
Citation: Mendes, M.P.R.; Paiva,

M.J.N.; Costa-Amaral, I.C.; Carvalho,

L.V.B.; Figueiredo, V.O.; Gonçalves,

E.S.; Larentis, A.L.; André, L.C.

Metabolomic Study of Urine from

Workers Exposed to Low

Concentrations of Benzene by

UHPLC-ESI-QToF-MS Reveals

Potential Biomarkers Associated with

Oxidative Stress and Genotoxicity.

Metabolites 2022, 12, 978. https://

doi.org/10.3390/metabo12100978

Academic Editor: Angela Bachi

Received: 5 October 2022

Accepted: 13 October 2022

Published: 16 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metabolites

H

OH

OH

Article

Metabolomic Study of Urine from Workers Exposed to Low
Concentrations of Benzene by UHPLC-ESI-QToF-MS Reveals
Potential Biomarkers Associated with Oxidative Stress
and Genotoxicity
Michele P. R. Mendes 1 , Maria José N. Paiva 1, Isabele C. Costa-Amaral 2, Leandro V. B. Carvalho 2 ,
Victor O. Figueiredo 2, Eline S. Gonçalves 2 , Ariane L. Larentis 2 and Leiliane C. André 1,*

1 Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas
Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil

2 Center for the Study of Occupational Health and Human Ecology (CESTEH), Sergio Arouca National School
of Public Health (ENSP), Oswaldo Cruz Foundation (Fiocruz), Rua Leopoldo Bulhões 1480, Manguinhos,
Rio de Janeiro 21041-210, RJ, Brazil

* Correspondence: leiliane@ufmg.br; Tel.: +55-31-9238-3636

Abstract: Benzene is a human carcinogen whose exposure to concentrations below 1 ppm (3.19 mg·m−3)
is associated with myelotoxic effects. The determination of biomarkers such as trans-trans muconic
acid (AttM) and S-phenylmercapturic acid (SPMA) show exposure without reflecting the toxic effects
of benzene. For this reason, in this study, the urinary metabolome of individuals exposed to low
concentrations of benzene was investigated, with the aim of understanding the biological response to
exposure to this xenobiotic and identifying metabolites correlated with the toxic effects induced by
it. Ultra-efficient liquid chromatography coupled to a quadrupole-time-of-flight mass spectrometer
(UHPLC-ESI-Q-ToF-MS) was used to identify metabolites in the urine of environmentally (n = 28)
and occupationally exposed (n = 32) to benzene (mean of 22.1 µg·m−3 and 31.8 µg·m−3, respectively).
Non-targeted metabolomics analysis by PLS-DA revealed nine urinary metabolites discriminating
between groups and statistically correlated with oxidative damage (MDA, thiol) and genetic material
(chromosomal aberrations) induced by the hydrocarbon. The analysis of metabolic pathways revealed
important alterations in lipid metabolism. These results point to the involvement of alterations in
lipid metabolism in the mechanisms of cytotoxic and genotoxic action of benzene. Furthermore,
this study proves the potential of metabolomics to provide relevant information to understand the
biological response to exposure to xenobiotics and identify early effect biomarkers.

Keywords: benzene; metabolomic untargeted; UHPLC-ESI-Q-TOF-MS; environmental toxicology;
occupational toxicology

1. Introduction

Benzene is a ubiquitous pollutant, and human exposure to it occurs through occu-
pational or environmental contamination. Benzene is used in the steel and oil industries,
in addition to being released into the environment by emissions from motor vehicles
(concentrations can reach up to 349 µg m−3 in high-traffic urban centers). In addition,
cigarettes are another important anthropogenic source of environmental exposure [1]. It
is a xenobiotic classified as a human carcinogen by the International Agency for Research
on Cancer—IARC [2]. Exposure to benzene is associated with myelotoxic effects, which
can cause qualitative and quantitative disturbances of blood cells such as leukopenia,
thrombocytopenia, pancytopenia, aplastic anemia, and leukemia [3]. Studies have shown
that benzene toxicity is greater at exposures associated with airborne concentrations be-
low 0.1 ppm [4,5]. However, the mechanisms involved in its toxic action are still not
fully elucidated.
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Considering the potential risk to human health, biological monitoring is a useful expo-
sure assessment tool to prevent adverse effects. Usually the biomarkers trans, trans muconic
acid (AttM) and S-phenylmercapturic acid (S-PMA) in urine are used for this purpose [6–8].
However, this strategy does not reflect the adverse health effects resulting from exposure
to low concentrations of this toxic agent. Therefore, an exploratory and comprehensive
evaluation of the organism-benzene interaction is necessary; and metabolomics present
itself as a useful alternative capable of achieving this goal.

Biomonitoring is used to indicate the occurrence of an internal dose of the chemical and
its distribution in the body; which can be useful in measuring health risks. Currently, the
assessment of risks arising from chronic exposure to low concentrations of toxic substances
or complex mixtures represents a major challenge for modern toxicology. In many cases,
the quantitative determination of exposure and effect biomarkers has been shown to be
insufficient to fully characterize the harmful effects resulting from this exposure. Added to
this, the inability of biomarkers to early indicate the harmful effects induced by the toxic
agent [9].

In this sense, the application of “omics” sciences for toxicological evaluation has been
proposed and in this context, metabolomics has stood out among the most promising [10,11].
Metabolomics consists of the comprehensive assessment of the metabolic profile of bio-
logical compartments and represents an important step toward the discovery of new
biomarkers associated with environmental or occupational exposure. However, the limited
number of available metabolomic biomarkers does not reflect the extent of research in this
field. Among the challenges of metabolomics, we can mention the analytical process, which
is critical, in addition to the difficulties in reproducing the data necessary for the replication
of studies, or even its continuity after the discovery of biomarkers [12].

Disturbances in metabolic profiles are detected earlier when compared to alterations
in genes or proteins [13,14]. Thus, in the field of toxicology, metabolomics represent a
holistic understanding of the interaction between organism and xenobiotic, and allows
the integration of information about the internal dose of the chemical and the biolog-
ical response triggered, essential data to assess potential risks [15,16]. Therefore, the
metabolomics approach is a powerful tool to deepen our understanding of the biochemical
interactions involved in disease development from chemical exposures to the discovery of
new biomarkers.

The comprehensive coverage of the chemical diversity of substances and their different
concentrations in the human body is a challenge, and for this the concomitant use of
different analytical techniques is necessary. Nuclear magnetic resonance—NMR [17,18]
and MS-mass spectrometry [19] account for most applications. However, MS offers greater
sensitivity and specificity when combined with separation techniques such as liquid or
gas chromatography. Liquid chromatography is recognized as the most used technique
currently in non-target metabolomics [20,21].

Untargeted metabolomics has been successfully applied in studies of environmental
and occupational toxicology, providing relevant information on the mechanisms of toxic
action and even identification of biomarkers [22–28]. However, there are few studies on the
elucidation of the metabolic profile in individuals exposed to benzene.

In this study, an exploratory experimental analysis was performed in order to identify
whether there are differences in the urinary metabolic profile of individuals occupationally
and environmentally exposed to low concentrations of benzene. For the study of the
metabolome, ultra-performance liquid chromatography coupled to a quadrupole-time-
of-flight electrospray ionization mass spectrometer (UHPLC-ESI-Q-TOF-MS) was used.
Multivariate statistical analysis was used to analyze the results and understand the bi-
ological response to exposure and, thus, encourage future studies in the search for new
biomarkers; more specific and capable of predicting the adverse effects caused by exposure
to this chemical contaminant. These new biomarkers can be used in the context of environ-
mental and occupational health, with a preventive purpose, in order to prevent exposed
individuals from becoming ill.
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2. Materials and Methods
2.1. Population

The study population consisted of 60 workers of both sexes, aged between 18 and
65 years, with a history of exposure to low concentrations of benzene. These workers were
part of the population described in the study by Costa-Amaral et al., (2019) [29]. The work-
ers were divided into two groups, according to their exposure to benzene—environmental
exposure and occupational exposure. The environmental group was composed of 28 work-
ers who worked as security guards (environmental group) of a research institution located
in the north of the city of Rio de Janeiro-Brazil. The occupational group included 32 gas
station workers located in the west of the same city.

