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Blood flow analysis through arterial walls depicts unsteady non-Newtonian fluid flow behavior. 
Arterial walls are impacted by various chemical reactions and magnetohydrodynamic effects 
during treatment of malign and tumors, cancers, drug targeting and endoscopy. In this regard, 
current manuscript focuses on modeling and analysis of unsteady non-Newtonian Carreau-Yasuda 
fluid with chemical reaction, Brownian motion and thermophoresis under variable magnetic field. 
The main objective is to simulate the effect of different fluid parameters, especially variable 
magnetic field, chemical reaction and viscous dissipation on the blood flow to help medical 
practitioners in predicting the changes in blood to make diagnosis and treatment more efficient. 
Suitable similarity transformations are used for the conversion of partial differential equations 
into a coupled system of ordinary differential equations. Homotopy analysis method is used to 
solve the system and convergent results are drawn. Effect of different dimensionless parameters 
on the velocity, temperature and concentration profiles of blood flow are analyzed in shear 
thinning and thickening cases graphically. Analysis reveals that chemical reaction increases 
blood concentration which enhance the drug transportation. It is also observed that magnetic 
field elevates the blood flow in shear thinning and thickening scenarios. Furthermore, Brownian 
motion and thermophoresis increases temperature profile.

1. Introduction

Study of non-Newtonian fluid models is very important for understanding the blood flow in human body. It became very inter-
esting to model and simulate blood flow problems and incooperate the observed effects in human body as a result of such problems. 
Stretching arteries under high blood pressure, hypertension, or other physiological traumas are much important to be analyzed under 
varying conditions. Heart pumps blood in cycles, pumping blood in and out periodically, known as systole and diastole. In humans, 
unsteady nature of blood flow is causing deaths at high rate in cardiovascular disease patients throughout the world. In this regard 
various phenomena have been observed by many researchers. Few of the related studies can be found in [1–5]. Carreau-Yasuda 

* Corresponding author.
Available online 24 May 2023
2405-8440/© 2023 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

E-mail address: muhammad.riaz@p.lodz.pl (M.B. Riaz).

https://doi.org/10.1016/j.heliyon.2023.e16522
Received 18 November 2022; Received in revised form 17 May 2023; Accepted 18 May 2023

http://www.ScienceDirect.com/
http://www.cell.com/heliyon
mailto:muhammad.riaz@p.lodz.pl
https://doi.org/10.1016/j.heliyon.2023.e16522
https://doi.org/10.1016/j.heliyon.2023.e16522
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 9 (2023) e16522M. Qayyum, M.B. Riaz and S. Afzal

Nomenclature

Parameters with units

𝑥, 𝑦 axial coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
𝑡 temporal coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
𝕍 velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m s−1

𝑢, 𝑣 velocity along 𝑥 and 𝑦 axis . . . . . . . . . . . . . . . . . m s−1

𝜉 time constant
𝑘∗ porosity rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

𝜈 kinematic viscosity (m2 s−1) . . . . . . . . . . . . . . . . . . . . s
𝜎∗ electric conductivity . . . . . . . . . . . . . . . . . . . . . . . Sm−1

𝑘 thermal conductivity . . . . . . . . . . . . . . . . . . . . . W/m K
𝐵0 magnetic field strength . . . . . . . . . . . . . . . . . . . . A m−1

𝑇 ,𝐶 temperature and concentration . . . . . . . . K, kg m−3

𝜌 density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m−3

(𝜌𝐶𝑝) specific heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J/kg K
𝜏 extra stress tensor . . . . . . . . . . . . . . . . . . . . . . kg m−1 s2

𝐷𝑇 thermophoresis diffusion 
coefficient . . . . . . . . . . . . . . . . . . . . . . . . kg m−1 s−1 K−1

