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Abstract: (1) Background: nocturnal hypoglycemia (NH) is one of the most challenging side effects of
multiple doses of insulin (MDI) therapy in type 1 diabetes (T1D). This work aimed to investigate the
feasibility of a machine-learning-based prediction model to anticipate NH in T1D patients on MDI.
(2) Methods: ten T1D adults were studied during 12 weeks. Information regarding T1D management,
continuous glucose monitoring (CGM), and from a physical activity tracker were obtained under
free-living conditions at home. Supervised machine-learning algorithms were applied to the data,
and prediction models were created to forecast the occurrence of NH. Individualized prediction
models were generated using multilayer perceptron (MLP) and a support vector machine (SVM).
(3) Results: population outcomes indicated that more than 70% of the NH may be avoided with
the proposed methodology. The predictions performed by the SVM achieved the best population
outcomes, with a sensitivity and specificity of 78.75% and 82.15%, respectively. (4) Conclusions:
our study supports the feasibility of using ML techniques to address the prediction of nocturnal
hypoglycemia in the daily life of patients with T1D on MDI, using CGM and a physical activity tracker.

Keywords: artificial neural network; hypoglycemia; machine learning; support vector machine;
type 1 diabetes; multiple daily injections; continuous glucose monitoring

1. Introduction

Hypoglycemia is the most common side effect of insulin therapy in type 1 diabetes (T1D) and its
frequency increases with tight glucose control. It is associated with a range of morbidities, including
cardiovascular events and even death due to arrhythmias [1,2]. Almost every aspect of daily life can
be influenced by hypoglycemia (e.g., driving, working, recreational activities), which becomes a great
burden for individuals [3]. The fear of hypoglycemia may cause some patients to deliberately maintain
undesirable hyperglycemia to minimize the risk and severity of further episodes precluding the
benefits of tight glycemic control [4,5]. In addition to this, repeated episodes of hypoglycemia induce
so-called impaired awareness hypoglycemic (IAH) syndrome, which can lead to severe episodes [6].
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More than 50% of severe hypoglycemic episodes occur during the sleep and this is an additional
challenge for T1D management [7]. The frequency of nocturnal hypoglycemia (NH), defined as
episodes occurring while people are asleep at night, is difficult to ascertain using capillary blood
glucose for obvious reasons, although the recent use of continuous glucose monitoring (CGM) revealed
that it is even more common than previously suspected, it can last for hours, and it is commonly
asymptomatic (70%–80%) because during the night the counter-regulatory responses are significantly
blunted [8,9]. The risk factors that predispose an individual to NH are previous hypoglycemia episodes,
low A1c, IAH, and increasing duration of T1D, among others. An excessive/wrong insulin dose,
inadequate carbohydrate ingestion, alcohol consumption, and previous physical activity are within
the circumstances contributing to the development of NH [10–13].

Continuous subcutaneous insulin infusion (CSII) therapy, CGM, and a combination of both
(with the use of a sensor augmented pump (SAP)) have significantly reduced the frequency of
hypoglycemia (including NH) [14–19]. However, those aforementioned therapies are not suitable for
the vast majority of individuals with T1D, who continue to use multiple daily injections of insulin as
regular treatment.

As a result of the great socioeconomic impact caused by diabetes mellitus worldwide and the
advancement of technology, a large volume of diabetes-related data is available either for physicians to
tailor patients’ therapy or for researchers to apply machine-learning (ML) and data-mining techniques.
A recent review [20] noted that an impressive growth of articles including the terms “diabetes” and
“artificial intelligence” has been observed over the last decade. ML utilization has a wide range of
applications in the context of diabetes management. One application of ML methods has focused on
the continuous prediction of blood glucose concentration, especially after the introduction of CGM.
From a clinical perspective, having a continuous predictor can guide patient decisions regarding the
actions required to avoid undesirable hypo- or hyperglycemia; numerous publications are focused on
this subject [21–24]. In the review of blood glucose prediction strategies conducted by Oviedo and
colleagues [25], 87% of the publications were focused on the continuous prediction of blood glucose
concentration, and only 13% were intended to predict the occurrence of adverse glycemic events.

Very few studies addressed the prediction of hypoglycemic events as a classification problem.
Reddy et al. [26] applied ML techniques to predict the occurrence of a hypoglycemic episode while
adults with T1D were performing aerobic exercise. Oviedo et al. [27] considered support vector
machines (SVM) to predict postprandial hypoglycemia using retrospective data from 10 adults with
T1D under SAP therapy. Regarding NH, Tkachenko et al. [28] applied a linear combination to aggregate
several heuristic classifiers to forecast such adverse event. However, in this study, only retrospective
data from blood glucose concentration was used as input features for their predictors, while it is well
established that other variables influence glycemic concentration during the night.

T1D patients using MDI therapy are more exposed to NH than SAP users [29,30], thus
more effort should be directed towards this group. The present work evaluates the feasibility of
machine-learning-based prediction models to forecast the occurrence of NH, considering data related
with T1D management under MDI therapy and also physical activity tracking.