2.2. Ethical Aspects of Research

Urine samples from the 60 subjects were provided, in accordance with the “Ethical
Principles for Medical Research Involving Human Subjects” of the World Medical Associa-
tion, by the Center for Studies in Occupational Health and Human Ecology of the Oswaldo
Cruz Foundation (CESTEH/FIOCRUZ), in Rio de Janeiro. of January Brazil. These samples
were part of the FIOCRUZ study on the assessment of occupational exposure to benzene.
The study was submitted and approved by the ethics and research committees of the Fed-
eral University of Minas Gerais—UFMG (CAAE: 57396116.1.0000.5149, opinion number:
1.691.348) and of FIOCRUZ-RJ (CAAE: 17438013.5.0000.5240, opinion number: 2.974.839).

2.3. Biochemical Biomarkers, Exposure, Oxidative Stress and Genotoxicity

Blood samples were collected to determine hematological parameters (complete blood
count + platelets) and biochemical parameters (AST, ALT, total bilirubin and fractions,
creatinine, GGT); which were analyzed by the Ambulatory of the National School of Public
Health—ENSP/Fiocruz-RJ. The biomarkers of oxidative stress effect (enzyme activity:
catalase—CAT; glutathione S transferase—GST; superoxide dismutase—SOD; thiol and
malondialdehyde -MDA Group) and genotoxicity (micronucleus, chromosomal aberrations)
were performed at the Toxicology Laboratory from the Center for the Study of Workers’
Health and Human Ecology—CESTEH/FIOCRUZ (COSTA-AMARAL, 2019) [29]. The
comet assay (EC), another biomarker of genotoxicity; was carried out in the laboratory
of Professor Dr. Andrew Richard Collins linked to the Department of Nutrition at the
University of Oslo-Norway (COSTA-AMARAL, 2019) [29]. Urine samples were collected for
quantification of benzene exposure biomarkers SPMA and AttM, and global metabolomics.
AttM was also quantified in the Toxicology Laboratory of CESTEH/FIOCRUZ; while the
SPMA and metabolomics analyzes were performed at the Laboratory of Toxicological
Analysis (LATO) of the Faculty of Pharmacy at UFMG.

2.4. Standards and Reagents

The chromatographic grade solvents acetonitrile, methanol, formic acid, 2-propanol,
and sodium formate were obtained from Sigma-Aldrich (San Luis, MO, USA)®.

2.5. Sample Preparation

Urine samples were frozen at −80 ◦C to promote metabolic extinction. To perform the
analyses, the urine samples were thawed and vortexed for 30 s. Then, 100 µL were diluted
in 125 µL of methanol in Eppendorf microtubes and again vortexed for 30 s. The samples
were then subjected to centrifugation at 2817× g at 4 ◦C for 5 min for protein precipitation.
Soon after, 200 µL of the supernatant were transferred to properly labeled flasks and diluted
in 300 µL of an aqueous solution containing 0.1% methanoic acid. Quality control samples
(QCs) were prepared by mixing 20 µL of each urine sample. Sample blanks were also
prepared containing all reagents used in the preparation, with the exception of urine.
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2.6. Analytical System—UHPLC-ESI-QTOF/MS

For data acquisition, after preparation, urine samples were analyzed by ultra-performance
chromatography (NCS-3500RS-Thermo Scientific® model) coupled to a mass spectrom-
eter (Bruker® Q-ToF model) and Bruker® HMDB library Metabolite 2.0. A C18 column
(100 mm × 2.1 mm 1.8 µm particle) was employed in the analysis, the temperature was
maintained at 40 ◦C with gradient elution and low flow, as shown in Table 1. The mobile
phase consisted of mixing the solutions (A): water with 0.1% formic acid and (B): acetoni-
trile with 0.1% formic acid. The injection volume was 15 µL. Quality control (QC) samples
were interleaved every five urine samples to assess instrument stability.

Table 1. Gradient elution and rate flow used in the chromatographic separation.

Time (min) Rate (mL/min) % A % B

0 0.200 96.0 4.0
2 0.200 96.0 4.0
7 0.200 81.7 18.3
12 0.223 50.0 50
14 0.400 0.1 99.9
16 0.480 0.1 99.9
19 0.480 96.0 4.0

19.10 0.200 96.0 4.0
20 0.200 96.0 4.0

The mass spectrometer was operated in positive mode, with electrospray ionization
(IE), using collision energies of 20 and 50 eV (each 50% of the time). The ionization source
was adjusted to 4500 V in positive mode with a potential plate end of −500 V. The source
conditions was adjusted to: nebulizer gas (N2) at 5.0 bar; dry gas (N2) at 9.0 L/min; dry
temperature at 200 ◦C; capillary voltage at 4.5 KV. Before analysis, sodium formate solution
was used for calibration. Lock mass calibration was performed with 1 mg/mL solution
of hexakis (2,2-difluoroethoxy) phosphazene in 2-propanol, generating reference ions for
positive ion mode ([M + H]+ = m/z 622).

Data were obtained in a range of m/z 50 to 1200 with an acquisition rate of 4 Hz.
Five most intense ions were selected for automatic fragmentation (AutoMS/MS). Data
were acquired by the Hystar Application® software version 3.2 and OtofControl® (Bruker
Daltonics Corporation, Bremen, Germany) and processed using DataAnalysis® 4.4 and
Metaboscape® 5.0 softwares (Bruker Daltonics Corporation, Bremen, Germany).

All samples were analyzed randomly in order to avoid uncertainties and artifacts
related to the injection order and to prevent the effect of gradual changes in instrument
sensitivity over entire batches.

2.7. Detection and Identification of Non-Target Metabolites

The results files obtained from anlytical system were converted to the mzXML format
using the Proteowizard® software (http://proteowizard.sourceforge.net/download.html
(accessed on 27 January 2020)). The R® statistical software version 3.6.2 and the XCMS
Bioconductor® package (Mahieu, Genenbacher, & Patti, 2016; version 3.10
http://bioconductor.org/packages/release/bioc/html/xcms.html (accessed on 27 Jan-
uary 2020)) [30,31] were used for the pre-treatment of the data and creating the data matrix.
The results were analyzed individually using the algorithm centWave in XCMS®. The data
were submitted to logarithmic transformation and Pareto scheduling. The peak intensities
of each sample were normalized by the corresponding creatinine concentration; using
MetaboAnalyst® version 5.0 (https://www.metaboanalyst.ca/ (accessed on 27 January
2020)) [32].

Multivariate statistical analysis using the principal component analysis (PCA) and
discriminant analysis by partial least squares (PLS-DA) tests was used to identify the
metabolic differences in the urine of both groups. Cross-validation were used to validate
the PLS-DA model. All of these analyzes, as well as the identification of the metabolites

http://proteowizard.sourceforge.net/download.html
http://bioconductor.org/packages/release/bioc/html/xcms.html
https://www.metaboanalyst.ca/
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as potential biomarkers, were also performed in MetaboAnalyst® 5.0, using the following
criteria: variable importance plot (VIP) scores of the variables > 2; p-values between
analyzed groups < 0.05, FDR < 0.01 and metabolites significantly correlated with oxidative
stress and genotoxicity biomarkers (p < 0.05).