𝑘0 Boltzmann constant. . . . . . . . . . . . . . . . . . . W m−2 K−4

𝜇0 dynamic viscosity . . . . . . . . . . . . . . . . . . . . . kg m−1 s−1

𝑘2
𝑟

chemical reaction rate . . . . . . . . . . . . . . . . . . . . . M s−1

𝐸𝑎 activation energy . . . . . . . . . . . . . . . . . . . . . . . . . . J M−1

𝐷𝐵 Brownian diffusion coefficient . . . . . . . . kg m−1 s−1

𝑎, 𝑐 positive constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . s−1

Dimensionless parameters

𝐹 (𝜂) non-dimensional velocity
𝜃(𝜂) non-dimensional temperature
𝜙(𝜂) non-dimensional concentration
𝜂 independent variable
𝑆 mass transfer parameter
𝐴 stretching ratio
𝑃𝑟 Prandtl number
𝑊 𝑒 Weissenberg number
𝛽 porosity parameter
𝑀 Hartman number
𝐸𝑐 Eckert number
𝐴̃ unsteadiness parameter
𝑁𝑡 thermophoresis parameter
𝜎 reaction rate parameter
𝑆𝑐 Schmidt number
𝑁𝑏 Brownian motion parameter
𝛿 relative temperature ratio
𝜈∗ activation energy parameter
ℏ convergence control parameter

nanofluid modeled in this manuscript depicts the non-Newtonian blood flow behavior in both shear thinning and thickening cases. 
Similarly Boyd et al. [6] utilized Boltzmann lattice method to analyze Carreau-Yasuda blood flow model. Shamekhi and Sadeghy [7]
studied Carreau-Yasuda model using PIM mesh free method. Andrade et al. [8] presented the turbulent flow behavior of Carreau-
Yasuda fluid passing through pipes.

Magnetic field plays a vital role when treating maligns and cancer [9], tumors [10], drug targeting [11], cell separation [12], 
magnetic endoscopy [13] and adjusting blood flow during surgery [14]. Behavior of blood flow and temperature is essential to 
be studied in more controlled environment during such processes. Parkash et al. [15] studied MHD effects on bifurcated arteries. 
Periodic body acceleration under MHD blood flow is investigated by Das and Saha [16]. Rao et al. [17] utilized a spectral relaxation 
scheme to analyze a nanofluid impacted by magnetic effects flowing on an exponentially stretched surface. Recently, Tanveer et al. 
[18] analyzed peristaltic activity on MHD blood flow. MHD blood flow with Hall effects and Joule heating was taken into account 
by Bhatti and Rashidi [19]. Ramana et al. [20] investigated the MHD flow of an Oldroyd-B fluid with Cattaneo-Christov heat flux 
passing over a non linearly stretched sheet. Various fluid models under applied magnetic field are analyzed in literature [21–24].

Chemical reaction and activation energy are significant processes in blood flow analysis. Due to intake of different drugs in any 
medical treatment, chemical reactions in human blood occur more than the usual situations. Recently, various non-Newtonian fluids 
models are designed with the effect of chemical reaction and activation energy. Saleem et al. [25] worked on thermal analysis of 
radiated blood flow with buoyancy forces undergoing chemical reactions. Gangadhar et al. [26] analyzed the phenomena of non-
linear thermal radiation by incorporating chemical reaction in Casson-Maxwell nanofluid flow between static disks. Ramzan et al. 
[27] studied flow of nanofluid with autocatalytic chemical reaction with slip conditions. Chemical reactions on Sisko fluid were 
considered by McCash et al. [28]. Yu et al. [29] analyzed chemically reactive flow of Ostwald-de-Waele nanofluid on a rotating disk. 
Khan et al. studied Walter-B fluid under activation energy and chemical reaction in [30]. Recent developments on various fluids 
models have also been done with such effects in [31–36].

Viscous dissipation is an irreversible process in which heat dissipates due to shear forces among adjacent fluid layers. Most recent 
work on blood flow with viscous dissipation is done by Gandhi et al. in [37]. They investigated blood flow with drug delivery under 
the effects of Joule heating and viscous dissipation. Casson nanofluid on a shrinking surface with viscous dissipation was examined 
by Yang et al. [38]. Megahed and Reddy introduced numerical treatment to viscoelastic fluid with viscous dissipation [39]. Chu et 
al. [40] did stability analysis with dual solutions on viscous dissipative cross flows under impact of magnetic field. Investigation 
on nanoconfined behavior of water flow from the perspective of viscous dissipation was done by Wang et al. [41]. Mabood and 
Mastroberardino [42] examined nanofluid flow over a stretching sheet with second order slip and viscous dissipation. Hashmi et al. 
[43] studied Oldroyd-B fluid with viscous dissipative flow and binary reaction over a stretching sheet.