2. Materials and Methods

2.1. Study Protocol and Subjects

A longitudinal, prospective, interventional, and open label study was conducted at a tertiary
endocrinology and nutrition department. It was approved by the local ethical committee and a
written informed consent was obtained from each participant. The study was registered under
ClinicalTrials.gov (NCT03711656). Patients enrolled in the study met the following inclusion criteria:
aged > 18 years, with T1D for at least 5 years, treated with multiple doses of insulin (MDI), using a
rapid acting insulin analogue such as prandial insulin and a basal insulin analogue, with HbA1c within
6.5% and 9.5%, practicing carbohydrate (CH) counting, able to understand and follow the instructions
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of the study including the use of an intermittently scanned continuous glucose monitoring (CGM)
system and to perform > 4 self-monitoring blood glucose measurements (SMBG) per day. In addition,
they fulfilled the following: >4 hypoglycemia/week (<3.9 mmol/l (70 mg/dl), including day and
night), in the last 2 weeks and/or one severe hypoglycemia (needing third party assistance) during the
last year and/or impaired awareness hypoglycemia (IAH, Clarke Test > 3). Exclusion criteria included:
serious illness that may impair study participation, pregnancy or breastfeeding, history of drug use or
alcohol abuse, and the use of an experimental drug or device during the past 30 days.

The study was designed to monitor patients during 12 weeks at home under free-living conditions,
and intended to collect data from the daily activities of the patients. During this period, every patient
used the CGM FreeStyle Libre (FSL) system (Abbott Diabetes Care, Alameda, CA, USA) to monitor
interstitial glucose concentration and the Fitbit Alta HR wristband (Fitbit, Inc., San Francisco, CA,
USA) to obtain the data related with physical activity and sleeping periods.

In the initiation visit, patients received FSL sensors, the reader device with its specific blood
glucose test strips, and the Fitbit Alta HR wristband. Participants were trained on how to use
the devices and on how to upload the data to the respective web servers of each manufacturer.
Each patient received between 6 and 10 CGM-sensors with a lifespan of 2 weeks per unit. Patients
were instructed to manually enter the information of every insulin dose (rapid-acting and long-acting),
as well as the estimation of CH content for every meal consumed during the study, into the reader
device. Additionally, patients were asked to wear the wristband as much as possible during the study
(including sleeping), removing it just for showering, charging, and practicing water sports. The Fitbit
was synchronized with the patient’s mobile phone through a Bluetooth connection.

2.2. Data Processing and Feature Engineering

The development of individualized models was carried out through several stages. Figure 1
illustrates the methodology considered in the initial phase, whereby raw data must be prepared to
be applied in ML algorithms. The variables collected from the FSL, with their respective timestamps,
were interstitial glucose concentration, meals, insulin doses, and SMBG values. The variables collected
by the Fitbit, also with their respective timestamps, were heart rate signal, steps performed, estimation
of calories burned, and sleeping period.
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Figure 1. Methodology applied to prepare the data from FreeStyle Libre (FSL) and Fitbit for the
application of machine-learning algorithms.

After data integration, the cleaning and imputation procedures were applied. The imputation of
missing data was performed in a straightforward way: any gap in interstitial glucose concentration
data lower or equal to 120 min was imputed through linear interpolation. In cases of gaps larger than
120 min, no imputation was performed. Finally, a sampling period of 5 min was considered for all the
data, reducing the number of samples from a single day to 288. Different physiological models were
applied to the data to obtain a representation of the effects of fast-acting insulin doses, announced
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meals, and steps performed over the day. First, the insulin on board (IOB) model [31] was applied to
fast-acting insulin doses. Second, the carbohydrate (CH) on board (COB) model [32] was applied in all
the meals stored in the dataset. The COB is conceptually similar to IOB. It represents the amount of CH
that has been consumed but that still has not appeared in plasma. Lastly, the effect of physical activity
is represented by the activity on board (AOB) model [33], which represents the accumulated effects
of physical activity in the body. The signals generated by the physiological models are illustrated in
Figure 2.
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Figure 2. Utilization of the physiological models to generate features. (a–c) represent a single insulin
dose, a single meal consumed, and the steps performed over a single day, respectively. (d–f) are the
insulin on board (IOB), carbohydrate on board (COB), and activity on board (AOB) obtained by the
physiological models.

Once the data were properly manipulated, several time-domain features could be created to
be used as attributes for the ML algorithms. A total of 29 features were hand-crafted from the 6 h
of data prior to the start of the patient’s sleep period, the period in which the Fitbit informed that
patients were sleeping (considering the time instant obtained by the wristband). The features aimed to
provide the necessary information to predict NH: one feature related with COB, one feature related
IOB, two features related with physical activity (AOB and estimation of calories burned), and the
remaining are related with the CGM signal. Class labeling was performed 6 h after the beginning
of sleep considering the following: if any interstitial glucose concentration reading was lower than
3.9 mmol/l (70 mg/dl), it was considered an event. Such an instance was labeled as Class 1 (night
with hypoglycemia). Otherwise, Class 0 (night without hypoglycemia) was assigned.

2.3. Performance Metrics

The performance of the generated classifiers was evaluated by a metric which combines the
sensitivity (SN) and the specificity (SP), computed by Equation (1). The SN, or true positive rate,
measures the proportion of actual positives that are correctly identified as such, and the SP, or true
negative rate, measures the proportion of actual negatives that are correctly identified as such.
The accuracy of a classifier represents the proportion of classifications performed correctly among
all the examples. However, the analysis of a single metric among those presented above may fail to
evaluate the performance of a classifier. For example, in the present context, a sensitivity of 100%
indicates that every night with hypoglycemia was correctly predicted, but it does not show how many
nights without hypoglycemia were wrongly classified, i.e., it does not take into account false positives.
An alternative way to evaluate the efficacy of a classifier is to combine some of the previous metrics
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into a single measure. Equation (1) also defines the Gmean, which considers both SN and SP, giving
them the same relevance for classification purposes.