Compounds identification was performed with a narrow tolerance of 3.0 mDa for
mass accuracy, mSigma of 40 for isotope standard and MS/MS score of 700, using Bruker
Metabobase Personal Library 3.0® and Bruker HMDB Metabolite Library 2.0® (MSI level 2 [33]).
For unidentified metabolites, molecular formulas were generated using Compound Crawler
(Metaboscape® 5.0) with close tolerance of 3 mDa and mSigma of 30; considering CHNOPS
as elements of composition. For these, the putative identification in public databases such
as—Human Metabolome Database (HMDB®), Metlin®, and LIPIDMAPS® was performed
by searching the m/zs, based on the accurate mass and mass spectrometric fragmentation
patterns, and maximum mass error of 5 ppm.

2.8. Statistical Analysis

The Shapiro–Wilk test was used to assess whether the quantitative variables were
normally distributed. To compare the normally distributed variables, the T test was used;
for the others, the Mann–Whitney test was used. To compare the qualitative variables,
the Chi-Square and Fisher’s Exact tests were used. Differences in urinary metabolite
concentration between groups were investigated using the Mann–Whitney test. Multiple
linear regression was used to explain the variability of effect biomarkers as a function of
urinary metabolites. The linear regression model used was:

Yi = β0 +
p

∑
k=1

βk Xik + εi

where

- Yi is the value of the oxidative stress biomarker of the ith individual;
- Xik is the kth metabolite of the ith individual;
- βik is the coefficient of the kth metabolite;
- εi is a random error, which follows normal distribution with mean 0 and standard

deviation σ.

Through the regression study, we sought to identify the most important urinary
metabolites to explain the variance of the oxidative stress biomarker. The stepwise back-
ward elimination [34] method, using the Akaike Information Criterion [35], or AIC, as a
criterion was used to identify the combination of metabolites that minimized the AIC and
led to a more adjusted model, capable of explaining the variance of the effect biomarkers.

Finally, the correlation between metabolites and exposure biomarkers (SPMA and
AttM, oxidative stress markers and chromosomal aberration rates) was verified using Spear-
man’s Correlation and illustrated by scatter diagrams. The software used in the analyzes
was R® (version 4.0.2) and all statistical tests were performed assuming a significance level
of 5%.

3. Results
3.1. Sociodemographic Characteristics and Results of Biological Monitoring

The descriptive analysis of sociodemographic characteristics and the results of the
comparison tests between the groups of workers are shown in Table S1. The occupationally
exposed population consisted of 72.5% gas station attendants; 13.7% employees with
executive assignments; 5.9% general service assistants; 5.9% lubrication technician; and
2.0% convenience store clerk. The mean concentration of benzene in the atmospheric air of
the evaluated stations was 31.8 µg·m−3. On the other hand, the population environmentally
exposed to benzene was composed of security guards (96.6%) and doormen (3.4%), who
were exposed to an average concentration of 22.1 µg·m−3 of benzene in the air atmosphere.
All participants from both groups had been in this occupation for more than 3 months.
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Working time in the current occupation varied greatly between groups, as shown in
Table S2. In the environmental group, workers’ time in their current occupation ranged
from 10 to 348 months, with a mean of 152.7 and a standard deviation of 99.2. In the
occupational group, the working time ranged from 12 to 408, with a mean of 117.8 and a
standard deviation of 122.8.

The complete description of the results of the descriptive analysis of the sociode-
mographic characteristics, hematological, biochemical parameters, oxidative stress, and
genotoxicity of the workers participating in this study were previously described by Costa-
Amaral et al., (2019) [29], and a summary is presented in Table S3. Oxidative stress
biomarkers THIOL, MDA, and chromosomal abnormalities differed significantly between
groups. Thus, oxidative damage and chromosomal aberrations were the main toxic effects
induced by exposure to benzene in the population studied. For this reason, the correlation
of potential metabolomic biomarkers in urine with such toxic effects was investigated in
the present study.

3.2. Identification of the Urinary Metabolic Profile of Individuals Occupationally and
Environmentally Exposed to Benzene

A total of 2361 molecular characteristics were detected, of which 1522 showed signifi-
cant differences (p < 0.05) between occupational and environmentally exposed groups. Of
these, 1267 compounds were identified; which belong to different chemical categories, as
shown in Figure 1. There was a predominance of amino acids and derivatives (44%) and
lipids (29%).

Figure 1. Chemical categories of metabolites identified in the urine of occupational and environmental
workers exposed to benzene, investigated in this study.

The analytical results were analyzed by unsupervised pattern recognition methods—PCA
(principal component analysis) and supervised—PLS-DA (partial least squares discrimi-
native analysis). PCA analysis was used to assess the quality of data acquisition, and the
strong clustering of QC samples, observed in the center of the graph (Figure 2), indicated
analytical reproducibility and reliability of the results. The PCA model constructed also
revealed a tenuous separation between the groups of workers with low environmental and
occupational exposure to benzene.
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Figure 2. Principal component analysis-PCA (PC 1 × PC 2) of urine samples from workers exposed
and occupationally to benzene, with provision for environmental quality control samples (QCs).

The supervised pattern recognition methods—discriminant partial least squares anal-
ysis (PLS-DA) and discriminant partial least squares analysis (OPLS-DA); were used to
identify the metabolites capable of distinguishing the groups of workers investigated in
this study. The PLS-DA model constructed is shown in Figure 3. The PLS-DA revealed a
tendency to cluster samples from the same group; especially in the occupational group.
This indicates that there are differences in the urinary metabolic profile between the groups
of workers; and that the metabolic disorder associated with exposure differs between them.
The constructed PLS-DA and OPLS-DA models were validated through the cross-validation
test and the permutation test, respectively; and both presented satisfactory coefficients.

Figure 3. Partial least squares discriminant analysis (PLS−DA) and partial orthogonal discriminant
analysis (OPLS−DA) of urine samples from workers exposed to environmental and occupational
benzene, analyzed by UHPLC−ESI−Q−ToF−MS. Note: Red triangles represent samples from
the occupational group and the green squares represent samples from the environmental group.
(A): PLS−DA model, validation parameters: R2 = 0.98, Q2 = 0.87; (B): OPLS−DA model.
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Based on the criteria for identifying the discriminating metabolites described in item
2.5, thirty-eight molecular characteristics that contributed most to the discrimination be-
tween groups were selected. Table 2 shows the identity of the metabolites, as well as their
m/z ratio and chemical classification. The intensities of metabolites between groups were
compared by the Mann–Whitney test, and all showed a statistically significant difference
(p < 0.05). The VIP value, obtained in the PLS-DA model, indicates the importance of each
metabolite in the discrimination between groups.

Table 2. Identification of urinary metabolic biomarkers related to exposure to low concentrations
of benzene.