Blood flow being periodic in normal circumstances can be modeled under periodic conditions. However, in diseased cases or 
2

accidental scenarios, unsteady blood flows are encountered. Khan et al. [44] analyzed steady Carreau fluid with activation energy in 
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Table 1

Comparison of present work with existing work in literature.

Unsteady flow Thin./thick. Stretch. Suc./Inj. Visc. dissip. Chem. Reac. Thermo. & Brown. Porous media

Salahuddin et al. [50] No No Yes No No No No No
Khan et al. [51] No No No No Yes Yes No No
Nazir et al. [52] No No No No Yes No No Yes
Present Work Yes Yes Yes Yes Yes Yes Yes Yes

porous medium. In light of literature elaborated above, unsteady blood flow analysis in stretching arteries under viscous dissipation, 
chemical reaction, Brownian motion and thermophoresis is yet to be investigated for both thinning and thickening of blood. More-
over, Table 1 is presented to signify the novelty of present study. Current investigation is motivated under unsteady environment 
related to the non-periodic blood flow analysis through arterial walls. After involving the aforementioned phenomenon in governing 
equations of fluid mechanics, mathematical model for current study is devised. Many analytical and semi-analytical approaches are 
utilized in literature for solution purpose of such flow problems [45–49]. For simulation purpose in this study, homotopy analysis 
method will be used to obtain a convergent series form solution. This scheme provides freedom of choosing the linear operator and 
initial guess which depicts great flexibility in how the solution is explicitly obtained. Although, this method efficiently provides series 
form approximate results for highly non-linear coupled differential equations but in case of various problems containing transcen-
dental non-linearity, this method may not provide convergent results. In rest of the manuscript mathematical modeling is given in 
section 2, solution technique is given in section 3, results and discussion is in section 4 while conclusion is given in section 5.

2. Mathematical modeling

2.1. Flow regime

Consider the two-dimensional unsteady blood flow between two walls with distance ℎ(𝑡) apart having time-dependent stretching 
in x-direction. Temperature and concentration at 𝑦 = 0 surface is time-variant denoted by 𝕋̃ and ℂ̃, respectively while on the other 
wall at 𝑦 = ℎ(𝑡) the constant temperature and concentration are maintained as 𝑇2 and 𝐶2, respectively. Time-dependent magnetic 
field 𝐵(𝑡) acts perpendicularly along y-direction. In this study, electron-ion frequency is assumed to be small due to which induced 
magnetic field and Hall effects are neglected as done in [53]. Thermophoresis and Brownian motion takes place due to nanoparticle 
movement within Carreau-Yasuda nanofluid. Viscous dissipation and chemical reaction effects also impact the blood flow. Carreau-
Yasuda fluid is treated as blood in this study, due to its similar properties exhibiting shear thinning and thickening behavior.

2.2. Carreau-Yasuda model

The extra stress tensor in modeling Carreau-Yasuda flow problem is

𝜏 = 𝜇∞ +
(
𝜇0 − 𝜇∞

)(
1 + (𝜉𝛾̇)𝑑

) 𝑛−1
𝑑 𝐀̆, (1)

where

𝐀̆ = 1
2
[
(𝑔𝑟𝑎𝑑𝑉 ) + (𝑔𝑟𝑎𝑑𝑉 )𝑇

]
, (2)

𝛾̇ =

√√√√ 𝑡𝑟
(
𝐀̆
)

2
,

(3)

here 𝜇0 and 𝜇∞ represent the zero and infinite viscosity shear stress rates in Eq. (1) and 𝑑, 𝑛 and 𝜉 are the Carreau-Yasuda fluid 
parameters. 𝐀̆ and 𝛾 are the first Rivlin Erickson tensor and the shear rate respectively in Eqs. (2) and (3). Shear thinning and 
thickening behaviors of fluid are observed when 𝑛 < 1 and 𝑛 > 1, respectively. If 𝑛 = 1 or 𝜉 = 0, then fluid shows Newtonian behavior 
and for 𝑑 = 2 the fluid is said to be Carreau fluid. We will restrict our investigation to non-Newtonian behavior of blood which is 
very important in case of low shear rates and small arteries.