SN =
TP

(TP + FN)
SP =

TN
(TN + FP)

Gmean =
√

SN · SP (1)

2.4. Machine-Learning-Based Prediction Models

We propose the use of supervised learning to deal with this bi-class classification problem.
The data classification is performed by a two-step process, consisting of learning and a classification
phase. Thus, given a dataset S defined as in Equation (2), the objective of a classifier is to discover how
the values of a vector containing different features are related with its associated label. Therefore, for a
given set with T examples of the form {(x1, y1), ..., (xT , yT)}, ML techniques seek to map the unknown
relation between xi and yi by function f (x), where f : X → Y, with X representing the feature space
and Y the output space.

S = {(xi, yi)} , i = 1, ..., T (2)

where xi is a sample in the q-dimensional feature space xi ∈
{

f1, f2, ..., fq
}

; yi is the class identity label
yi ∈ {0, 1}; and T the total instances in the dataset. Instances refer to amount of nights available after
the data processing that was used to make the predictions.

Personalized predictive models were generated using two supervised ML algorithms which have
been widely applied in supervised learning: multilayer perceptron networks (MLP) [34] and support
vector machines (SVM) [35]. As a result of the limited number of instances obtained for some patients,
k-fold cross validation was applied in the entire dataset. This process should be repeated/iterated a
number of times for problems with a small sample size [36]. An exhaustive feature selection method
was applied and 2048 feature vectors were evaluated. For each combination of features, stratified
random sampling was performed, and thus the balance was maintained between classes. Later, k-fold
cross validation (k = 5) was conducted, and the results for that iteration were obtained. This procedure
was repeated 100 times for each feature vector, and the final result was obtained by averaging the
results from the 100 repetitions.

3. Results

A total of ten subjects were enrolled to participate in the study: 8 women, age 31.8 ± 16.8 years,
HbA1c 7.3 ± 0.5%, body mass index 24.6 ± 3.6 kg/m2, and duration of diabetes 20.0 ± 8.9 years.
All subjects completed the study. Table 1 presents a summary of CGM data for the whole period in
which patients were monitored. The glucometrics, including coefficient of variation (CV) and time
within and above different target glucose ranges, demonstrate that the participants enrolled in our
study correspond to a high glycemic variability and hypoglycemia prone group of T1D patients.

Table 1. Summaryof continuous glucose monitoring (CGM) data (mg/dl) from each participant.

Mean CGM STD CGM %CV CGM 70–180 <70 <54 >180 >250

P12 187.13 87.19 46.59 45.34% 6.15% 2.13% 48.51% 23.45%
P18 147.01 58.58 39.84 62.16% 9.90% 4.62% 27.95% 5.38%
P23 158.43 69.62 43.94 56.30% 8.82% 3.28% 34.88% 11.31%
P29 171.59 78.15 45.54 49.19% 8.20% 3.71% 42.61% 16.92%
P34 163.16 65.60 40.21 55.22% 5.74% 1.35% 39.03% 10.20%
P40 183.93 80.63 43.84 42.06% 7.91% 4.51% 50.03% 21.11%
P45 154.55 75.83 49.06 50.06% 14.45% 7.12% 35.49% 11.33%
P51 155.25 73.00 47.02 56.37% 10.81% 3.92% 32.82% 12.22%
P56 175.17 79.76 45.53 46.45% 8.68% 3.71% 44.87% 17.98%
P62 160.44 90.53 56.42 47.21% 16.30% 9.92% 36.49% 16.61%

Median 161.80 76.99 45.54 49.62% 8.75% 3.81% 37.76% 14.41%
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The total number of instances generated after the data processing procedure and applied in the
ML algorithms is presented in Table 2, as well as the distribution between instances labeled as Class 0
and Class 1. On average, nocturnal hypoglycemia occurred in one third of the nights that were used to
make predictions. Differences in the number of instances available per subject are related to the fact
that there were days without sleeping information provided by the Fitbit. This was probably due to
patients having removed the Fitbit or the device not recording due to technical problems.

Table 2. Total number of instances for ten patients enrolled in the study. Class 0 is defined as a sleep
period without hypoglycemia and Class 1 is defined as a sleep period with hypoglycemia.

Patient ID
Total

Class 1 Class 0Instances

P12 104 24 (23%) 80 (77%)
P18 61 11 (18%) 50 (82%)
P23 78 15 (19%) 63 (81%)
P29 78 34 (44%) 44 (56%)
P34 73 13 (18%) 60 (82%)
P40 34 7 (21%) 27 (79%)
P45 34 21 (62%) 13 (38%)
P51 14 3 (21%) 11 (79%)
P56 55 20 (36%) 35 (64%)
P62 91 51 (56%) 40 (44%)

Table 3 presents the results for the ten patients, considering the feature vector that obtained the
maximum Gmean among all the combinations of features evaluated, for both the MLP and SVM
techniques. The averaged value over the 100 runs was considered for this purpose. These results
confirm the feasibility of the proposed approach. The SVM achieved better outcomes for almost
all the patients when compared with the MLP, mainly in the sensitivity analysis. Considering the
median outcomes for the entire cohort, almost 80% of the nights with hypoglycemia would be avoided
using this algorithm, while at the same time achieving more than an 80% specificity. P51 achieved
an accuracy of 100%. However, the small number of instances obtained from this patient mean it is
necessary to be skeptical as regards making further conclusions. The worst outcomes were obtained
for P12 with the SVM models, with a Gmean of 64.31%.

Table 3. Averaged sensitivity (SN), specificity (SP), accuracy, and Gmean for the best feature vector of
each patient over the 100 repetitions performed for both multilayer perceptron networks (MLP) and
support vector machines (SVM). Results are presented as a percentage.