Metabolites M VIP a Score p b Values Chemical Category

Phenylalanylhydroxyproline 279.13 2.42 0.0000 Peptide
Tetrahydropteroyltri-L glutamic acid 703.25 2.29 0.0001 Tetrahydrofolic acid

Trp Gln Asp Cys Glu 679.22 2.22 0.0000 Peptide
Testosterone glucuronide 465.24 2.19 0.0000 Steroid glucuronide

7alpha-Hydroxy-3-oxo-5beta-cholan-24-oic acid 390.27 2.18 0.0000 Bile acid
Phosphatidylcholine(44:6) 889.65 2.15 0.0000 Phosphatidylcholine

Asp Asp Phe Hys 532.19 2.14 0.0000 Peptide
Phosphatidylcholine(42:6) 861.62 2.11 00000 Glycerophospholipid
Phosphatidylcholine(42:2) 869.68 2.10 0.0000 Glycerophospholipid
Phosphatidylcholine(22:2) 825.66 2.10 0.0000 Glycerophospholipid

Folic acid 441.13 2.10 0.0000 Pterins
Phosphatidylethanolamine PGE2/22:2(13Z,16Z) 867.56 2.10 0.0000 Glycerophospholipids

Phosphatidylcholine(40:3) 891.64 2.10 0.0000 Phosphatidylcholine
Cys Hys Ser Trp 531.19 2.10 0.0000 Peptide

1,21-Henicosanediol 328.33 2.09 0.0000 Long chain fatty alcohol
Heptadecanoic carnitine 413.35 2.08 0.0000 Acyl carnitine

Phosphatidylglycerol (36:1) 776.55 2.06 0.0000 Phosphatidylglycerol
Phophatidylethanolamine(44:9) 841.56 2.06 0.0000 Phosphatidylethanolamine

1-(9Z-heptadecenoyl)-2-(7Z,
10Z, 13Z, 16Z-docosatetraenoyl)

-glycero-3-phosphoserine
823.53 2.06 0.0000 Glycerophospholipids

1-Methylinosine 283.28 2.05 0.0001 Purine nucleoside
Cys Met Thr Tyr 517.85 2.05 0.0000 Peptide

Tetradecenoylcarnitine 369.28 2.05 0.0000 Acyl carnitine
Phosphatidylethanolamine(22:5) 778.09 2.05 0.0000 Glycerophospholipids

Phosphatidylcholine(36:0) 775.64 2.05 0.0000 Glycerophospholipids
Coprocholic acid 450.33 2.04 0.0000 Bile acid

Asp Leu 494.24 2.04 0.0000 Peptide
Phosphatidylserine(38:1) 817.58 2.04 0.0000 Phosphatidylserine

Phosphatidic acid(40:1) 758.58 2.03 0.0000 1,2-diacylglycerol-3-
phosphate

Phosphatidic acid PA(18:1(12Z)-2OH(9,10)/i-15:0) 692.46 2.03 0.0000 Glycerophospholipids
Phosphatidylcholine(32:1) 731.54 2.02 0.0000 Glycerophospholipids
Phosphatidylcholine(34:1) 759.57 2.02 0.0000 Glycerophospholipids

Phosphatidylethanolamine(34:2) 715.51 2.02 0.0000 Phosphatidylethanolamine
Cys Arg Trp Trp 649.27 2.01 0.0000 Peptide

Sphingomyelin (D18: 0/14: 1 (9Z)
(OH)) 688.51 2.01 0.0000 Sphingolipid

Sphingomyelin (d18:1/16:0) 702.56 2.01 0.0000 Sphingolipid
Phosphatidylcholine(38:4) 795.61 2.01 0.0000 Glycerophosphocholine

Phosphatidylethanolamine(35:0) 733.56 2.01 0.0000 Glycerophospholipids
Phosphatidylethanolamine(32:3) 671.48 2.00 0.0000 Glycerophosphoethanolamine

Note: M: average molecular weight. a: VIP score was obtained from the PLS-DA model. b: p-values were
calculated from nonparametric Mann—Whitney test between occupational and environmental exposure groups.
Thirty-eight significantly changed (VIP > 2, p value < 0.05 and FDR < 0.01) endogenous metabolites related to
benzene exposure are listed in this table.
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All metabolites showed higher concentration (fold change) in the urine of workers with
environmental exposure to benzene, with the exception of the compound phenylalanylhy-
droxyproline, which showed higher concentration in the urine of gas station workers.

The correlation between potential metabolomic biomarkers and S-phenilmercapturic
Acid (SPMA) and trans-trans-muconic acid (t,t-MA) exposure indicators was investigated by
Spearman’s Correlation. No significant correlation was observed (p-value > 0.05) between
metabolites and these biomarkers (Table S4).

3.3. Urinary Metabolites Associated with Oxidative Stress

The oxidative stress biomarkers SOD, CAT, and GST showed no significant difference
between groups. To investigate the relationship of these discriminating metabolites derived
from metabolomic analysis with the early toxic effects associated with low exposure to
benzene identified in this study—thiol and MDA—linear regression was used. Thus, linear
regression models were developed, using the stepwise backward elimination method and
the Akaike information criterion (AIC), to explain thiol and MDA.

In Figure 4 it is possible to see the metabolites of the best linear regression model
to explain MDA and thiol, and their respective coefficients. The metabolites that were
significant are represented in blue, and those that were not significant in red. The developed
models presented satisfactory performance (MDA: R2 adjusted from 0.5053 and estimated
standard error was 0.1114; thiol: R2 adjusted from 0.5053, and estimated standard error
of 0.1114).

Figure 4. Cont.
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Figure 4. Logistic linear regression results with estimates of β0 e of βk of discriminating metabolites
for MDA and thiol biomarkers. Note: (A): MDA; (B): THIOL. Note: Coefficients calculated using
linear regression, with a 95% confidence interval (CI). In blue, significant urinary metabolites; in red,
non-significant urinary metabolites.

Multiple regression models were used to assess the influence of demographic variables
and metabolites on oxidative stress biomarkers (Figure 5). The results showed that there
was a significant and negative influence (Beta < 0.00; p < 0.00) of the metabolites coprocholic
acid, Cys Met Tre Tyr, phosphatidylethanolamine (34:2), phosphatidylcholine (32:1), and
phosphatidylcholine (38:4) on thiol levels. Thus, with the increase in the concentration
of these metabolites, a decrease in serum thiol concentration is expected. In contrast, the
metabolites Cys Hys Ser Trp, phosphatidylethanolamine (32:3) and phosphatidylglycerol
(36:1) had a significant and positive influence (Beta > 0.00) on the same biomarker. Thus,
the increase in the concentration of these metabolites in the urine is accompanied by an
increase in the serum thiol concentration. Phosphatidylcholine (44:6) and PE (PGE2/22:2
(13Z, 16Z)) had a significant negative effect (Beta < 0.00; p < 0.00) on the MDA biomarker.
Phosphatidylcholine (38:4) had a positive (Beta > 0.00; p < 0.00) and significant influence on
serum MDA levels.
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Figure 5. Multiple regression results and estimates of β0 and βκ for the main metabolites and
sociodemographic variables for the biomarkers MDA, thiol, CAT, and GST. Note: Coefficients
calculated using linear regression, with a 95% confidence interval (CI). In blue, significant urinary
metabolites and in red, non-significant urinary metabolites.

No candidate metabolite proved to be significant to explain the variations of the CAT
marker. On the other hand, the GST enzyme was significantly and negatively (Beta < 0.00;
p < 0.00) influenced by tetradecenoylcarnitine, Cys Arg Trp Trp and PE (PGE2/22:2 (13Z,
16Z)). In addition, the smoking habit also influenced the levels of this enzyme, smokers with
increased GST activity compared to former smokers. SOD enzyme activity was significantly
and negatively influenced (Beta < 0.00 and p < 0.00) by phosphatidylcholine levels (44:6);
and positively by 7alpha-hydroxy-3-oxo-5beta-cholan-24-oic acid (Beta > 0.00; p < 0.00).

Spearman’s correlation was used to verify the relationship between urinary metabo-
lites and oxidative stress markers. The correlation coefficients and their significance are
shown in Table 3. Many significant correlations were found (p-value < 0.05); however, the
correlation coefficients showed low values, that is, close to zero.
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Table 3. Spearman correlation between urinary metabolites and oxidative stress markers.

