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Amplification of weak magnetic 
field effects on oscillating reactions
Thomas C. Player, Edward D. A. Baxter, Sarah Allatt & P. J. Hore*

We explore the possibility that chemical feedback and autocatalysis in oscillating chemical reactions 
could amplify weak magnetic field effects on the rate constant of one of the constituent reactions, 
assumed to proceed via a radical pair mechanism. Using the Brusselator model oscillator, we find 
that the amplitude of limit cycle oscillations in the concentrations of reaction intermediates can be 
extraordinarily sensitive to minute changes in the rate constant of the initiation step. The relevance of 
such amplification to biological effects of 50/60 Hz electromagnetic fields is discussed.

It is well established that magnetic fields (≥ 1 mT) can affect the kinetics and yields of certain chemical reactions 
even though the relevant interaction energies are orders of magnitude smaller than the thermal energy, kBT1–5. 
According to the radical pair mechanism, such effects arise from the electron spin-conserving nature of radical 
recombination reactions and the relatively long lifetimes of spin coherence in pairs of spin-correlated radicals. 
Both observed and predicted changes in reaction rates and/or product yields are normally a few tens of percent 
at most and often a good deal less, especially for magnetic fields weaker than 1 mT, leading to speculations about 
possible chemical amplification mechanisms6–10. Much of this debate has focussed on the weak geomagnetic fields 
(~ 50 μT) involved in avian magnetoreception11–14 and the even weaker anthropogenic 50/60 Hz electromag-
netic fields (< 1 μT) that may or may not have adverse implications for human health15–19. It would therefore be 
interesting to know whether a small magnetically-induced change in the rate constant of one step in a multi-step 
chemical reaction could result in a disproportionately large change in either the concentrations of downstream 
species or the overall rate of the reaction.

In 1996, Eichwald and Wallaczek20 appeared to answer this question with the claim that chemical amplifi-
cation could arise in the Michaelis–Menton (MM) model of enzyme kinetics if one of the three reaction steps 
were to proceed via a radical pair intermediate. It is instructive to look at this more closely. The standard MM 
reaction scheme is21

where E, S, ES and P are, respectively, the enzyme, the substrate, the enzyme–substrate complex and the reaction 
product, and ka, kb, kc are rate constants. Applying the conventional steady-state approximation to the short-lived 
intermediate, ES, gives the following expression for V, the overall rate of the reaction21:

where

P and S are the concentrations of product and substrate, and E0 is the total enzyme concentration.
Suppose that switching on a weak magnetic field, or slightly changing the strength of an already-present 

magnetic field, produces a change δki in one of the rate constants ( i ∈ a, b, c ) which in turn leads to a change δV  
in the overall rate. We can then define an ‘amplification factor’, Ri , as the fractional change in the rate ( δV/V  ) 
divided by the fractional change in the rate constant ( δki/ki ) which, for small δki is given by:

(1)
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Amplification of the change in ki occurs when Ri is greater than 1. Combining Eqs. (2)–(4) gives:

Ra , therefore, clearly cannot exceed 1. The same is true of Rb and Rc. There is therefore no possibility of amplifica-
tion in the MM reaction scheme: a 1% change in one of the rate constants can never produce any change greater 
than 1% in the overall rate.

Nevertheless, amplification may be possible for more complex multi-step reaction schemes, in particular those 
that include chemical feedback and autocatalysis and can, as a result, exhibit chemical oscillations22,23. If the 
concentration of a chemical species affects the rate of its own production as, for example, in reactions of the form

then there may be a greater chance that small changes in rate constants translate into large changes in concen-
trations or rates. We report here a study of this possibility using a model chemical oscillator, the Brusselator.

Theory.  Our study of chemical amplification of weak magnetic field effects uses the model developed by 
Prigogine and Lefever in 196824 in which reactants A and B are converted to products D and E via intermediate 
species X and Y in four interlinked reaction steps, the second of which is autocatalytic:

The associated rate equations for X and Y are:

where A, B, X, Y are the concentrations of the corresponding species and k1, k2, k3, k4 are rate constants. Dubbed 
the ‘Brusselator’25, it is one of the most intensively studied chemical oscillator models26–29 and has been extended 
to reaction–diffusion systems (beyond the scope of the present study)30–34. Equation (8) can be recast in terms 
of dimensionless reduced variables22:

where

Analysis of Eq. (9) reveals a ‘Hopf bifurcation’ at a2 + 1 = b22,23. At low concentrations of B, when a2 + 1 > b , 
the stationary-state solutions ( xss = a and yss = b/a ) are stable. However, when a2 + 1 < b the stationary state is 
unstable, and x and y undergo periodic oscillations. It is in this regime that we study responses to weak applied 
magnetic fields. Throughout, we assume that the concentrations of the reactants A and B are held constant.