Patient ID
Sensitivity Specificity Accuracy Gmean

MLP SVM MLP SVM MLP SVM MLP SVM

P12 64.08 67.63 63.19 61.30 63.39 62.76 63.28 64.31
P18 65.45 76.91 79.10 71.98 76.64 72.87 71.73 74.34
P23 66.47 74.93 78.86 81.75 76.47 80.44 72.11 78.18
P29 65.71 78.35 72.98 82.20 69.81 80.53 69.00 80.20
P34 63.08 69.00 86.57 84.50 82.38 81.74 73.70 76.14
P40 74.43 80.57 88.22 88.74 85.38 87.06 80.69 84.37
P45 77.81 81.43 78.62 86.54 78.12 83.38 77.95 83.86
P51 100.00 100.00 99.73 100.00 99.79 100.00 99.86 100.00
P56 79.90 79.15 91.37 82.09 87.20 81.02 85.44 80.54
P62 72.57 79.53 70.15 75.97 71.51 77.97 71.19 77.70

Median 69.52 78.75 78.98 82.15 77.38 80.77 72.90 79.19

Analyzing the outcomes achieved by the MLP for the entire cohort, the median sensitivity
indicates that almost 70% of the nocturnal hypoglycemic events could be avoided, and in only 21%
of the cases, patients would have taken an unnecessarily action due to a false positive prediction.
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Similarly, P12 achieved the worst outcomes with a Gmean of 63.28%, but even so, the results are
acceptable since more than half of the hypoglycemia could be avoided.

4. Discussion

In this study, we assessed the feasibility of applying machine-learning-based prediction models
to forecast the occurrence of hypoglycemia in the period when patients were sleeping (informed by
a physical activity tracker). Our results suggest that this prediction model seems to be helpful to
anticipate nocturnal hypoglycemia in T1D patients on MDI, using CGM and a physical activity tracker
during challenging, real-life situations.

Although our methodology to predict NH was not embedded into a decision support system,
the effects resulting from the use of our approach in clinical practice can be estimated. For instance,
P56 generated a total of 55 instances with 20 hypoglycemia events. Considering the results obtained
by the MLP approach, the system would be able to predict NH in 16 of these nights, failing in the
prediction of the remaining four hypoglycemia events. In case of the prediction of hypoglycemia,
the recommendation would be to eat a bedtime snack containing complex CH [37]. On the other
hand, on the 35 nights when hypoglycemia was not observed in the instances set, in only three nights,
patients would be alerted wrongly, with the consequence of an unnecessary CH snack being consumed.

In our work, the metric Gmean was adopted to select the best prediction model. This choice was
motivated because it applies the same weight to the SN and SP metrics. Although the main objective
is hypoglycemia avoidance, benefits should be balanced against potential side effects. The occurrence
of excessive false positives may lead patients to hyperglycemia during the night. In addition, patients
may gain weight due to excessive and unnecessary CH consumption at bedtime. Furthermore, better
customization of the models could be achieved depending on the physiological response of patients
for such corrective actions during the nighttime period.

An advantage of the approach presented in this work is the inclusion of features related with
physical activity as input for the prediction models. It has already been shown that daytime physical
activity is strongly related with NH [38–40]; however, previous investigations intended for NH
prediction did not consider such information [28,41]. In our proposal, physical activity data were
collected by the wristband. Such devices are able to provide an acceptable accuracy for our application.
Moreover, they have been available for some time and are not a major burden for a patient to use in
their daily life [42].

Our study has some limitations. Unfortunately, some patients presented a reduced number of
instances. The data acquisition procedure was highly depended on the patients’ commitment to
provide the information related to insulin dosing, CH intake, wearing the wristband, and performing
sensor scans regularly. Regarding missing values of fast-acting insulin injections, which should have
been saved manually by the patients, the possibility of using smart insulin pens in the forthcoming
clinical trials intended to collect data from patients using MDI could help to reduce the influence of
patients’ engagement on the quality of the data. A downside of the approach considered to predict
NH in this work is the exhaustive feature selection methodology applied. A major limitation of this
method is the computational cost required to evaluate all the feature vectors generated. For future
applications, considering online training of predictive models, other feature selection techniques
should be considered or even some dimensionality reduction techniques. The selection of the random
forest technique could reduce the burden caused by the evaluation of different feature vectors, since
the algorithm is based on random input variable selection and bootstrapping. Our study included a
group of T1D patients particularly predisposed to NH. As a consequence, we do not know whether the
results would apply to participants with a lower risk of hypoglycemia. Finally, it is necessary to embed
the machine-learning-based predictions models into a decision support system to allow patients to
make use of the predictions, and thus evaluate the efficacy of such an approach in real-life conditions.
Future clinical trials are being prepared by our research group and should be conducted soon.
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5. Conclusions

We propose a novel methodology intended to predict NH, mainly when patients are asleep.
While NH is a major concern in T1D management, and physical activity is directly related with its
incidence, very little work has been performed to aid patients to predict NH. In a recent publication
by Jensen et al. using information from a database from a clinical trial performed in T1D using CSII,
the authors claimed that by using machine-learning methods (linear discriminant function), it was
possible to predict nocturnal hypoglycemia. However, they pointed out the limitation of the lack
of physical activity measures in their study, as this information could improve the predictions [43].
Moreover, our study considered a group of patients under MDI therapy, which is frequently associated
with NH, and the most frequently used type of insulin therapy for T1D worldwide. The results
obtained are promising and encouraging, indicating that classical ML algorithms are suitable to deal
with this problem using CGM and a physical activity tracker. Adoption of CGM has been growing
rapidly over the past years and wearable activity trackers are already available. Future utilization of
these machine-learning-based prediction models could be implemented in patients’ cell phones, based
on a decision support system application. Therefore, patients would inform the system that they are
preparing to sleep, and the decision system would advise the subject whether the consumption of a
bedtime snack or other preventive maneuvers are deemed necessary.