CAT GST THIOL MDA SOD

P1 p Value P1 p Value P1 p Value P1 p Value P1 p Value

Phenylalanylhydroxyproline −0.068 0.605 0.205 0.116 0.083 0.531 −0.342 0.007 −0.012 0.928
Sphingomyelin (d18:1/16:0) −0.019 0.887 0.162 0.218 0.149 0.256 −0.356 0.005 −0.002 0.987

1,21-Henicosanediol 0.008 0.949 −0.017 0.897 0.047 0.721 0.007 0.957 0.007 0.960
Tetradecenoylcarnitine 0.114 0.386 0.264 0.041 0.314 0.014 −0.272 0.036 −0.215 0.099

7alpha-Hydroxy-3-oxo-5beta-cholan-24-
oic acid 0.091 0.490 0.275 0.033 0.333 0.009 −0.216 0.098 −0.183 0.161

Testosterone glucuronide 0.034 0.796 0.268 0.039 0.273 0.035 −0.306 0.017 −0.267 0.039
Phosphatidylglycerol (36:1) −0.146 0.267 −0.079 0.548 0.153 0.242 −0.083 0.528 0.274 0.034

Coprocholic acid 0.135 0.303 0.302 0.019 0.238 0.067 −0.305 0.018 −0.280 0.030
Folic acid 0.064 0.627 0.281 0.030 0.331 0.010 −0.276 0.033 −0.251 0.053
Asp Leu 0.097 0.459 0.246 0.058 0.236 0.069 −0.310 0.016 −0.223 0.087

Cys Met Thr Tyr 0.141 0.282 0.266 0.040 0.214 0.100 −0.303 0.019 −0.236 0.070
1-(9Z-heptadecenoyl)-2-(7Z,10Z, 13Z,

16Z-docosatetraenoyl)-glycero-3-
phosphoserine

0.086 0.514 0.295 0.022 0.281 0.030 −0.275 0.034 −0.260 0.045

Cys Hys Ser Trp 0.030 0.817 0.275 0.033 0.254 0.051 −0.248 0.056 −0.261 0.044
Asp Asp Fen Hys 0.054 0.680 0.287 0.026 0.283 0.028 −0.246 0.059 −0.275 0.034
Cys Arg Trp Trp 0.113 0.391 0.297 0.021 0.291 0.024 −0.265 0.041 −0.262 0.043

Phosphatidylethanolamine(32:3) 0.103 0.433 0.308 0.017 0.303 0.019 −0.265 0.041 −0.264 0.042
Sphingomyelin (D18: 0/14: 1 (9Z)

(OH)) 0.087 0.511 0.312 0.015 0.284 0.028 −0.256 0.049 −0.270 0.037

Trp Gln Asp Cys Glu 0.039 0.770 0.294 0.022 0.321 0.012 −0.330 0.010 −0.213 0.103
Tetrahydropteroyltri-L-glutamic acid −0.005 0.969 0.300 0.020 0.240 0.065 −0.348 0.006 −0.278 0.031

Phosphatidic acid
PA(18:1(12Z)-2OH(9,10)/i-15:0) 0.095 0.472 0.304 0.018 0.268 0.038 −0.253 0.051 −0.256 0.048

Phosphatidylcholine(32:1) 0.096 0.464 0.306 0.017 0.286 0.027 −0.258 0.047 −0.259 0.045
Phosphatidylethanolamine(34:2) 0.107 0.414 0.295 0.022 0.277 0.032 −0.256 0.049 −0.261 0.044

1-Methylinosine 0.044 0.739 0.292 0.024 0.247 0.057 −0.196 0.132 −0.401 0.002
Phosphatidylethanolamine(35:0) 0.121 0.358 0.291 0.024 0.274 0.034 −0.253 0.051 −0.251 0.053

Heptadecanoic carnitine 0.064 0.625 0.301 0.019 0.290 0.025 −0.266 0.040 −0.252 0.052
Phosphatidylcholine(36:0) 0.081 0.539 0.293 0.023 0.291 0.024 −0.269 0.038 −0.262 0.043

Phophatidylethanolamine(22:5) 0.096 0.468 0.297 0.021 0.268 0.038 −0.255 0.049 −0.279 0.031
Phosphatidylcholine(38:4) 0.091 0.489 0.308 0.017 0.266 0.040 −0.256 0.048 −0.251 0.053

Phosphatidic acid(40:1) 0.090 0.493 0.299 0.021 0.287 0.026 −0.273 0.035 −0.253 0.051
Phosphatidylcholine(34:1) 0.093 0.480 0.295 0.022 0.275 0.034 −0.261 0.044 −0.262 0.043
Phosphatidylserine(38:1) 0.088 0.503 0.296 0.022 0.277 0.032 −0.259 0.045 −0.252 0.052

Phophatidylethanolamine(44:9) 0.089 0.501 0.304 0.018 0.294 0.023 −0.262 0.043 −0.262 0.043
Phosphatidylcholine(22:2) 0.100 0.448 0.299 0.020 0.289 0.025 −0.256 0.048 −0.242 0.063
Phosphatidylcholine(42:6) 0.082 0.536 0.288 0.026 0.288 0.026 −0.261 0.044 −0.257 0.048
Phosphatidylcholine(40:3) 0.113 0.391 0.297 0.021 0.291 0.024 −0.265 0.041 −0.262 0.043
Phosphatidylethanolamine

PGE2/22:2(13Z, 16Z) 0.095 0.473 0.289 0.025 0.263 0.043 −0.281 0.029 −0.238 0.067

Phosphatidylcholine(42:2) 0.079 0.547 0.311 0.015 0.285 0.027 −0.274 0.034 −0.279 0.031
Phosphatidylcholine(44:6) 0.075 0.569 0.310 0.016 0.293 0.023 −0.270 0.037 −0.252 0.052

P1: Spearman’s correlation coefficient; p-values were calculated from nonparametric Mann—Whitney test.

The CAT biomarker showed low correlation with all metabolites. GST showed positive
correlations with sphingomyelin (D18:0/14:1(9Z)(OH)), phosphatidylcholine (42:2), and
phosphatidylcholine (44:6). On the other hand, 7alpha-hydroxy-3-oxo-5beta-cholan-24-
oic acid, folic acid, and Trp Gly Asp Cys Glu were the most positively correlated with
thiol. The biomarker MDA was negatively correlated (P1 < 0) with all urinary metabolites,
except 1,21-henicosanediol. The highest correlations for this biomarker were observed
with phenylalanylhydroxyproline, sphingomyelin (d18:1/16:0), Asp Leu, Trp Gly Asp Cys
Glu, and tetrahydropteroyltri-L-glutamic acid. On the other hand, the SOD enzyme also
showed negative correlations (P1 < 0) with all urinary metabolites, with the exception of
1,21-henicosanediol and was more negatively correlated with 1-methylinosine.

From these results, scatter plots were used to verify the behavior of the relationship
between urinary metabolites and oxidative stress markers—thiol, MDA, CAT, SOD, and
GST. The results showed that there is no linear correlation between them, therefore, the
increase or decrease in the levels of oxidative stress markers does not imply a proportional
change in urinary metabolites. Some correlations are shown in Figure S1.
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3.4. Urinary Metabolites Associated with Chromosomal Aberrations

The relationship of discriminating urinary metabolites between groups of workers with
environmental and occupational exposure to benzene, and chromosomal aberrations was
also investigated using Spearman’s correlation. The following aberrations were considered:
break rate, fragment rate, and metaphase rate with premature separation. The correlation
coefficients and their significance are shown in Table 4. It is possible to verify that there
were many significant correlations (p-value <0.05), but the correlation coefficients present
low values, close to zero.

Table 4. Spearman correlation between urinary metabolites and chromosomal aberrations.