Magnetic field effects can be introduced by supposing that the first step of the Brusselator model (A → X) 
proceeds via a radical pair (RP) which can either revert to A or proceed to X:

The steps with rate constants k′1 and k′−1 are assumed to conserve electron spin and to take place exclusively via 
electronic singlet states while both singlet and triplet radical pairs can form X with the same rate constant, kX . 
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An applied magnetic field can affect the overall rate of production of X by modulating the extent and timing 
of coherent singlet ↔ triplet interconversion in RP and so changing the probability, �X , that it reacts to give X 
rather than returning to A2,4,11.

The spin dynamics of the radical pair can be described by the following master equation:

where the density matrix, ρ(t) , is defined such that its trace, Tr[ρ(t)] , is equal to the concentration of radical pairs 
divided by the fixed concentration of A. The first term accounts for the coherent spin motion and reactivity of 
RP, and the second for the formation of singlet-state radical pairs from A. PS is the singlet projection operator, 
Z is the number of nuclear spin states, and the Liouvillian, L, is given by

H is the spin Hamiltonian which in general contains terms for the Zeeman, hyperfine, exchange and dipolar inter-
actions of the radical pair. The second and third terms in Eq. (13) account for the RP → A and RP → X reactions, 
respectively. Considering RP to be a short-lived intermediate, present at low concentration (i.e. k′−1 + kX >> k′1 ), 
we can set dρ/dt = 0 , to obtain the steady state solution:

Hence the rate of formation of X is:

which can be rewritten:

where:

We can therefore model the effect of applied magnetic fields on the kinetics of the A → X reaction step simply 
by modifying the overall rate constant, k1 , and hence a in Eq. (9).

To explore the effects of small field-induced changes in a on the time-dependence of x and y, the rate equa-
tions in Eq. (9) were integrated nusing the built-in function NDSolve in Mathematica35.

Results
Limit cycles.  We start by investigating the Hopf bifurcation at a = 5 , b = 26 to see whether small changes 
in the value of a, as might arise from a weak magnetic field effect on the first step of the Brusselator model, 
could produce disproportionate changes in the concentrations of the intermediates. When 4.971 ≤ a < 5.000, x(τ ) 
and y(τ ) repeatedly traverse the same closed path, known as a limit cycle22,23. For example, when a = 4.971, 
x(τ ) and y(τ ) oscillate periodically between ~ 3.4 and ~ 7.7, encircling the stationary-state solution at xss = 4.971, 
yss = 5.230 (Fig. 1a). Unexpectedly, and remarkably, a 0.02% reduction in a, from 4.971 to 4.970, produces a 
dramatic ~ ninefold increase in the amplitude of the limit cycle (Fig.  1b), such that x(τ ) and y(τ ) now vary 
between ~ 0.4 and ~ 39.5. The two limit cycles intersect in the region of the stationary-state solution (Fig. 1c). The 
time-dependence of the two cycles is shown in Fig. 1d,e. The large cycle (a = 4.970) oscillates ~ 5 times slower 
than the small cycle (a = 4.971).

Canard explosion.  Further properties of this extraordinary sensitivity of the limit cycle to a can be seen 
in Fig. 2. Figure 2a shows the maximum and minimum values of x as a function of c = a−

√
b− 1 for three 

values of b. When c > 0 (i.e. a2 + 1 > b ) there are no oscillations and x = xss = a. Oscillations appear on the other 
side of the Hopf bifurcation (c < 0); the limit cycle gradually expands as a is reduced until a step change occurs 
to a much larger cycle. The changes in xmax and xmin at this point are sharper and more pronounced the larger 
the value of b. When b = 26, for example, a 2 parts per million reduction in a from 4.97087 to 4.97086 changes 
xmax − xmin from 5.2 to 39.3 and ymax − ymin from 5.3 to 38.8. Dramatic changes also occur in the oscillation 
period (Fig. 2b): as noted above, the larger cycle has a lower frequency.
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The sudden switch from low-amplitude, fast oscillations to high-amplitude, slow oscillations is an example 
of a false bifurcation, known as a canard36–39. Canard explosions, as they are also known, have been found for 
many other oscillator models40–42 and for some real chemical oscillators42. Somewhat surprisingly, given the 
popularity of the Brusselator, this canard appears not to have been reported previously39,43,44. We stumbled 
across it by chance45,46.