In conclusion, this work supports the feasibility of using ML techniques to address the prediction
of nocturnal hypoglycemia in the daily life of patients with T1D on MDI, using CGM and a physical
activity tracker. Every case of anticipated hypoglycemia could be followed by preventive strategies,
this certainly warrants further investigation.
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NH Nocturnal Hypoglycemia
MDI Multiple Doses of Insulin
T1D Type 1 Diabetes
CGM Continuous Glucose Monitoring
CSII Continuous Subcutaneous Insulin Infusion
MLP Multilayer Perceptron
SVM Support Vector Machine
IAH Impaired Awareness Hypoglycemic
SAP Sensor Augmented Pump
ML Machine Learning
CH Carbohydrate
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References

1. Frier, B.M. Hypoglycaemia in diabetes mellitus: Epidemiology and clinical implications. Nat. Rev. Endocrinol.
2014, 10, 711–722, doi:10.1038/nrendo.2014.170. [CrossRef] [PubMed]

2. Amiel, S.A.; Aschner, P.; Childs, B.; Cryer, P.E.; de Galan, B.E.; Frier, B.M.; Gonder-Frederick, L.;
Heller, S.R.; Jones, T.; Khunti, K.; et al. Hypoglycaemia, cardiovascular disease, and mortality in
diabetes: Epidemiology, pathogenesis, and management. Lancet Diabetes Endocrinol. 2019, 7, 385–396,
doi:10.1016/s2213-8587(18)30315-2. [CrossRef]

3. Evans, M.; Khunti, K.; Mamdani, M.; Galbo-Jørgensen, C.B.; Gundgaard, J.; Bøgelund, M.; Harris, S.
Health-related quality of life associated with daytime and nocturnal hypoglycaemic events: A time trade-off
survey in five countries. Health Qual. Life Outcomes 2013, 11, 90, doi:10.1186/1477-7525-11-90. [CrossRef]
[PubMed]

4. Frier, B.M. How hypoglycaemia can affect the life of a person with diabetes. Diabetes-Metab. Res. 2008, 24,
87–92, doi:10.1002/dmrr.796. [CrossRef] [PubMed]

5. Shamoon, H.; Duffy, H.; Fleischer, N.; Engel, S.; Saenger, P.; Strelzyn, M.; Litwak, M.;
Wylie-Rosett, J.; Farkash, A.; Geiger, D.; et al.The Diabetes Control and Complications Trial Research
Group. The Effect of Intensive Treatment of Diabetes on the Development and Progression of
Long-Term Complications in Insulin-Dependent Diabetes Mellitus. N. Engl. J. Med. 1993, 329, 977–986,
doi:10.1056/nejm199309303291401. [CrossRef]

6. Mitrakou, A.; Fanelli, C.; Veneman, T.; Perriello, G.; Calderone, S.; Platanisiotis, D.; Rambotti, A.; Raptis, S.;
Brunetti, P.; Cryer, P.; et al. Reversibility of Unawareness of Hypoglycemia in Patients with Insulinomas.
N. Engl. J. Med. 1993, 329, 834–839, doi:10.1056/nejm199309163291203. [CrossRef] [PubMed]

7. Graveling, A.J.; Frier, B.M. The risks of nocturnal hypoglycaemia in insulin-treated diabetes. Diabetes Res.
Clin. Pract. 2017, 133, 30–39, doi:10.1016/j.diabres.2017.08.012. [CrossRef]

8. Guillod, L.; Comte-Perret, S.; Monbaron, D.; Gaillard, R.; Ruiz, J. Nocturnal hypoglycaemias in type
1 diabetic patients: What can we learn with continuous glucose monitoring? Diabetes Metab. 2007, 33,
360–365, doi:10.1016/j.diabet.2007.03.007. [CrossRef]

9. Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. Effectiveness of
Continuous Glucose Monitoring in a Clinical Care Environment: Evidence from the Juvenile Diabetes
Research Foundation Continuous Glucose Monitoring (JDRF-CGM) trial. Diabetes Care 2009, 33, 17–22,
doi:10.2337/dc09-1502. [CrossRef]

10. Woodward, A.; Weston, P.; Casson, I.; Gill, G. Nocturnal hypoglycaemia in type 1 diabetes–frequency and
predictive factors. QJM 2009, 102, 603–607, doi:10.1093/qjmed/hcp082. [CrossRef]

11. Porter, P.A.; Keating, B.; Byrne, G.; Jones, T.W. Incidence and predictive criteria of nocturnal
hypoglycemia in young children with insulin-dependent diabetes mellitus. J. Pediatr. 1997, 130, 366–372,
doi:10.1016/s0022-3476(97)70197-5. [CrossRef]

12. Turner, B.C.; Jenkins, E.; Kerr, D.; Sherwin, R.S.; Cavan, D.A. The Effect of Evening Alcohol
Consumption on Next-Morning Glucose Control in Type 1 Diabetes. Diabetes Care 2001, 24, 1888–1893,
doi:10.2337/diacare.24.11.1888. [CrossRef]

13. Wilson, D.M.; Calhoun, P.M.; Maahs, D.M.; Chase, H.P.; Messer, L.; Buckingham, B.A.; Aye, T.; Clinton, P.K.;
Hramiak, I.; Kollman, C.; et al. Factors Associated with Nocturnal Hypoglycemia in At-Risk Adolescents
and Young Adults with Type 1 Diabetes. Diabetes Technol. Ther. 2015, 17, 385–391, doi:10.1089/dia.2014.0342.
[CrossRef] [PubMed]

