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Abstract

Activation of Toll-like receptors (TLR) induces gene expression of proteins involved in the

immune system response. TLR4 has been implicated in the development and progression of

cardiovascular diseases. Innate and adaptive immunity contribute to hypertension-associated end-

organ damage, although the mechanism by which this occurs remains unclear. In the present study

we hypothesize that inhibition of TLR4 decreases blood pressure and improves vascular

contractility in resistance arteries from spontaneously hypertensive rats (SHR). TLR4 protein

expression in mesenteric resistance arteries was higher in 15 weeks-old SHR than in same age

Wistar controls or in 5 weeks-old SHR. In order to decrease activation of TLR4, 15 weeks-old

SHR and Wistar rats were treated with anti-TLR4 antibody or non-specific IgG control antibody

for 15 days (1µg per day, i.p.). Treatment with anti-TLR4 decreased mean arterial pressure as well

as TLR4 protein expression in mesenteric resistance arteries and interleukin-6 (IL-6) serum levels

from SHR when compared to SHR treated with IgG. No changes in these parameters were found

in Wistar treated rats. Mesenteric resistance arteries from anti-TLR4-treated SHR exhibited

decreased maximal contractile response to noradrenaline compared to IgG-treated-SHR. Inhibition

of cyclooxygenase-1 (Cox) and Cox-2, enzymes related to inflammatory pathways, decreased

noradrenaline responses only in mesenteric resistance arteries of SHR treated with IgG. Cox-2

expression and thromboxane A2 release were decreased in SHR treated with anti-TLR4 compared

with IgG-treated-SHR. Our results suggest that TLR4 activation contributes to increased blood

pressure, low grade inflammation and plays a role in the augmented vascular contractility

displayed by SHR.
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Introduction

Toll like receptor 4 (TLR4) is expressed on virtually all human cells and binds a wide

spectrum of exogenous (including bacterial lipopolysaccharide - LPS) and endogenous (heat

shock protein, angiotensin II) ligands. TLR4 is involved in innate immune responses to

various infectious agents and stressors.[1] In the presence of a ligand, the TLR4 receptor

activates intracellular pathways that culminate in nuclear factor κ B (NFκB)

phosphorylation resulting in an inflammatory process characterized mainly by the

production of pro-inflammatory cytokines.[2]

TLR4 has been implicated in mediating chronic inflammatory diseases, including

cardiovascular diseases.[3] TLR4 upregulation has been observed after myocardial

infarction in the heart of mice[4] and it is also related to the initiation and progression of

atherosclerosis.[5] TLR4 expression is augmented in cardiomyocytes from spontaneously

hypertensive rats (SHR), when compared with Wistar Kyoto rats, suggesting that this

receptor may be implicated in the hypertension-associated end-organ damage.[6]

One of the downstream products of TLR signaling is cyclooxygenase-2 (Cox-2) and pro-

inflammatory cytokines.[7] Cox-2 is an inducible isoform of the cyclooxygenase enzyme

that catalyzes the formation of prostaglandins, which may mediate inflammatory responses.

One important prostaglandin produced by Cox-1 and Cox-2 is thromboxane A2 which is a

potent vasoconstrictor that contributes to increased vascular contraction in arterial

hypertension.[8]

Arterial hypertension is a well-known risk factor for various cardiovascular diseases and

currently, it is estimated that 25% of the adult population is affected by this disease.[9] It has

been suggested that both innate and adaptive immunity contribute to the pathophysiology of

hypertension.[10] In this regard, Guzik and colleagues observed that mice lacking

lymphocytes are resistant to the development of hypertension. Adoptive transfer of T cells

restored hypertensive responses to angiotensin II and deoxycorticosterone (DOCA)-salt

challenge in these mice [11], showing the importance of adaptive immune response in

hypertension.

Considering the concept that inflammation is closely linked to hypertension and that the role

of innate immune system, represented by TLR4 activation, in hypertension is still unclear,

we hypothesized that TLR4 is up-regulated in SHR resistance arteries and its increased

activation contributes to both increased vascular response to contractile stimuli and

augmented blood pressure levels in SHR.
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Materials and Methods

Animals

Male Wistar rats (15 weeks-old) and SHR (5 and 15 weeks-old; Harlan Laboratories,

Indianapolis, IN, USA) were used in this study. All procedures were performed in

accordance with the Guiding Principles in the Care and Use of Animals, approved by the

Medical College of Georgia Committee on the Use of Animals in Research and Education

and in accordance with the Guide for the Care and Use of Laboratory Animals published by

the US National Institutes of Health. The animals were housed on a 12 h light/dark cycle and

fed a standard chow diet with water ad libitum.