Static magnetic fields.  The extreme sensitivity of x(τ ) and y(τ ) to a in the neighbourhood of the canard 
implies, at least in theory, that the feedback inherent in the Brusselator model could afford strong amplification 
of magnetic field effects on the rate constant of the A → X reaction step. Figure 3 shows solutions of Eq. (9) in 
which a is suddenly stepped from one side of the canard to the other to model the change in k1 that might be 
caused by switching on or off a weak static magnetic field, or making a small increase or decrease in the intensity 
of an existing static magnetic field. With b = 26 and a = 4.98 (Fig. 3a), x(τ ) and y(τ ) move quickly from their 
initial values to the small limit cycle where they oscillate until τ = 45 at which time a is abruptly reduced to 4.96, 

Figure 1.   Oscillations in the concentrations of the Brusselator intermediates, x(τ ) and y(τ ) , shown as limit 
cycles (a–c) and explicit time-dependence (d,e). The values of a are as indicated; b = 26 in all five panels. The 
blue dot in (a–c) is the stationary-state solution for a = 4.971, b = 26. (c) is an expanded view of (b). The initial 
conditions are x(0) = 8, y(0) = 4. The limit cycles do not include the induction period (τ < 5) required to establish 
stable oscillations.

Figure 2.   Amplitudes and periods of the Brusselator limit cycles as a function of c = a−
√
b− 1 for b = 10, 

17, and 26. The Hopf bifurcation occurs at c = 0 and oscillatory behaviour is found for c < 0. (a) Maximum and 
minimum values of x(τ ) . The corresponding graph for y(τ ) is very similar. (b) The oscillation period.
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provoking a switch to the large limit cycle. The reverse behaviour (Fig. 3b) is found when a is increased from 
4.96 to 4.98 at τ = 45. The switching between limit cycles occurs at their intersection (x ≈ y ≈ 5, Fig. 1c), hence 
the delay in the transition from the slow cycle to the fast one in Fig. 3b. Figure 3 shows that large changes in the 
oscillation amplitudes and period can be induced by small (here ± 0.4%) changes in a.

Oscillating magnetic fields.  To shed light on the effects of time-dependent magnetic fields, Fig. 4 shows 
how x(τ ) and y(τ ) respond to a small sinusoidal variation in k1, and therefore in a. At τ = 15, a is changed from 
4.971 to

Figure 3.   Time-dependence of the concentrations x(τ ) and y(τ ) when small, sudden changes are made in the 
value of a. b = 26 for both panels. (a) a = 4.98 → a = 4.96. (b) a = 4.96 → a = 4.98. The initial conditions are x(0) = 8, 
y(0) = 4. The green lines at the top indicate the changes in a. The vertical dashed line at τ = 45 marks the time at 
which a is changed.

Figure 4.   Time-dependence of the concentrations x(τ ) and y(τ ) when a is sinusoidally modulated at different 
frequencies. b = 26 for all six panels. The periods, p, of the oscillations are as indicated. The green lines at the top 
indicate the changes in a. The vertical dashed line at τ = 15 marks the time at which the modulation is switched 
on.
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where p is the period of the modulation. When p exceeds ~ 0.5, the initial decrease in a pushes x(τ ) and y(τ ) 
from the small cycle to the large cycle. Subsequently, the system switches between the two limit cycles depend-
ing on the value of a at the moment the concentrations reach the intersection point (Fig. 1c). For periods less 
than about 0.5, the system remains in the small limit cycle, presumably because a changes too rapidly to allow a 
transition to take place at the intersection point.

Noise‑modulated magnetic fields.  Next we look at the effect of noise modulation of a as a way of model-
ling a randomly varying magnetic field. In Fig. 5, at τ = 15, a is changed from 4.971 to

where the frequencies fn and phases φn are random numbers with uniform probability distributions in the ranges 
{0.01, 10} and {0, 2π} , respectively. With this choice of parameters, a has the same standard deviation (≈ 0.0071) 
as in Fig. 4 and Eq. (18). The 3 noise realizations shown in Fig. 5 all cause the system to switch back and forth 
between limit cycles, as found in Fig. 4.