Let 𝜇∞ = 0, then stress tensor in Eq. (1) becomes

𝜏 = 𝜇0
(
1 + (𝜉𝛾̇)𝑑

) 𝑛−1
𝑑 𝐀̆,

2.3. Problem formulation

Continuity, momentum, energy and concentration equations that govern the flow problem, are given below
3

∇.𝕍 = 0, (4)
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𝜕𝑢

𝜕𝑡
= 𝜈

𝜕2𝑢

𝜕𝑦2
− 𝑣

𝜕𝑢

𝜕𝑦
+ (𝑢2 − 𝑢) 𝜈

𝑘∗
− 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑢2

𝜕𝑢2
𝜕𝑥

+ 𝜉𝑑𝜈
(
𝑛− 1
𝑑

)
(𝑑 + 1) 𝜕

2𝑢

𝜕𝑦2

(
𝜕𝑢

𝜕𝑦

)𝑑

+ 𝜎∗

𝜌
𝐵2(𝑡)(𝑢2 − 𝑢),

(5)

𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝑘(

𝜌𝑐𝑝
) 𝜕2𝑇

𝜕𝑦2
+ 𝜏

(
𝐷𝑇

𝑇2

(
𝜕𝑇

𝜕𝑦

)2
+𝐷𝐵

𝜕𝑇

𝜕𝑦

𝜕𝐶

𝜕𝑦

)

+
𝜇0(
𝜌𝑐𝑝

) (
𝜕𝑢

𝜕𝑦

)2
+

𝜇0(
𝜌𝑐𝑝

) (
𝑛− 1
𝑑

)
𝜉𝑑

(
𝜕𝑢

𝜕𝑦

)2(
𝜕𝑢

𝜕𝑦

)𝑑

,

(6)

𝜕𝐶

𝜕𝑡
+ 𝑢

𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
=𝐷𝐵

𝜕2𝐶

𝜕𝑦2
+ 𝜕2𝑇

𝜕𝑦2

(
𝐷𝑇

𝑇2

)
− 𝑘2

𝑟

(
𝐶 −𝐶2

)( 𝑇

𝑇2

)𝑚

𝑒
−𝐸𝑎

𝑘0𝑇 , (7)

subject to following boundary conditions

𝑢 = 𝕌̃(𝑥, 𝑡), 𝑣 = 𝕍̃ (𝑥, 𝑡), 𝑇 = 𝕋̃ (𝑥, 𝑡), 𝐶 = ℂ̃(𝑥, 𝑡) 𝑎𝑡 𝑦 = 0

𝑢 = 𝑢2(𝑥, 𝑡) =
𝑎2𝑥

1 − 𝑐𝑡
, 𝑇 = 𝑇2, 𝐶 = 𝐶2 𝑎𝑡 𝑦 = ℎ(𝑡).

(8)

The unsteady parameters are as follows

Υ= 1 − 𝑐𝑡, 𝕌̃(𝑥, 𝑡) = 𝑎𝑥

Υ
, ℎ(𝑡) =

√
𝜈Υ
𝑎

, 𝕍̃ (𝑥, 𝑡) =
−𝑉0

Υ
1
2

,

𝕋̃ (𝑥, 𝑡) = 𝑇2 +
𝑇0𝑈𝑤𝑥

𝑣Υ
1
2

, ℂ̃(𝑥, 𝑡) = 𝐶2 +
𝐶0𝑈𝑤𝑥

𝑣Υ
1
2

, 𝐵(𝑡) =
𝐵0

Υ
1
2

(9)

Similarity transformations are introduced as follows

𝑐Ψ=
√
𝜈𝑥𝕌̃𝐹 (𝜂), 𝜂 = 𝑦

√
𝕌̃
𝜈𝑥

,

𝜃 (𝜂) =
𝑇 − 𝑇2

𝕋̃ − 𝑇2
, 𝜙 =

𝐶 −𝐶2

ℂ̃−𝐶2
,

(10)

from Ψ we can directly get 𝑢 = 𝜕Ψ
𝜕𝑦

and 𝑣 = − 𝜕Ψ
𝜕𝑥

. After using Eqs. (9) and (10) in Eqs. (4)-(8), the system of dimensional PDEs are 
transformed into system of dimensionless ODEs presented in Eqs. (11)-(13) along with boundary conditions in Eq. (14).