Treatment with anti-TLR4 antibody

TLR4 inhibition was performed by treating 15 weeks-old SHR and Wistar rats with a daily

intra-peritoneal injection of 1 µg of anti-TLR4 antibody (Santa Cruz Biotechnology, USA,

sc-13591, rat monoclonal IgG2a, saline-diluted), for 15 days.[12] Control SHR and Wistar

rats were treated by the same way with 1 µg of a non-specific IgG antibody (sc-2026 Santa

Cruz Biotechnology, IgG2a, saline-diluted) to rule out unspecific effects of TLR4 antibody

treatment. In the text the control groups will be identified as IgG or non-specific IgG.

Arterial blood pressure measurement

Rats were anesthetized with a mixture of ketamine and xylazine (64.9 and 3.2 mg.kg-1,

respectively, i.p. injections). The right carotid artery was cannulated with a heparinized

polyethylene catheter (PE-50) that was exteriorized in the mid-scapular region. After 24 h,

arterial pressure and heart rate were measured in conscious animals by a pressure transducer

(model DT-100; Utah Medical Products, USA) and recorded by using an interface and

software for computer data acquisition (Quad Bridge Amp/ PowerLab 4/30, ADInstruments,

Australia). Heart rate was determined from the interbeat intervals.

Western Blotting

Extracted proteins (50 µg) from small mesenteric arteries were separated by electrophoresis

on a 10 % polyacrylamide gel and transferred to a nitrocellulose membrane. Nonspecific

binding sites were blocked with 5 % skim milk in Tris-buffered solution (10 mmol/l Tris,

100 mmol/l NaCl, and 0.1% Tween 20) for 1 h at room temperature. Membranes were then

incubated with primary antibodies overnight at 4°C. Primary antibodies were: anti-TLR4

(1:250), anti-Cox-1(1:500), anti-Cox-2 (1:500) (all antibodies from Cell Signaling

Technology, USA). Membranes were washed with Tris-buffered solution and incubated for

1 hour at room temperature with secondary antibody anti-rabbit (1:1500 dilution). After

incubation, membranes were washed with Tris-buffered solution and signals were revealed

with chemiluminescence, visualized by autoradiography film, and quantified by

densitometry. The same membrane was used to determine β-actin protein expression using a

monoclonal antibody against β-actin (1:15000, Sigma-Aldrich, USA), and its content was

used to normalize protein expression in each sample. All representative western blot images

shown in figures 1 and 6 were obtained from the same membrane.
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Vascular function studies

After euthanasia using isoflurane (via nasal 5% in 100% of oxygen), second-order

mesenteric resistance arteries (200-300 µm internal diameter) were removed and cleaned

from fat tissue in Krebs solution (in mmol/L: 130 NaCl, 14.9 NaHCO3, 4.7 KCl, 1.18

KH2PO4, 1.17 MgSO4·7H2O, 1.56 CaCl2·2H2O, 0.026 EDTA and 5.5 glucose). Arterial

segments (2mm in length) were mounted on 40µm wires in a small vessel myograph for

isometric tension recording and equilibrated in Krebs solution for about 30 min, gassed with

5% CO2 in O2 to maintain a pH of 7.4. The relationship between resting wall tension and

internal circumference was determined, and the internal circumference, L100, corresponding

to a transmural pressure of 100mmHg for a relaxed vessel in situ, was calculated. The

vessels were set to the internal circumference L1, given by L1 = 0.9×L100. After

stabilization, arterial integrity was assessed by stimulation of vessels, two times with

120mmol/L potassium chloride (KCl). Endothelial integrity was assessed by testing the

relaxant effect of acetylcholine (1 µmol/L, Sigma/Aldrich USA) on vessels precontracted

with noradrenaline (NA, 3µmol/L, Sigma/Aldrich USA).