Break Rate Fragments Rate Metaphase Rate with
Premature Separation

P1 p Value P1 p Value P1 p Value

Phenylalanylhydroxyproline −0.315 0.014 −0.316 0.014 0.196 0.136
Sphingomyelin (d18:1/16:0) −0.271 0.036 −0.263 0.042 0.150 0.256

1,21-Henicosanediol −0.334 0.009 −0.331 0.010 0.154 0.243
Tetradecenoylcarnitine −0.291 0.024 −0.290 0.024 0.320 0.013

7alpha-Hydroxy-3-oxo-5beta-
cholan-24-oic acid −0.244 0.060 −0.249 0.055 0.353 0.006

Testosterone glucuronide −0.272 0.035 −0.272 0.035 0.300 0.021
Phosphatidylglycerol (36:1) 0083 0.528 0.089 0.498 0.130 0.327

Coprocholic acid −0.287 0.026 −0.298 0.021 0.275 0.035
Folic acid −0.241 0.063 −0.243 0.061 0.349 0.007
Asp Leu −0.303 0.019 −0.308 0.017 0.319 0.014

Cys Met Thr Tyr −0.315 0.014 −0.313 0.015 0.269 0.039
1-(9Z-heptadecenoyl)-2-(7Z,10Z,

13Z, 16Z-docosatetraenoyl)-
glycero-3-phosphoserine

−0.282 0.029 −0.290 0.025 0.304 0.019

Cys Hys Ser Trp −0.258 0.047 −0.250 0.054 0.281 0.031
Asp Asp Fen Hys −0.279 0.031 −0.277 0.032 0.299 0.021
Cys Arg Trp Trp −0.276 0.033 −0.298 0.021 0.360 0.005

Phosphatidylethanolamine(32:3) −0.250 0.054 −0.249 0.055 0.273 0.037
Sphingomyelin (D18: 0/14: 1

(9Z)(OH)) −0.247 0.057 −0.248 0.056 0.280 0.032

Trp Gln Asp Cys Glu −0.256 0.049 −0.256 0.048 0.286 0.028
Tetrahydropteroyltri-L-

glutamic acid −0.264 0.042 −0.258 0.046 0.291 0.025

Phosphatidic acid
PA(18:1(12Z)-2OH(9,10)/i-15:0) −0.277 0.032 −0.283 0.028 0.357 0.006

Phosphatidylcholine(32:1) −0.266 0040 −0.274 0.034 0.282 0.031
Phosphatidylethanolamine(34:2) −0.259 0.045 −0.261 0.044 0.284 0.029

1-Methylinosine −0.259 0.046 −0.260 0.045 0.285 0.029
Phosphatidylethanolamine(35:0) −0.259 0.046 −0.260 0.045 0.278 0.033

Heptadecanoic carnitine −0.257 0.047 −0.260 0.045 0.294 0.024
Phosphatidylcholine(36:0) −0.264 0.042 −0.268 0.039 0.303 0.020

Phophatidylethanolamine(22:5) −0.292 0.024 −0.295 0.022 0.296 0.023
Phosphatidylcholine(38:4) −0.270 0.037 −0.276 0.033 0.301 0.021

Phosphatidic acid(40:1) −0.259 0.046 −0.262 0.043 0.299 0.021
Phosphatidylcholine(34:1) −0.253 0.051 −0.258 0.047 0.312 0.016
Phosphatidylserine(38:1) −0.259 0.045 −0.265 0.041 0.301 0.021

Phophatidylethanolamine(44:9) −0.272 0.035 −0.279 0.031 0.282 0.030
Phosphatidylcholine(22:2) −0.258 0.047 −0.259 0.046 0.280 0.032
Phosphatidylcholine(42:6) −0.250 0.054 −0.255 0.049 0.298 0.022
Phosphatidylcholine(40:3) −0.255 0.049 −0.261 0.044 0.306 0.018
Phosphatidylethanolamine

PGE2/22:2(13Z,16Z) −0.258 0.046 −0.263 0.042 0.276 0.034

Phosphatidylcholine(42:2) −0.276 0.033 −0.283 0.029 0.287 0.027
Phosphatidylcholine(44:6) −0.257 0.047 −0.267 0.039 0.321 0.013

P1: Spearman’s correlation coefficient; p-values were calculated from nonparametric Mann—Whitney test.

Breakage rate and fragment rate were negatively correlated with all urinary metabo-
lites (P1 < 0). Phenylalanylhydroxyproline had the highest correlation with the breakage
rate. Phenylalanylhydroxyproline, 1,21-henicosanediol, and Asp Leu showed higher corre-
lations with the rate of fragments. Tetradecenoylcarnitine, 7alpha-hydroxy-3-oxo-5beta-
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cholan-24-oic acid, folic acid, Asp Leu, 1-methylinosine, and phosphatidylcholine (44:6)
were the most positively correlated (P1 < 0) with the rate of premature metaphases.

To verify the behavior of the relationship between them, it was verified using scatter
diagrams (Figure S2). The results obtained were similar to those observed in relation to
oxidative stress markers. Therefore, the correlation between metabolites and chromosome
breaks, fragment and metaphases presenting premature chromatid separation is not linear.

3.5. Potential Metabolomic Biomarkers Associated with Oxidative Damage and Benzene-Induced
Chromosomal Aberrations

From the regression analyses, ten metabolites were significantly related to thiol, MDA
e chromosomal aberrations. Thus, these were recognized as potential metabolomic biomark-
ers associated with oxidative effects induced by exposure to low concentrations of benzene.
Their identity, as well as p values, fold change, and biochemical pathways in which they
are biologically related is shown in Table 5.

Table 5. Urinary metabolomic biomarkers related to oxidative stress and benzene-induced chromoso-
mal aberrations.

Metabolite p Value b Fold Change c Pathway

1,21-Henicosanediol <0.0001 2.30
Lipid transport and lipid metabolism

Fatty acid metabolism
Lipid peroxidation and cell signaling.

Tetradecenoylcarnitine <0.0001 5.05
Lipid transport and lipid metabolism

Fatty acid metabolism
Lipid peroxidation and cell signaling.

Coprocholic acid <0.0001 5.33 Lipid transport and metabolism
Fatty acid metabolism

Cys Met Thr Tyr <0.0001 4.76 Product of incomplete decomposition of
proteins or protein catabolism

Asp Leu <0.0001 4.72 Product of incomplete decomposition of
proteins or protein catabolism

Phenylalanylhydroxyproline <0.0001 2.27 Product of incomplete decomposition of
proteins or protein catabolism

Cys Hys Ser Trp <0.0001 2.31 Product of incomplete decomposition of
proteins or protein catabolism.

Sphingomyelin (D18: 0/14: 1
(9Z)

(OH))
<0.0001 5.05 Lipid metabolism and signaling cell.

PE (PGE2/22:2 (13Z, 16Z)) <0.0001 4.73 Cell signaling

Phophatidylethanolamine(44:9) <0.0001 5.20 Components of the lipid bilayer of cells
Lipid metabolism Cell signaling

b: p-values were calculated from nonparametric Mann—Whitney test between occupational and environmental
exposure groups. c: fold change was calculated by the average concentration of the metabolite in the group with
environmental exposure in relation to the group with occupational exposure.

The relationship between identified potential biomarkers and exposure time was in-
vestigated using Spearman’s Correlation. No significant correlation was observed (p > 0.05)
(Table S5).

The ROC (receiver operating characteristic) curve was used to assess the performance
of these potential early biomarkers in the assessment of toxicity induced by low concentra-
tions of benzene. The ROC curve was used to evaluate the performance of these potential
early biomarkers in the evaluation of toxicity induced by low concentrations of benzene.
The ROC curve is widely used in the medical field, and consists of a graphical represen-
tation of the relationship between sensitivity and specificity of a diagnostic test. The area
under the ROC curve (AUC) represents the global measure of a test’s ability to discriminate
whether a specific condition is present or not. An AUC of 0.5 indicates that a test has no
discriminating ability, while an AUC of 1.0 represents a test with perfect discrimination [36].
AUC > 0.85 is considered acceptable for clinical applications [37]. Based on the results of
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the ROC curve, all biomarker candidates performed satisfactorily, except for phenylalanyl-
hydroxyproline and phosphatidylethanolamine (44:9) which had AUC <0.85. The ROC
curve results of some potential biomarkers are shown in Figure 6.