𝐹 ′′′
[
1 +

(
𝐹 ′′)𝑑 (𝑊 𝑒)𝑑

(
(𝑛− 1) (𝑑 + 1)

𝑑

)]
+ (𝑀2 + 𝛽)(𝐴− 1)𝐹 ′ + 𝐹𝐹 ′′ +𝐴2 − 𝐹 ′(𝐹 ′ +𝐴) + 𝐴

2
𝜂𝐹 ′′ = 0, (11)

1
𝑃𝑟

𝜃′′ + 𝜃′(𝑁𝑡𝜃′ +𝑁𝑏𝜙′) +
(
𝑑 + (𝑛− 1) (𝑊 𝑒)𝑑 (𝐹 ′′)𝑑

) 𝐸𝑐

𝑑
𝐹 ′′2 − 𝜃𝐴̃

(
2
𝐴̃

+ 3
2
+ 𝜂

𝜃′

𝜃

)
− 𝜃′𝐹 = 0, (12)

𝜙′′ + 𝑁𝑡

𝑁𝑏
𝜃′′ − 𝑆𝑐𝜎𝜙 (1 + 𝛿𝜃)𝑚 𝑒

(
−𝜈∗
1+𝛿𝜃

)
− 1

2
𝑆𝑐𝐴̃(3𝜙+ 𝜂𝜙′) − 2𝑆𝑐(𝐹 ′𝜙− 𝐹𝜙′) = 0, (13)

with following dimensionless boundary conditions

𝐹 (𝜂) = 𝑆, 𝐹 ′(𝜂) = 1, 𝜃(𝜂) = 1, 𝜙(𝜂) = 1 at 𝜂 = 0

𝐹 ′(𝜂) =𝐴, 𝜃(𝜂) = 0, 𝜙(𝜂) = 0 at 𝜂 = 1
(14)

The dimensionless variables are

𝑊 𝑒 = 𝜉

√
𝑎3𝑥2

(1 − 𝑐𝑡)3𝜈
,𝐴 =

𝑎2
𝑎
, 𝐴̃ = 𝑐

𝑎
, 𝛽 = 𝜈(1 − 𝑐𝑡)

𝑘∗𝑎
,

𝑀 =
√

𝜎∗

𝜌𝑎
𝐵0, 𝐸𝑐 = (𝑎𝑥)2

𝑐𝑝
(
𝑇𝑤 − 𝑇2

)
(1 − 𝑐𝑡)2

, Pr =
(
𝜌𝑐𝑝

)
𝜈

𝑘
,

𝑁𝑡 =
𝜏𝐷𝑇

(
𝑇𝑤 − 𝑇2

)
𝜈𝑇2

,𝑁𝑏 =
𝜏𝐷𝐵

(
𝐶𝑤 −𝐶2

)
𝜈

, 𝑆𝑐 = 𝜈

𝐷𝐵

,

𝜎 =
𝑘2
𝑟
(1 − 𝑐𝑡)
𝑎

, 𝛿 =
𝕋̃ − 𝑇2
𝑇2

, 𝜈∗ = 𝐸𝑎

𝑘0𝑇2
, 𝑆 =

𝑣0√
𝑎𝜈

.

3. Solution methodology

In order to solve the modeled problem, well known homotopy analysis method is utilized in this section. The deformation 
4

equations of zeroth order and mth-order are given below.
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Fig. 1. Combined ℏ-plots.

3.1. Deformation of zeroth order

At zeroth order of deformation, the governing equations take following form

(1 − 𝑞̊)𝜁𝑗

[
𝜁𝑗 (𝜂, 𝑞̊) − 𝜁𝑗𝑖𝑛𝑡 (𝜂)

]
= 𝑞̊ℏ𝑗𝑁𝜁𝑗

[
𝜁𝑗 (𝜂, 𝑞̊)

]
,

where 𝜁𝑗
are the linear operators and 𝑗 = 1, 2, 3 corresponds to homotopy equation of 𝐹 , 𝜃 and 𝜙 respectively, similarly 𝑁𝜁𝑗

are the 
nonlinear operators, 𝑞̊ the embedding parameter, 𝜁𝑗𝑖𝑛𝑡 (𝜂) are the initial guesses, 𝜂 is the auxiliary parameter, 𝜁𝑗 (𝜂, 𝑞̊) are the unknown 
function of 𝜂 and 𝑞̊.