Cumulative concentration-response curves to NA (10nmol/L to 100µmol/L, from Sigma/

Aldrich USA) were performed in arteries with endothelium. Curves were performed in the

presence and absence of either a COX-1 inhibitor (SC-560: 5-(4-chlorophenyl)-1-(4-

methoxyphenyl)-3-trifluoromethylpyrazole, 9 nmol/L) or COX-2 inhibitor (NS-398: N-(2-

cyclohexyloxy-4- nitrophenyl) methansulphonamide, 10 µmol/L), which were added to the

preparation 30 min before starting the concentration-response curves to noradrenaline. Both

inhibitors used are from Cayman Chemical, USA.

Release of Thromboxane B2 and 6-keto Prostaglandin F1α

Mesenteric arteries were cut into transverse rings 4 mm in length, to measure the release of

prostanoids. These were placed for 30 min in siliconized tubes containing 0.5 ml of Krebs

solution at 37°C, and stimulated with 100mM of noradrenaline for 15 min. The

prostaglandins were measured with a commercially available EIA kit (Cayman Chemical,

Ann Arbor, MI). Two-time diluted 50µL samples were used for measurement of

thromboxane B2 (TXB2, stable metabolite of thromboxane A2) and 6-keto Prostaglandin F1α
(6-keto PGF1α, stable metabolite of prostaglandin I2). The assays were performed as

described in the manufacturer's procedure booklet. The amounts of prostaglandins released

are expressed as picograms or nanograms per milligram of wet weight of mesenteric artery.

Cytokines measure

Serum levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were determined

by a quantitative sandwich enzyme immunoassay - commercial ELISA kits (GE Healthcare,

USA) in IgG- and anti-TLR4-treated SHR. IL-6 and TNF-α concentrations were expressed

as pg/ml.

Data Analysis

Results are shown as mean ± standard error deviation (SEM) and “n” represents the number

of animals used in the experiments. Contractile responses are expressed as the maximum

response produced by each agonist concentration. Concentration–response curves were
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fitted using a nonlinear interactive fitting program (Graph Pad Prism 4.0; GraphPad

Software Inc.) and two pharmacological parameters were analyzed: the maximal effect

elicited by the agonist (Emax) and the sensitivity to this agonist (-log EC50, pD2). Statistical

analyses of Emax and pD2 values were performed using 1-way ANOVA (Post hoc: Tukey)

or Student's t test, when appropriate. Values of P<0.05 were considered statistically

significant.

Results

TLR4 expression in mesenteric resistance arteries from SHR and Wistar rats

TLR4 protein expression was significantly increased in mesenteric arteries from 15 weeks-

old SHR (hypertensive phase) compared to same age Wistar or 5 weeks-old SHR (pre-

hypertensive phase) (Figure 1A and 1B, respectively). Treatment of 15 weeks-old SHR and

Wistar with anti-TLR4 antibody decreased TLR4 expression in mesenteric resistance

arteries from SHR, but not in Wistar rats (Figure 1C). These results demonstrate that TLR4

expression is increased in SHR and that the anti-TLR4 treatment was effective in reducing

its expression.

Effect of anti-TLR4 treatment on hemodynamic parameters and body weight

Anti-TLR4 treatment lowered mean arterial pressure in SHR, compared to SHR treated with

non-specific IgG (Figure 2A). However, no change in mean arterial pressure was observed

in Wistar rats after anti-TLR4 treatment. Heart rate (Figure 2B) was similar between all the

groups. Body weight (g) did not change among the groups: Wistar: IgG: 510±15, anti-TLR4:

502±30; SHR: IgG: 334±8, anti-TLR4: 327±13. These results suggest that increased

activation of TLR4 contributes to augmented blood pressure observed in SHR.

Effect of anti-TLR4 treatment on vascular contractility

The Emax and pD2 to noradrenaline were significantly decreased in endothelium-intact

mesenteric resistance arteries from anti-TLR4-treated SHR when compared to those in

arteries from unspecific IgG treated SHR (Figure 3A, 3C and Table 1). No differences were

observed between arteries from Wistar groups (Figure 3B).

Pre-incubation of mesenteric resistance arteries with either SC-560 (Cox-1 inhibitor) or

NS-398 (Cox-2 inhibitor) decreased the Emax and pD2 to noradrenaline in arteries from

IgG-treated SHR, but not in arteries from anti-TLR4-treated SHR and Wistar groups (Figure

4A and 4B and Table 1).