14. Pickup, J.C.; Sutton, A.J. Severe hypoglycaemia and glycaemic control in Type1 diabetes: meta-analysis of
multiple daily insulin injections compared with continuous subcutaneous insulin infusion. Diabet. Med.
2008, 25, 765–774, doi:10.1111/j.1464-5491.2008.02486.x. [CrossRef] [PubMed]

https://doi.org/10.1038/nrendo.2014.170
http://dx.doi.org/10.1038/nrendo.2014.170
http://www.ncbi.nlm.nih.gov/pubmed/25287289
https://doi.org/10.1016/s2213-8587(18)30315-2
http://dx.doi.org/10.1016/S2213-8587(18)30315-2
https://doi.org/10.1186/1477-7525-11-90
http://dx.doi.org/10.1186/1477-7525-11-90
http://www.ncbi.nlm.nih.gov/pubmed/23731777
https://doi.org/10.1002/dmrr.796
http://dx.doi.org/10.1002/dmrr.796
http://www.ncbi.nlm.nih.gov/pubmed/18088077
https://doi.org/10.1056/nejm199309303291401
http://dx.doi.org/10.1056/nejm199309303291401
https://doi.org/10.1056/nejm199309163291203
http://dx.doi.org/10.1056/NEJM199309163291203
http://www.ncbi.nlm.nih.gov/pubmed/8355741
https://doi.org/10.1016/j.diabres.2017.08.012
http://dx.doi.org/10.1016/j.diabres.2017.08.012
https://doi.org/10.1016/j.diabet.2007.03.007
http://dx.doi.org/10.1016/j.diabet.2007.03.007
https://doi.org/10.2337/dc09-1502
http://dx.doi.org/10.2337/dc09-1502
https://doi.org/10.1093/qjmed/hcp082
http://dx.doi.org/10.1093/qjmed/hcp082
https://doi.org/10.1016/s0022-3476(97)70197-5
http://dx.doi.org/10.1016/S0022-3476(97)70197-5
https://doi.org/10.2337/diacare.24.11.1888
http://dx.doi.org/10.2337/diacare.24.11.1888
https://doi.org/10.1089/dia.2014.0342
http://dx.doi.org/10.1089/dia.2014.0342
http://www.ncbi.nlm.nih.gov/pubmed/25761202
https://doi.org/10.1111/j.1464-5491.2008.02486.x
http://dx.doi.org/10.1111/j.1464-5491.2008.02486.x
http://www.ncbi.nlm.nih.gov/pubmed/18644063


Sensors 2020, 20, 1705 10 of 11

15. Bolinder, J.; Antuna, R.; Geelhoed-Duijvestijn, P.; Kröger, J.; Weitgasser, R. Novel glucose-sensing technology
and hypoglycaemia in type 1 diabetes: A multicentre, non-masked, randomised controlled trial. Lancet
2016, 388, 2254–2263, doi:10.1016/s0140-6736(16)31535-5. [CrossRef]

16. Lind, M.; Polonsky, W.; Hirsch, I.B.; Heise, T.; Bolinder, J.; Dahlqvist, S.; Schwarz, E.; Ólafsdóttir, A.F.;
Frid, A.; Wedel, H.; et al. Continuous Glucose Monitoring vs Conventional Therapy for Glycemic Control
in Adults With Type 1 Diabetes Treated With Multiple Daily Insulin Injections. JAMA 2017, 317, 379,
doi:10.1001/jama.2016.19976. [CrossRef]

17. Beato-Víbora, P.I.; Quirós-López, C.; Lázaro-Martín, L.; Martín-Frías, M.; Barrio-Castellanos, R.;
Gil-Poch, E.; Arroyo-Díez, F.J.; Giménez-Álvarez, M. Impact of Sensor-Augmented Pump Therapy with
Predictive Low-Glucose Suspend Function on Glycemic Control and Patient Satisfaction in Adults and
Children with Type 1 Diabetes. Diabetes Technol. Ther. 2018, 20, 738–743, doi:10.1089/dia.2018.0199.
[CrossRef]

18. Choudhary, P.; Shin, J.; Wang, Y.; Evans, M.L.; Hammond, P.J.; Kerr, D.; Shaw, J.A.; Pickup, J.C.;
Amiel, S.A. Insulin Pump Therapy With Automated Insulin Suspension in Response to Hypoglycemia:
Figure 1. Diabetes Care 2011, 34, 2023–2025, doi:10.2337/dc10-2411. [CrossRef]

19. Battelino, T.; Conget, I.; Olsen, B.; Schütz-Fuhrmann, I.; Hommel, E.; Hoogma, R.; Schierloh, U.;
Sulli, N.; Bolinder, J. The use and efficacy of continuous glucose monitoring in type 1 diabetes
treated with insulin pump therapy: A randomised controlled trial. Diabetologia 2012, 55, 3155–3162,
doi:10.1007/s00125-012-2708-9. [CrossRef]

20. Contreras, I.; Vehi, J. Artificial Intelligence for Diabetes Management and Decision Support: Literature
Review. J. Med. Internet Res. 2018, 20, e10775,doi:10.2196/10775. [CrossRef]

21. Contreras, I.; Oviedo, S.; Vettoretti, M.; Visentin, R.; Vehí, J. Personalized blood glucose prediction:
A hybrid approach using grammatical evolution and physiological models. PLoS ONE 2017, 12, e0187754,
doi:10.1371/journal.pone.0187754. [CrossRef] [PubMed]