Figure 6. ROC curves of the discriminating urinary metabolites associated with oxidative stress and
chromosomal aberrations induced by exposure to low concentrations of benzene. Note: On the left,
the graphical representation of the calculated ROC curve with a 95% confidence interval for each
biomarker candidate. AUC = area under the ROC curve. On the right, boxplot of metabolite concen-
trations in the environmental (green) and occupationally (red) exposed groups. A red horizontal line
indicates the optimal cutoff point.

3.6. Metabolic Pathway Analysis

From the identification of discriminant urinary metabolites identified in the PLS-DA
model, we sought to identify the metabolic pathways involved in the biological response
elicited by exposure to benzene. For this, the analysis of enrichment of the metabolic
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pathway was performed in Metaboanalyst® 5.0 33. The results are presented in the form of
bar graphs and Network View (Figure 7). It is observed that the metabolic alterations of
greater impact (indicated in red) involve the bile acid synthesis pathways, lipid metabolism,
amino acids, folate, mitochondrial beta-oxidation of short chain saturated fatty acids, and
steroid hormone metabolism.

Figure 7. Bar graph with an overview of the analysis of enrichment of the metabolic 472 response
against exposure to low concentrations of benzene.

However, it is worth noting that the other biological pathways identified as related to
benzene exposure are also relevant, given that the p values are quite low. This fact indicates
that exposure to benzene, even at low concentrations, is capable of disturbing numerous
biological pathways that are crucial for homeostasis, and their understanding is extremely
important to understand the multiplicity of toxic effects induced by benzene.

3.7. Discussion

In this study, urine was chosen as a biofluid to investigate the metabolite profile
of workers exposed both environmentally and occupationally to low concentrations of
benzene in the air. It is a matrix traditionally used in biological monitoring studies because
it has advantages such as: simple and non-invasive collection, allowing large volumes to be
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obtained and presenting a lower concentration of proteins compared to blood samples [38].
The urine samples were normalized by the concentration of urinary creatinine considering
that the variation in the volume of urine can cause large variations in the concentration of
the excreted metabolite leading to discrepancies on results [39].

The mean concentration of benzene in the atmospheric air of the fuel stations and
gates was respectively 31.8 µg·m3 and 22.1 µg·m3. These results are below the technological
reference value (TRV) of 3.19 mg·m−3, established by Brazilian legislation [40]. However,
it is worth noting that exposure to low concentrations of benzene does not eliminate the
risk; considering that there is no safe exposure limit to carcinogenic substances such as
benzene [41]. This is corroborated by the results of this study, which proved that, even at
low concentrations, benzene is capable of evoking metabolic disturbances, which were sta-
tistically associated with early toxic effects—oxidative stress and chromosomal alterations.

However, despite environmental monitoring having indicated similarity of exposure
to hydrocarbons for workers in the gas station and ordinances, the analysis of the benzene
concentration in air by percentile showed higher concentrations of xenobiotic in the 75th
and 95th percentiles for the gas stations. This represents an oscillation in the chronic
exposure to benzene during the working day, and indicates that there is a difference in
the intensity of exposure during the performance of certain tasks, such as the aspiration of
vapors when filling tanks.

In this study, the oxidative stress biomarkers—thiol and MDA were significantly
different between groups, thus representing the toxic effects induced by chronic, low-
intensity exposure to benzene. Oxidative stress is recognized as one of the toxic action
mechanisms of benzene [42]. Oxidative stress represents a state of imbalance between
the generation of reactive species and the body’s antioxidant capacity. These reactive
oxygen species (ROS), such as superoxide anion, hydrogen peroxide, hydroxyl radical, are
unstable and highly reactive. They are produced through the redox cleavage of reactive
products originated during the biotransformation of benzene, especially hydroquinone
and benzoquinone [43]. Scientific literature indicates that such reactive species can damage
biomolecules such as lipids, proteins, and genetic material [44–46]. Many chronic diseases
such as type 2 diabetes mellitus, cardiovascular disease, Alzheimer’s disease, various
types of cancer (leukemia, lung, liver, etc.,) and chronic inflammation are associated with
oxidative stress. It is known that continuous oxidative stress can elicit inflammatory
mechanisms, with synthesis and secretion of pro-inflammatory cytokines [47].

Inflammation is a physiological process of body protection, triggered in situations that
can cause damage, such as infections by microorganisms, exposure to allergens, ionizing
radiation and toxic substances. Inflammation has two stages—acute and chronic. Acute
inflammation is mediated by innate immunity, has a short duration and usually results
in a beneficial effect on the body. On the other hand, chronic inflammation, which lasts
for a long time, is mediated by leukocytes (mast cells and monocytes) that migrate to the
site of damage, where they promote an increase in oxygen uptake (respiratory explosion)
with a consequent increase in the local production of ROS; production of arachidonic
acid derivatives and also secretion of cytokines and chemokines; which recruit more
inflammatory cells to the site and once again increase the production of ROS [48]. It
should be noted that chronic inflammation is associated with a higher risk of various
types of cancer [49]. Thus, there is an important relationship between oxidative stress
and inflammation.

Workers occupationally exposed to benzene analyzed in this study had higher counts
of monocytes and basophils in peripheral blood (leukocytes with an important role in
inflammation) [29], in addition to prostaglandin PE (PGE2/22:2 (13Z, 16Z)), leukotrinene
D5 and oxidized lipids were identified among the most discriminating urinary metabolites
among the analyzed groups. These results indicate that oxidative stress and inflammatory
state are the most relevant mechanisms of toxic action in exposure to low concentrations
of benzene.
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This subtle difference in exposure was not detected, for example, through exposure
biomarkers—AttM and SPMA; which did not show significant difference between groups.
In this context, metabolomics presents itself as a promising, sensitive, and appropriate
tool to assess the risks arising from exposure to benzene. Analysis supervised by PLS-DA
and OPLS-DA was able to recognize this subtle difference, thus indicating that even at
low doses, the biological response induced by exposure to this hydrocarbon was different
between groups.

Metabolomic analysis can offer simultaneous analysis of a large number of metabolites
without any prior knowledge of these compounds [50]. However, this comprehensive
analysis is not an easy task. As the metabolome is made up of an immense amount of
metabolites belonging to different chemical classes such as amino acids, carbohydrates,
nucleotides, and lipids that have a wide range of physicochemical properties and are present
in a wide range of concentration [51,52], the analysis of the metabolic profile represents
a great challenge in the field of analytical chemistry. In the field of environmental and
occupational toxicology, it represents a promising tool for a holistic understanding of the
interaction between chemicals and the human organism.

The validation of the developed PLS-DA and OPLS-DA models is important to confirm
the quality of the developed models and attest to their predictive capacity. The obtained
R2 explains the model’s variance and gives information about the goodness of fit, while
the Q2 predicts the variance and provides information about the model’s predictability. A
robust PLS-DA model should have high values of R2 and Q2 and not differ by more than
0.2–0.3 from each other [53,54]. Model validation is also useful in identifying the optimal
number of latent variables needed to describe the entire data variance; and avoid under- or
over-adjustment issues. According to Godzien et al., (2013) [55], the usual values of these
coefficients for biological experiments are Q2 > 0.4 and R2 > 0.7.