When we take 𝑞̊ = 0 we obtain initial approximations whereas 𝑞̊ = 1 gives us the final solutions, which are

𝜁𝑗 (𝜂,0) = 𝜁𝑗𝑖𝑛𝑡 (𝜂) 𝑎𝑛𝑑 𝜁𝑗 (𝜂,1) = 𝜁𝑗 (𝜂) ,

3.2. mth-order deformation

For mth-order deformation, we differentiate Eqs. (11)-(13) relative to 𝑞̊. After putting 𝑞̊ = 0 and dividing the expressions with 𝑚!, 
we obtain

𝜁𝑗

[
𝜁𝑗𝑚 (𝜂) −𝕏𝑚𝜁𝑗(𝑚−1) (𝜂)

]
= ℏ𝑅̄𝜁𝑗𝑚

(𝜂) ,

here we define

𝕏𝑚 =
{

0 𝑚 ≤ 1,
1 otherwise,

and

𝑅𝜁𝑗𝑚
(𝜂) = 1

(𝑚− 1)!

𝜕𝑚𝑁̆𝜁𝑗

[
𝜁𝑗 (𝜂, 𝑞̊)

]
𝜕𝑞̊𝑚

||||||𝑞̊=0
The linear operators at 𝑗 and corresponding initial guess are chosen as

At 𝑗 = 1, 𝜁1
= 𝐹 ′′′, 𝜁1𝑖𝑛𝑡 = 𝜁𝐹𝑖𝑛𝑡 = 𝑆 + 𝜂 + (𝐴−1)

2 𝜂2,

At 𝑗 = 2, 𝜁2
= 𝜃′′, 𝜁2𝑖𝑛𝑡 = 𝜁𝜃𝑖𝑛𝑡 = 1 − 𝜂,

At 𝑗 = 3 𝜁3
= 𝜙′′, 𝜁3𝑖𝑛𝑡 = 𝜁𝜙𝑖𝑛𝑡

= 1 − 𝜂,

⎫⎪⎬⎪⎭
3.3. Convergence analysis

In this section, convergence of series solution for velocity, temperature and concentration profile is determined. In Fig. 1 the ℏ-
curves for 24𝑡ℎ iteration of auxiliary variables have been plotted. Region of convergence for velocity, temperature and concentration 
profile are −0.89 ≤ ℏ𝑓 ≤ −0.15, −0.94 ≤ ℏ𝜃 ≤ −0.21 and −0.9 ≤ ℏ𝜙 ≤ −0.24, respectively. Table 2 demonstrates numerical values of 
convergence at 18𝑡ℎ, 21𝑠𝑡 and 26𝑡ℎ iteration. Comparison of results in current study with existing results in literature is done in 
Tables 3 and 4.

4. Analysis of results

In this section we separately analyze the velocity, temperature and concentration profile of Carreau-Yasuda nanofluid in both 
5

shear thinning and thickening cases of blood.
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Table 2

Convergence analysis with 𝑊 𝑒 = 0.3, Pr = 1.5, 𝑑 = 
0.9, b, 𝑛 = 0.1, 𝛽 = 2.2, 𝑁𝑡 = 0.4, 𝐸𝑐 = 0.1, 𝜎 = 
0.6, 𝑁𝑏 = 0.4, 𝜈∗ = 0.40, 𝑆𝑐 = 0.9, 𝛿 = 0.6, 𝑚 = 
0.4, 𝑆 = 0.5, 𝐴 = 0.1, 𝐴̃ = 0.77, 𝑀 = 2.6.

Order of approx. −𝐹 ′′ (0) −𝜃′ (0) −𝜙′ (0)

1 2.777 1.077 1.794
5 2.542 1.078 2.248
9 2.545 1.071 2.312
11 2.577 1.072 2.316
14 2.552 1.072 2.318
15 2.559 1.073 2.318
16 2.559 1.073 2.318
18 2.559 1.073 2.318
21 2.559 1.073 2.318
23 2.559 1.073 2.318
26 2.559 1.073 2.318

Table 3

Validation of -𝐹 ′′(0) when 𝑑 = 2 and 𝑛 = 1 with existing literature.