Together, these data demonstrate that anti-TLR4 treatment decreases the augmented

contractile response observed in SHR. In addition, Cox-1 and Cox-2 are signaling pathways

that contribute to decreased noradrenaline contraction response in mesenteric resistance

arteries from anti-TLR4-treated SHR.
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Effect of anti-TLR4 treatment on Cox expression, pro-inflammatory cytokines and
prostanoids release

We evaluated if TLR4 modulates, in SHR, the expression of Cox-1 and Cox-2, as well as the

release of the prostanoids TxA2 and prostacyclin by mesenteric arteries and the levels of the

cytokines IL-6 and TNF-α, in the serum.

Cox-1 protein expression in small mesenteric arteries did not change after anti-TLR4

treatment when compared to IgG groups (Figure 5A). However, Cox-2 protein expression

was decreased in mesenteric arteries from SHR treated with anti-TLR4 compared to IgG-

treated SHR (Figure 5B).

The TxB2 released by segments of mesenteric arteries stimulated with noradrenaline

(100mM) is increased in SHR IgG when compared with all other groups, and the anti-TLR4

treatment decreased the production of this vasoconstrictor prostanoids in SHR (Figure 5C).

No difference was found in 6-keto PGF1α secretion between the groups (Figure 5D).

Serum levels of IL-6 and TNF-α were measured in IgG-treated and anti-TLR4-treated SHR.

IL-6, but not TNF-α level was decreased after treatment with anti-TLR4 in SHR (Figure 6A

and 6B).

These data demonstrate that TLR4 inhibition attenuated the activation of inflammatory

markers, as demonstrated by decreased Cox-2 expression, lower IL-6 serum levels and

thromboxane release in mesenteric arteries from SHR.

Discussion

The major findings of this study are that the treatment of adult SHR with anti-TLR4

antibody reduces mean arterial pressure as well as decreases contractile responses in

mesenteric resistance arteries when compared to non-specific IgG-treated-SHR.

Essential hypertension is characterized by increased peripheral vascular resistance, which is

mainly determined by small resistance arteries and arterioles. At the functional level, both an

increase in the contractile responses or a decrease in relaxant responses in resistance arteries

might increase peripheral resistance. Inflammation of the vascular wall is associated to

dysfunction of blood vessels.[13] In view of the decreased blood pressure observed after

anti-TLR4 treatment in SHR, we investigated whether this treatment could improve

contractile responses in resistance arteries from SHR. Our results demonstrate that

mesenteric resistance arteries from anti-TLR4-treated SHR showed lower sensitivity to

noradrenaline compared with IgG-treated SHR. However, no changes were found in Wistar

groups. These findings suggest that the innate immune response, represented by TLR4, plays

a role in the vascular dysfunction associated with hypertension.[13]

Activation of TLR4 results in increase of its own expression.[14] Therefore the reduction of

TLR expression is a possible mechanism by which TLR activation can be controlled.[15-16]

Our results demonstrated that anti-TLR4 treatment decreased TLR4 protein expression,

which is up-regulated in adult SHR compared to young SHR and compared to Wistar rats.

The regulation of TLR4 expression was showed in a model of myocardial ischemia/
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reperfusion, where TLR4 is up-regulated. In those rats, treatment with valsartan, an

angiotensin receptor blocker with anti-inflammatory properties, decreased the expression

and activation of TLR4.[17]

Anti-TLR4 antibody treatment has been tested in some inflammatory conditions, such as

sepsis and chronic bowel disease, with promising results, showing a decrease in the

inflammatory process.[18-19] Hypertension is considered as a chronic inflammatory disease,

where elevated pro-inflammatory cytokines and Cox-derived prostanoids, mainly from the

Cox-2 isoform, are observed.[20] We hypothesized that the reduction in TLR4 effects, by

using neutralizing antibody in vivo, would ameliorate hypertensive low-grade inflammation.

Here we observed that treatment with anti-TLR4 antibody decreased the expression of

TLR4, COX-2 and IL-6 serum levels, markers of inflammation. Therefore, our results

suggest that TLR4 is associated with low-grade inflammation in hypertension.