Other conditions.  Finally, disproportionate changes in the oscillation amplitudes are not restricted to 
changes in rate constants that span the canard. Figure 6 shows the effect of small changes in a in the region 
between the canard and the Hopf bifurcation, visible as the − 0.03 < c < 0 section of the b = 26 trace in Fig. 2a. 
Although there is no abrupt change in the amplitudes as seen in Figs. 3 and 4, there is still a strong non-linear 
response both when a is abruptly decreased (Fig. 6a) and when it is sinusoidally modulated (Fig. 6b). For exam-
ple, in Fig. 6a a 0.4% reduction in a produces a ~ 170% increase in the amplitude of the oscillations. This should 

(18)a = 4.971 − 0.01 sin
(

2πτ/p
)

,

(19)a = 4.971 + 10−3

100
∑

n=1

sin
(

2π fnτ + φn
)

,

Figure 5.   Time-dependence of the concentrations x(τ ) and y(τ ) when a is noise-modulated. b = 26 for all 
3 panels. (a–c) Different noise realizations. The green traces at the top indicate the changes in a. The vertical 
dashed line at τ = 15 marks the time at which the modulation is switched on.

Figure 6.   Time-dependence of the concentrations x(τ ) and y(τ ) when (a) a is abruptly decreased from 4.995 
to 4.975, and (b) when a is sinusoidally modulated: a = 4.985 → a = 4.985 − 0.01 sin (2πτ/15) . b = 26 for both 
panels. The green lines at the top indicate the changes in a. 
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be contrasted to the behaviour when oscillations are not expected, i.e. on the right hand side of the Hopf bifurca-
tion in Fig. 2a. For example, a 0.4% change in a, from 5.005 to 5.0025 would produce a 0.4% change in x (because 
x = xss = a when a2 + 1 > b).

Discussion and conclusions
The effects of weak magnetic fields on a chemical reaction that proceeds via a radical pair intermediate can be 
modelled phenomenologically by means of a field-dependent rate constant, Eqs. (16) and (17). Freed from hav-
ing to consider coherent spin dynamics and spin-selective reactivity, this device has allowed us to explore in a 
relatively simple fashion whether autocatalysis and chemical feedback could give rise to amplification of weak 
magnetic field effects. Focussing on the model chemical oscillator known as the Brusselator, we have seen that 
dramatic changes in oscillation amplitudes can result from a minute change in a rate constant if that change 
spans a canard explosion (Figs. 3, 4, 5). More modest, but still substantial effects can be found under other, less 
strict, conditions (Fig. 6). In all cases, the relative change in the concentrations of reaction intermediates can 
greatly exceed the relative change in the magnetically sensitive rate constant. Defined in this way, tiny magnetic 
field effects can be hugely amplified in suitably autocatalytic multi-step reactions.

It is not clear whether chemical or biochemical oscillators exist that could show the kinds of amplification 
discussed here. The scientific literature on oscillating reactions conducted in magnetic fields is sparse to say the 
least. Olsen et al.47–49 have reported effects of strong (~ 100 mT) magnetic fields on the oscillating peroxide-
oxidase reaction which they attributed to a radical pair mechanism. Eichwald and Walleczek50 have modelled 
magnetic field effects on a system of two coupled enzyme reactions in which the substrate of each reaction is 
the product of the other, and one reaction step had a radical pair intermediate. There have also been several 
studies of magnetic field effects on the celebrated Belousov-Zhabotinsky (BZ) reaction in which radicals ( BrO·

2 
and possibly BrO·51) are essential intermediates and paramagnetic metal ions may be involved. Changes in 
wavefront velocity in unstirred BZ reactions subject to magnetic field gradients have been attributed to mag-
netic convection52–56. Related effects have been found for a travelling wave in the reaction of a Co(II) complex 
with hydrogen peroxide57–60. Blank has attributed changes in oscillation frequencies to magnetic field effects on 
electron transfer rates61 although Sontag found no effects of low frequency electromagnetic fields62. In none of 
these studies of the BZ reaction have radical pairs been implicated.

Although amplification can arise from sinusoidally varying magnetic fields (Figs. 4, 6), we have found noth-
ing to suggest that it could exceed the amplification produced by static magnetic fields of comparable amplitude 
(Figs. 3, 6). At least in the case of the Brusselator, there is no evidence for resonant effects in which, hypotheti-
cally, modulating a rate constant at the frequency of the chemical oscillation would selectively drive it to higher 
amplitude. The simulations presented here, therefore, cannot help understand how a biological system could 
be more sensitive to extremely low frequency (ELF, e.g. 50/60 Hz) electromagnetic fields than to static fields of 
similar strength9. Although other model oscillators might display resonant pumping, this seems an improbable 
source of fortuitous ELF field effects in biology, requiring as it does a biological oscillator with a suitable radical 
pair intermediate, an appropriate frequency and, probably, some phase coherence between the oscillator and 
the ELF field10.
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