𝐴 Khan & Azam [54] Chamka et al. [55] Mukhopadhyay & Gorla [56] Present work

0.2 1.06801 – – 1.06817
0.4 1.13469 – – 1.13426
0.8 1.26104 1.261512 1.261479 1.26144
1.2 1.37772 1.378052 1.377850 1.37750
1.4 1.43284 – – 1.43278
2.0 1.58737 – – 1.58741

Table 4

Validation of -𝜃′′(0) when 𝑑 = 2 and 𝑛 = 1 with existing literature.

Pr Chen [57] Grubka & Bobba [58] Sharma [59] Present work

0.72 1.08853 1.0885 1.0885 1.08845
1.00 1.33334 1.3333 1.3332 1.33361
3.00 2.50972 2.5097 2.5092 2.50992
10.0 4.79686 4.7969 4.7945 4.79685

4.1. Velocity profile

We investigate the behavior of blood velocity against various dimensionless fluid parameters in Figs. 2 and 3. Fig. 2(a) shows 
dual behavior of velocity profile in case of increasing Weissenberg number. Higher values of 𝑊 𝑒 decrease viscous forces between 
fluid layers that is inverse relation among 𝑊 𝑒 and viscosity is developed, hence shear thinning (𝑛 = 0.5) shows increase in velocity 
while shear thickening (𝑛 = 1.5) demonstrates decrease in fluid velocity. In Fig. 2(b) increase in unsteady parameter increases the 
fluid velocity in case of shear thinning while decrease in velocity in shear thickening. Magnetic interaction parameter shows similar 
increasing behavior for both thinning and thickening cases (see Fig. 2(c)). The behavior of velocity against stretching parameter 𝐴
is presented in Figs. 2(d) to 2(f). Since this parameter represents stretching ratios of both of the sheets, so for either sheet stretching 
more than the other, increase in velocity is seen. But if stretching rates of both sheets are same i.e., 𝐴 = 1, then decrement in velocity 
is observed for both thinning and thickening cases.
Figs. 3(a) and 3(b) show increasing velocity for increase in both porosity parameter 𝛽 and fluid parameter 𝑛. Fig. 3(c) shows opposite 
behavior for shear thinning and thickening fluid as fluid parameter 𝑑 increases. In case of suction and injection, fluid velocity is 
elevated in Fig. 3(d) for both fluid behaviors.

4.2. Temperature profile

Behavior of fluid temperature against pertinent fluid parameters is depicted in Figs. 4 and 5. Fig. 4(a) demonstrates increasing 
temperature when Prandtl number increases. Higher 𝑃𝑟 results in elevated thermal diffusivity which causes increase in tempera-
ture. Eckert number 𝐸𝑐 shows different behavior in fluid thickening and thinning cases in Fig. 4(b). Eckert number 𝐸𝑐 physically 
characterizes the self heating property of a fluid. It is the ratio of kinetic energy and enthalpy. At high velocity of fluid (thinning 
fluid 𝑛 = 0.5) temperature not only changes due to thermal diffusivity but also frictional forces in fluid layers. Hence increase in 
𝐸𝑐 increases the fluid temperature in case of shear thinning while an opposite behavior is seen in shear thickening (𝑛 = 1.5). Un-
steadiness parameter 𝐴̃ shows decrease in temperature profile for both shear thinning and thickening cases, because increasing 𝐴̃
results in more heat loss from walls (see Fig. 4(c)). Fig. 4(d) depicts opposite behavior of thinning and thickening fluid against fluid 
6

parameter 𝑑.
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Fig. 2. Effect of 𝑊 𝑒, 𝐴̃, 𝑀 and 𝐴 on fluid velocity.

Magnetic interaction parameter shows opposite behaviors for both type of temperature in Fig. 5(a). It is seen in shear thinning 
case that fluid temperature decreases for 𝜂 < 0.5 and increases when 𝜂 > 0.5. On the other hand, opposite is observed for thickening 
case. Both 𝑁𝑏 and 𝑁𝑡 showed increasing temperature profile in either case (thinning or thickening) in Figs. 5(b) and 5(c) which is 
justified because higher Brownian motion increases random colloidal motion of particles and thermophoresis parameter enhances 
particle diffusion resulting in fluid temperature elevation. In Fig. 5(d), increase in 𝑊 𝑒 shows increasing temperature of the fluid for 
shear thinning case, and a decreasing temperature for shear thickening case. Weissenberg number gives relation among relaxation of 
stress and time required for a specific process. Stress relaxation being higher for shear-thinning gives higher temperature whereas in 
shear thickening, lower stress relaxation yields low temperature.