The major downstream molecular mechanism involved in TLR4 activation is a MyD88-

dependent pathway that involves IL-1R-associated kinases (IRAK), TNF receptor-associated

factor-6 (TRAF-6), and mitogen-activated protein kinases (MAPK) and that culminates in

the activation of NFκB.[2] In turn, NFκB mediates the transcription of Cox-2 and pro-

inflammatory cytokine genes. Kuper et al demonstrated that LPS mediates enhanced Cox-2

expression in renal medullary colletion duct cells by TLR4-mediated activation of the NFkB

signaling pathway.[21] In hypertension, as mentioned before, TLR4 expression is increased

in the heart of SHR compared to Wistar-Kyoto rats.[6] Conversely, studies such as the one

by Li et al showed that NFkB is activated in the heart, kidney and aorta in SHR compared

with Wistar-Kyoto rats.[22]

Many studies have shown that TLR4 is clearly responsible for inflammation induced by

endogenous ligands, such as C-reactive protein [23] and heat shock proteins (HSP60 and

HSP70) in smooth muscle cells and many other cell types.[24-25] In hypertension, these

molecules are increased [26-27] and could act as long-term TLR4 activators, resulting in

augmented expression of several pro-inflammatory cytokines in vascular smooth muscle.

[28] Pro-inflammatory cytokines regulate the expression and function of several proteins,

including adhesion molecules, mitogen-activated protein kinases, extracellular matrix

components and growth factors, which are important in vessel hypertrophy and vascular

dysfunction described in hypertension.[29],[13] Cytokines seem to influence the balance

between vasoconstrictor and vasodilator factors, as well as regional differences in the release

and responsiveness to these factors, contributing to the increased responsiveness within a

specific vascular bed in hypertension.[20]

IL-6 is a pro-inflammatory cytokine that is released from numerous cell types, including

endothelial cells [30-31], vascular smooth muscle cells [32], and macrophages [33]. IL-6

stimulates the synthesis of many acute-phase reaction proteins, including C-reactive protein,

serum amyloid A, and fibrinogen.[34] IL-6 also promotes vascular smooth muscle cell

proliferation, a hallmark of hypertension and atherosclerosis.[35] Some studies have shown

a positive association between IL-6 levels and high blood pressure.[36-38] Previous work

from Brands et al showed that hypertension caused by high-salt diet and angiontensin II was

blunted in mice lacking a functional gene for IL-6.[39] In our study, we observed a
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reduction in IL-6 secretion in SHR by anti-TLR4 treatment, which was accompanied by a

decrease in BP, suggesting that IL-6 is a key cytokine in the development of the

pathophysiology of hypertension.

Evidence showed that the vasoconstrictor response to adrenergic agonists is largely

mediated by Cox-derived vasoconstrictor prostanoids.[8, 40] Hypertension is thought to

modify the role of these products in the vasodilator and vasoconstrictor responses.[8, 41-42]

Furthermore, it has been reported that activation of TLR4 by LPS and angiotensin II may

induce the release of prostanoids in cultured macrophages and smooth muscle cells.[28, 43]

In the present study, we demonstrated that Cox-2 protein expression is decreased in

mesenteric resistance arteries from anti-TLR4-treated SHR compared with IgG-treated SHR,

and no differences were found in Cox-1 expression among groups. Despite the lack of

change in expression of Cox-1, one possibility is that its activity may be decreased after

anti-TLR4 therapy. This hypothesis is supported by the fact that inhibition of Cox-1 and

Cox-2 reduced the contractile response to noradrenaline only in mesenteric resistance

arteries from IgG-treated SHR, while it remained unchanged in resistance arteries from anti-

TLR4-treated SHR. In addition, the release of TXA2 in mesenteric arteries after

noradrenaline stimulation was reduced in anti-TLR4 treated SHR compared with SHR

treated with IgG. Taken together, these results suggest that the innate immune response,

represented by TLR4 activation, plays a role in the vascular dysfunction associated with

hypertension by a Cox-dependent mechanism.[13] Future studies will help clarify the

molecular pathways linking these events.

In conclusion, our findings demonstrate that increased TLR4 expression may play an

important role in arterial hypertension. Moreover, anti-TLR4 treatment decreased blood

pressure, pro-inflammatory mediators and vascular contraction in resistance arteries of SHR.

