,
address concomitant conditions such as periodontitis, depression
and obesity, and promote a healthy lifestyle, focused on a
balancedMediterranean diet, regular exercise, and stress-limiting
activities. This requires the involvement of both rheumatologists
and family physicians, who play a central role in health
promotion and patient education. Unfortunately, it seems that
this is not performed in clinical practice as commonly as desirable
(305). A RCT has demonstrated that a personalized education for
the risk of RA is more effective in improving healthy behaviors
than standard patient education (306). However, it should
be noted that these recommendations are mostly supported
by epidemiological evidence, which is limited by nature. For
instance, an analysis of theNHS has found that smoking cessation
was associated with a decreased trend for incident RA (205). Also,
while obesity has been associated with RA development, and
weight loss is therefore recommended, a prospective study did
not show an effect of bariatric surgery in the risk of incident RA.
Unfortunately, RCTs of lifestyle interventions, which are needed
to firmly establish preventive strategies, are mostly missing. An
alternative approach involves pharmacological intervention in
at-risk patients. This idea has recently been tested in several
clinical trials. The PRAIRI study provided proof-of-concept
that such a strategy could be useful, by demonstrating that
a single infusion of B cell-depleting rituximab delayed the
onset of arthritis in at-risk individuals (307). Other studies are
investigating a similar effect with treatments such as abatacept,
methotrexate or hydroxychloroquine (303, 308). On the opposite
direction, a RCT of ACPA-positive subjects with inflammatory
arthralgia did not demonstrate a protective effect of two
dexamethasone administrations in progression to RA (309).
Similar findings were reported by a systematic literature review
and meta-analysis investigating the impact of glucocorticoids,
csDMARDs or biologic DMARDs for the prevention of RA in at-
risk individuals without arthritis (310). Hopefully, as more data
accrues, we will be able to provide additional counseling that can
have a potential impact in reducing RA incidence or, at least,
delaying its onset.

In summary, over the past decades there has been tremendous
progress concerning the etiology and risk factors for the
development of RA.While several questions remain unanswered,
there is now a clearer notion of the dynamic between host and
environmental factors, which sets the key pathogenic events in
motion and eventually leads to a step-wise preclinical phase,
where mucosal breach of tolerance is followed by systemic
autoimmunity and inflammatio, ultimately targeting the articular
compartment. This so-called early arthritis stage represents
a window of opportunity where it may still be possible to
intervene and prevent, or delay, the onset of overt disease.
Novel study paths in this field have recently emerged and are
likely to bring relevant contributions in the future, improving
our understanding of the etiology, risk, and pathogenesis of
RA. Ultimately, this will translate into better preventive and
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therapeutic strategies that will improve the lives and outcomes
of patients with RA.
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