4.3. Concentration profile

Change in blood concentration against increasing values of various fluid parameters is shown in Figs. 6 and 7. The effect of Brow-
nian motion and thermophoresis parameters on the concentration profile is seen in Figs. 6(a) and 6(b). It is seen that nanoparticle 
concentration decreases with an increase in 𝑁𝑏 whereas 𝑁𝑡 shows opposite behavior. Weissenberg number shows decrease in fluid 
concentration for shear thinning and increase in concentration for thickening cases (see Fig. 6(c)). As 𝑊 𝑒 is ratio of elastic forces to 
viscous forces, so it has inverse relation to viscous property of fluid under study. Hence in case of shear thinning fluid (𝑛 = 0.5, less 
7

viscous forces) increasing 𝑊 𝑒 decreases concentration profile while for shear thickening (𝑛 = 1.5, higher viscous forces) concentration 
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Fig. 3. Effect of 𝛽, 𝑛, 𝑑 and 𝑆 on fluid velocity.
8

Fig. 4. Effect of 𝑃𝑟, 𝐸𝑐, 𝐴̃ and 𝑑 on fluid temperature.
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Fig. 5. Effect of 𝑀, 𝑁𝑏, 𝑁𝑡 and 𝑊 𝑒 on fluid temperature.

shows decrement. In Fig. 6(d) rise in unsteadiness parameter depicts increase in fluid concentration. Figs. 6(e) and 6(f) demonstrate 
decrease in concentration profile against increasing 𝑆𝑐 and 𝛿.
The parameter of activation energy 𝜈 ∗ and the chemical reaction 𝜎 have opposite effects on concentration profile as seen in Figs. 7(a) 
and 7(b). Rising activation energy points to increasing 𝐸𝑎 motivating more drug flow through blood indicating higher concentration. 
Elevated 𝐸𝑎 and consequently higher temperature results in lower reaction rate showing contrasting behavior of 𝜎 on concentration 
of blood. Mass transfer parameter 𝑆 and magnetic interaction parameter 𝑀 decreases fluid concentration for both shear thinning or 
thickening behavior of fluid (see Figs. 7(c) and 7(d)).

5. Conclusion

In this article, unsteady non-Newtonian fluid has been modeled and solved to depict the results related to blood flow analysis 
under various circumstances. This investigation provides valuable input for medical analysts seeking effects of chemical reactions 
and viscous dissipation on drug transport and magnetic therapy treatment of numerous diseases. Homotopy analysis method is used 
to obtain convergent series solution prior to further fluid analysis. ℏ-plots are presented to obtain convergent results. To validate the 
obtained results, the solutions of this study are also compared with existing results in literature. The focus of current investigation 
is to show the results related to various fluid parameters on flow regime of Carreau-Yasuda nanofluid for both shear thinning and 
thickening cases of blood flow. These simulations can be used for predicting blood flow for better diagnosis and treatments in future. 
Analysis of current results reveals that the magnetic field increases the blood flow in both shear thinning and thickening cases. 
In shear thinning case, increase in MHD parameter decreases temperature profile when 𝜂 < 0.5 and increases when 𝜂 > 0.5, on the 
other hand opposite behavior has been recorded in shear thickening case. Moreover, increase in chemical reaction shows direct 
relationship with fluid concentration which results in enhanced drug transport through vessels. Increase in Weissenberg number, 
which determines the orientation of flow, increases blood velocity in shear thinning while decrease has been observed in thickening 
scenario. It is also noted that Weissenberg number has similar effect (like velocity) on temperature profile while opposite effect on 
concentration profile. Furthermore, the mass transfer parameter which characterizes the suction/injection phenomena has shown 
decrease in concentration and hence decreasing drug transport in human body.
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Fig. 6. Effect of 𝑁𝑡, 𝑁𝑏, 𝑊 𝑒, 𝐴̃, 𝑆𝑐 and 𝛿 on fluid concentration.
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Fig. 7. Effect 𝜈 ∗, 𝜎, 𝑆 and 𝑀 on fluid concentration.
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