Perspectives

Hypertension is an important worldwide public-health challenge because of its high

prevalence and concomitant risks of cardiovascular and kidney disease. A variety of

pharmacological preparations are available for therapy, however, despite these options,

vascular dysfunction persists in many patients, and end-organ injury remains a serious

complication. The cardiovascular system is exposed to pathogens and danger signals

(endogenous ligands), resulting in activation of pattern-recognition receptors including Toll

like receptors. Considering that hypertension is a low-grade inflammatory disease, the innate

immune response, represented mainly by TLR, may be investigated as a mechanism that

contributes to the development of this condition.
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Figure 1. TLR4 protein expression is augmented in mesenteric resistance arteries from 15 weeks-old SHR compared to Wistar with
the same age or to SHR 5-weeks-old. Anti-TLR4 treatment decreased TLR4 protein expression in SHR

(A) TLR4 protein expression was analyzed in mesenteric resistance arteries from 15 week-old Wistar (white bar) and SHR

(black bar, and (B) in 5 weeks-old (white bar) and 15 weeks-old (black bar) SHR. (C) We also evaluated TLR4 protein

expression in Wistar and SHR rats treated with IgG or anti-TLR4. On top of A, B and C, representative western blot images of

TLR4 and P–actin protein expression. Bar graphs show the relative expression of TLR4 after normalization to β-actin

expression. Values are means ± SEM, n= 6. *P < 0.05 compared with Wistar (A), 5 wk-old SHR (B) and Wistar IgG (C); # P <

0.05 compared with SHR IgG (C). Statistical test: Student's t test (A and B) and one-way ANOVA (C).
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Figure 2. Anti-TLR4 treatment decreased SHR blood pressure
(A) Mean arterial pressure (MAP, mmHg) and (B) heart rate (BPM, beats per minute) were evaluated in Wistar and SHR treated

with IgG (white bars) or anti-TLR4 (black bars). Data are expressed as mean ± SEM, n= 6. *P < 0.05 compared with Wistar IgG

and #P < 0.05 compared with SHR IgG using a one-way ANOVA.
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Figure 3. Noradrenaline-induced vasoconstriction in mesenteric resistance arteries from SHR is attenuated by anti-TLR4 treatment
Maximal response to (A) noradrenaline in mesenteric resistance arteries from Wistar and SHR treated with IgG (white bars) or

anti-TLR4 (black bars). Cumulative concentration-response curves to noradrenaline in endothelium-intact mesenteric resistance

arteries from (B) Wistar treated with IgG (open circle) or anti-TLR4 (closed circle), and (C) SHR treated with IgG (open square)

or anti-TLR4 (closed square). Each point represents the mean ± SEM of maximal response to each concentration, n = 10-12. *P

< 0.05 compared with Wistar IgG and # P < 0.05 compared with SHR IgG. Statistical test: one-way ANOVA.
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Figure 4. Cox-1 and Cox-2 inhibition decreased the maximal response to noradrenaline only in IgG-treated-SHR mesenteric arteries
Emax to noradrenaline in the absence (white bars) or presence of (A) SC-560 (Cox-1 inhibitor) or (B) NS-398 (Cox-2 inhibitor)

(black bars) in mesenteric resistance arteries from Wistar and SHR treated with IgG or anti-TLR4. *P< 0.05 vs. SHR IgG NA.

Statistical test: one-way ANOVA.
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Figure 5. Anti-TLR4 treatment decreases Cox-2 protein expression and TXB2 release in mesenteric arteries
(A) COX-1 and (B) COX-2 proteins expression in mesenteric resistance arteries from IgG-(white bars) or anti-TLR4-treated

(black bars) Wistar and SHR rats. On top, representative western blot images of Cox-1 (A) and Cox-2 (B) protein expression.

Bar graphs show the relative expression of Cox-1 and Cox-2 after normalization to β-actin expression. Release of (C)

thromboxane B2 and (D) 6-keto-prostaglandin F1α by mesenteric arteries stimulated with noradrenaline 100 μM. Each bar

represents the mean ± SEM, n = 5-6. *P< 0.05. Statistical test: one-way ANOVA.
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Figure 6. Anti-TLR4 treatment decreases IL-6 secretion in SHR
Serum levels of (A) IL-6 and (B) TNF-α in IgG- (white bars) and anti-TLR4-treated SHR (black bars). Values are means ±

SEM, n = 9. *P < 0.05 vs. IgG-treated SHR. Statistical test: Student`s t test
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