22. Georga, E.I.; Protopappas, V.C.; Polyzos, D.; Fotiadis, D.I. A predictive model of subcutaneous glucose
concentration in type 1 diabetes based on Random Forests. In Proceedings of the 2012 Annual
International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA,
28 August–1 September 2012,doi:10.1109/embc.2012.6346567. [CrossRef]

23. Zecchin, C.; Facchinetti, A.; Sparacino, G.; Nicolao, G.D.; Cobelli, C. Neural Network Incorporating Meal
Information Improves Accuracy of Short-Time Prediction of Glucose Concentration. IEEE. Trans. Biomed. Eng.
2012, 59, 1550–1560, doi:10.1109/tbme.2012.2188893. [CrossRef]

24. Bunescu, R.; Struble, N.; Marling, C.; Shubrook, J.; Schwartz, F. Blood Glucose Level Prediction
Using Physiological Models and Support Vector Regression. In Proceedings of the 2013 12th
International Conference on Machine Learning and Applications, Miami, FL, USA, 4–7 December 2013,
doi:10.1109/icmla.2013.30. [CrossRef]

25. Oviedo, S.; Vehí, J.; Calm, R.; Armengol, J. A review of personalized blood glucose prediction strategies for
T1DM patients. Int. J. Numer. Meth. Biomed. 2016, 33, e2833,doi:10.1002/cnm.2833. [CrossRef] [PubMed]

26. Reddy, R.; Resalat, N.; Wilson, L.M.; Castle, J.R.; Youssef, J.E.; Jacobs, P.G. Prediction of Hypoglycemia
During Aerobic Exercise in Adults With Type 1 Diabetes. J. Diabetes Sci. Technol. 2019, 13, 919–927,
doi:10.1177/1932296818823792. [CrossRef] [PubMed]

27. Oviedo, S.; Contreras, I.; Quirós, C.; Giménez, M.; Conget, I.; Vehi, J. Risk-based postprandial hypoglycemia
forecasting using supervised learning. Int. J. Med. Inform. 2019, 126, 1–8, doi:10.1016/j.ijmedinf.2019.03.008.
[CrossRef] [PubMed]

28. Tkachenko, P.; Kriukova, G.; Aleksandrova, M.; Chertov, O.; Renard, E.; Pereverzyev, S.V. Prediction of
nocturnal hypoglycemia by an aggregation of previously known prediction approaches: proof of concept for
clinical application. Comput. Methods Programs Biomed. 2016, 134, 179–186, doi:10.1016/j.cmpb.2016.07.003.
[CrossRef]

29. Steineck, I.; Ranjan, A.; Nørgaard, K.; Schmidt, S. Sensor-Augmented Insulin Pumps and Hypoglycemia
Prevention in Type 1 Diabetes. J. Diabetes Sci. Technol. 2017, 11, 50–58, doi:10.1177/1932296816672689.
[CrossRef]

30. Chen, E.; King, F.; Kohn, M.A.; Spanakis, E.K.; Breton, M.; Klonoff, D.C. A Review of Predictive Low Glucose
Suspend and Its Effectiveness in Preventing Nocturnal Hypoglycemia. Diabetes Technol. Ther. 2019, 21,
602–609, doi:10.1089/dia.2019.0119. [CrossRef]

https://doi.org/10.1016/s0140-6736(16)31535-5
http://dx.doi.org/10.1016/S0140-6736(16)31535-5
https://doi.org/10.1001/jama.2016.19976
http://dx.doi.org/10.1001/jama.2016.19976
https://doi.org/10.1089/dia.2018.0199
http://dx.doi.org/10.1089/dia.2018.0199
https://doi.org/10.2337/dc10-2411
http://dx.doi.org/10.2337/dc10-2411
https://doi.org/10.1007/s00125-012-2708-9
http://dx.doi.org/10.1007/s00125-012-2708-9
https://doi.org/10.2196/10775
http://dx.doi.org/10.2196/10775
https://doi.org/10.1371/journal.pone.0187754
http://dx.doi.org/10.1371/journal.pone.0187754
http://www.ncbi.nlm.nih.gov/pubmed/29112978
https://doi.org/10.1109/embc.2012.6346567
http://dx.doi.org/10.1109/embc.2012.6346567
https://doi.org/10.1109/tbme.2012.2188893
http://dx.doi.org/10.1109/TBME.2012.2188893
https://doi.org/10.1109/icmla.2013.30
http://dx.doi.org/10.1109/icmla.2013.30
https://doi.org/10.1002/cnm.2833
http://dx.doi.org/10.1002/cnm.2833
http://www.ncbi.nlm.nih.gov/pubmed/27644067
https://doi.org/10.1177/1932296818823792
http://dx.doi.org/10.1177/1932296818823792
http://www.ncbi.nlm.nih.gov/pubmed/30650997
https://doi.org/10.1016/j.ijmedinf.2019.03.008
http://dx.doi.org/10.1016/j.ijmedinf.2019.03.008
http://www.ncbi.nlm.nih.gov/pubmed/31029250
https://doi.org/10.1016/j.cmpb.2016.07.003
http://dx.doi.org/10.1016/j.cmpb.2016.07.003
https://doi.org/10.1177/1932296816672689
http://dx.doi.org/10.1177/1932296816672689
https://doi.org/10.1089/dia.2019.0119
http://dx.doi.org/10.1089/dia.2019.0119


Sensors 2020, 20, 1705 11 of 11

31. Wilinska, M.; Chassin, L.; Schaller, H.; Schaupp, L.; Pieber, T.; Hovorka, R. Insulin Kinetics in Type-1
Diabetes: Continuous and Bolus Delivery of Rapid Acting Insulin. IEEE. Trans. Biomed. Eng. 2005, 52, 3–12,
doi:10.1109/tbme.2004.839639. [CrossRef]

32. Beneyto, A.; Bertachi, A.; Bondia, J.; Vehi, J. A New Blood Glucose Control Scheme for Unannounced
Exercise in Type 1 Diabetic Subjects. IEEE Trans. Control. Netw. Syst. 2018, 1–8, doi:10.1109/tcst.2018.2878205.
[CrossRef]

33. Ozaslan, B.; Patek, S.; Breton, M. Quantifying The Effect Of Antecedent Physical Activity On Prandial
Glucose Control In Type 1 Diabetes: Defining Exercise On Board. In Proceedings of the Abstracts from ATTD
2017 10th International Conference on Advanced Technologies & Treatments for Diabetes, Paris, France,
15–18 February 2017; pp. A24–A25, doi:10.1089/dia.2017.2525.abstracts. [CrossRef]

34. Haykin, S. Neural Networks and Learning Machines; Prentice Hall: Upper Saddle River, NJ, USA, 2009.
35. Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995.
36. Beleites, C.; Neugebauer, U.; Bocklitz, T.; Krafft, C.; Popp, J. Sample size planning for classification models.

Anal. Chim. Acta 2013, 760, 25–33, doi:10.1016/j.aca.2012.11.007. [CrossRef] [PubMed]
37. Kalergis, M.; Schiffrin, A.; Gougeon, R.; Jones, P.J.; Yale, J.F. Impact of Bedtime Snack Composition on

Prevention of Nocturnal Hypoglycemia in Adults With Type 1 Diabetes Undergoing Intensive Insulin
Management Using Lispro Insulin Before Meals: A randomized, placebo-controlled, crossover trial.
Diabetes Care 2003, 26, 9–15, doi:10.2337/diacare.26.1.9. [CrossRef] [PubMed]

38. Bachmann, S.; Hess, M.; Martin-Diener, E.; Denhaerynck, K.; Zumsteg, U. Nocturnal Hypoglycemia
and Physical Activity in Children With Diabetes: New Insights by Continuous Glucose Monitoring and
Accelerometry. Diabetes Care 2016, 39, e95–e96, doi:10.2337/dc16-0411. [CrossRef] [PubMed]

39. Metcalf, K.M.; Singhvi, A.; Tsalikian, E.; Tansey, M.J.; Zimmerman, M.B.; Esliger, D.W.; Janz, K.F. Effects
of Moderate-to-Vigorous Intensity Physical Activity on Overnight and Next-Day Hypoglycemia in Active
Adolescents With Type 1 Diabetes. Diabetes Care 2014, 37, 1272–1278, doi:10.2337/dc13-1973. [CrossRef]

40. Jaggers, J.R.; King, K.M.; Watson, S.E.; Wintergerst, K.A. Predicting Nocturnal Hypoglycemia with Measures
of Physical Activity Intensity in Adolescent Athletes with Type 1 Diabetes. Diabetes Technol. Ther. 2019, 21,
406–408, doi:10.1089/dia.2019.0048. [CrossRef]

41. Sampath, S.; Tkachenko, P.; Renard, E.; Pereverzev, S.V. Glycemic Control Indices and Their Aggregation
in the Prediction of Nocturnal Hypoglycemia From Intermittent Blood Glucose Measurements. J. Diabetes
Sci. Technol. 2016, 10, 1245–1250, doi:10.1177/1932296816670400. [CrossRef]

42. Kaewkannate, K.; Kim, S. A comparison of wearable fitness devices. BMC Public Health 2016, 16,
doi:10.1186/s12889-016-3059-0. [CrossRef]

43. Jensen, M.H.; Dethlefsen, C.; Vestergaard, P.; Hejlesen, O. Prediction of Nocturnal Hypoglycemia from
Continuous Glucose Monitoring Data in People with Type 1 Diabetes: A Proof-of-Concept Study. J. Diabetes
Sci. Technol. 2019, 250–256, doi:10.1177/1932296819868727. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1109/tbme.2004.839639
http://dx.doi.org/10.1109/TBME.2004.839639
https://doi.org/10.1109/tcst.2018.2878205
http://dx.doi.org/10.1109/TCST.2018.2878205
https://doi.org/10.1089/dia.2017.2525.abstracts
http://dx.doi.org/10.1089/dia.2017.2525.abstracts
https://doi.org/10.1016/j.aca.2012.11.007
http://dx.doi.org/10.1016/j.aca.2012.11.007
http://www.ncbi.nlm.nih.gov/pubmed/23265730
https://doi.org/10.2337/diacare.26.1.9
http://dx.doi.org/10.2337/diacare.26.1.9
http://www.ncbi.nlm.nih.gov/pubmed/12502652
https://doi.org/10.2337/dc16-0411
http://dx.doi.org/10.2337/dc16-0411
http://www.ncbi.nlm.nih.gov/pubmed/27208338
https://doi.org/10.2337/dc13-1973
http://dx.doi.org/10.2337/dc13-1973
https://doi.org/10.1089/dia.2019.0048
http://dx.doi.org/10.1089/dia.2019.0048
https://doi.org/10.1177/1932296816670400
http://dx.doi.org/10.1177/1932296816670400
https://doi.org/10.1186/s12889-016-3059-0
http://dx.doi.org/10.1186/s12889-016-3059-0
https://doi.org/10.1177/1932296819868727
http://dx.doi.org/10.1177/1932296819868727
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Study Protocol and Subjects
	Data Processing and Feature Engineering
	Performance Metrics
	Machine-Learning-Based Prediction Models

	Results
	Discussion
	Conclusions
	References