Chemical exposure leads to alterations in metabolism and/or gene expression (deletion
or overexpression) and such alteration may represent a specific pattern, called metabolic
signature [56]. This metabolic signature may reflect this exposure, which has supported
the use of metabolomics in the assessment of exposure to environmental and occupational
chemical agents. According to Wishart (2016) [57], metabolites are more representative of
the phenotype, as they change more quickly than genetic material and, therefore, indicate
current biological events. It is noteworthy that the metabolome is compartmental, dynamic,
and related to the phenotype. Thus, its assessment represents a holistic approach to
the individual’s physiological and/or pathological state, since it integrates genetic and
environmental factors [15,16,58]. Thus, the wealth of information acquired in undirected
metabolomics is an excellent tool for a better understanding of the organism’s biochemical
events in environmental exposure to chemical agents.

Therefore, the results observed in this study demonstrated that the exposure of indi-
viduals to benzene, even at low doses, was capable of causing metabolic changes in urine,
which were identified through non-directed metabolomics. Due to the mildness of the
alterations, including the differences between the two groups, they were only identified
due to the high sensitivity of the UHPLC-ESI-Q-TOF-MS, demonstrating its robustness and
capacity for wide coverage of the urinary metabolome. This justifies its choice for applica-
tion in environmental and occupational metabolomics studies of chemical contaminants in
low concentrations.

The discriminating metabolites significantly correlated with oxidative stress and
benzene-induced chromosomal aberrations act predominantly in biological pathways
related to lipid and amino acid synthesis, metabolism, and peroxidation (Table 5).

Studies on urine, plasma, and bone marrow metabolomics in C3H/He-exposed rats
were conducted by Sun et al., (2012) [59] and Sun et al., (2014) [60], respectively. In
urine, the metabolic disturbances reported involved the metabolism pathways of purines,
spermidines, fatty acids, tryptophan, and peptides [59]. In plasma, L-acetylcarnitine, p-
coumaric acid, L-tyrosine, L-phenylalanine and lysine were significantly altered; while
5-hydroxyindoleacetic acid, histamine, L-histidine, N-methylhistamine, L-acetylcarnitine,
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pyrrolidone carboxylic acid, and palmitoylcarnitine in bone marrow [60]. In another inves-
tigation also conducted in an animal model, Yu et al. (2021) [61] investigated the lipidome
of bone marrow cells from male C57BL/6 rats, exposed to 150 mg/kg of benzene using
LC-MS/MS technology, in order to understand the mechanisms associated with benzene
hematotoxicity. The results showed significant changes in the levels of glycerophospho-
lipids, sphingolipids, linoleic acid metabolism, amino acids, and unsaturated fatty acid
biosynthesis. Based on this, the authors hypothesized that disturbances in the glycerophos-
pholipid pathway affect autophagy, while the sphingolipid pathway seems to influence
proliferation and apoptosis; and both processes play an important role in benzene-induced
hematopoietic toxicity [61].

In this study, the metabolism of several classes of lipids was associated with exposure
to benzene, including the biosynthesis of bile acids. Coprolic acid, taurocholic acid, 3-
chenodeoxycholic sulfate, 3-oxocholic acid, 7b-hydroxy-3-oxo-5b-cholanoic acid, nutriacolic
acid, and hodeoxycholic acid were excreted in smaller amounts in the urine of gas station
workers. Bile acids are produced in the liver from cholesterol and later converted to bile
salts by conjugation with glycine or taurine. They are then stored in the gallbladder and
subsequently excreted in the bile, along with its other components, in the duodenum,
where they are deconjugated and reduced to urobilinogens by the action of the microbiota.
These can be excreted in the feces, partially reabsorbed and about 5% excreted in the
urine. Biologically, they play an important role in the intestinal absorption of lipophilic
substances, participate in the regulation of cholesterol and in the metabolism of lipids and
carbohydrates, stimulate bile flow, act as cellular signals, in the excretion of toxic substances,
in the maintenance of a healthy organism, gut microbiota, and innate immunity [62,63].
Sun et al., (2020) [64] reported changes in the metabolic profile of the cecal content of
mice exposed to benzene for 30 days. Changes were mainly observed in bile acids, fatty
acids, carboxylic acids and derivatives, glycerolipids, glycerophospholipids, prenole lipids,
steroids, and steroid derivatives. These results indicate that benzene is capable of causing
intestinal dysbiosis with significant changes in several species, such as Proteobacteria,
Bacteroidetes, and Actinobacteria, which are involved in the biotransformation of bile
acids [65].

It is believed that the disturbance in bile acid excretion may also be due to the liver
toxicity of benzene. Reactive metabolites formed in the liver during its biotransformation
can influence the regulatory pathways of bile acid biosynthesis. Occupationally exposed
individuals had higher values for liver function markers—aspartate aminotransferase (AST)
and direct bilirubin. AST is an enzyme that catalyzes the interconversion of amino acids
to 2-oxo-acids through the transfer of amino groups, found mainly in the heart and liver,
cytoplasm, and mitochondria. Direct bilirubin, on the other hand, is a biotransformation
product of the heme group, which is conjugated to glucuronic acid in the liver. Direct
hyperbilirubinemia is associated with hepatocyte damage or biliary obstruction [66]. Other
studies corroborate these results. In the investigation conducted by Moro et al., (2017) [67],
albumin and TGO were significantly higher in gas station attendants compared to the con-
trol group. Andrea and Reddy, (2014) [68] detected higher values of liver enzyme alkaline
phosphatase (ALP), aspartate amino transferase (AST), and alanine amino transferase in
children accidentally exposed to benzene after a burning incident at the British Oil Refinery
(BP) in the city of Texas. Additionally, the intestinal reabsorption of bile acids can be
compromised by benzene-induced intestinal dysbiosis.

Koelmel et al. (2020) [14] state that lipids are ubiquitous metabolites that play different
physiological roles, and are especially involved in biological processes such as oxidative
stress, inflammation, obesity and endocrine disruption. As many environmental stressors
exert their toxic effects through disturbances in these biological processes, the investigation
of changes in lipid metabolism represents an important strategy to elucidate mechanisms
of toxic action, as well as to identify new biomarkers of exposure to such stressors. Distur-
bances in lipid metabolism have been related to several pathologies [69–73].
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Arachidonic acid metabolism was also implicated in the biological response of work-
ers exposed to benzene investigated in this study. Previous studies have shown that the
metabolism of this group of lipids is involved in benzene myelotoxicity [74,75]. Prostaglandins
are prostanoids synthesized from arachidonic acid by cyclooxygenase enzymes (COX-1 and
COX-2), and play physiological and pro-inflammatory functions. Prostanoids are often im-
plicated in the initiation of carcinogenesis, representing the link between inflammation and
cancer [76]. The increase in PGE2 was related to arachidonic acid peroxidation, increased
phagocytic activity of macrophages, and decreased cellularity in the bone marrow [74,75].
In this study, a reduction in PGE1 and an increase in PGF2 in the urine of occupationally
exposed workers were observed. PGE1 is a prostanoid that plays important physiological
roles such as vasodilation, inhibitor of platelet aggregation, mediator of inflammation,
and even hepatoprotective action. Animal studies have demonstrated hepatic cytoprotec-
tion of PGE1 through inhibition of T-cell mediated cytotoxicity, increased DNA synthesis,
cyclic AMP, and liver tissue ATP levels [77–79]. The PGF2 is one of the most common
protaglandins, is produced in many organs, and has a wide range of effects. Pabst et al.
(2017) [73] reported an increase in this prostaglandin in plasma and bone marrow of patients
with acute myeloid leukemia (AML).

Another metabolic pathway associated with early toxic effects induced by benzene
was the metabolism of sphingolipids. These are physiologically implicated in the regula-
tion of cell growth, differentiation, and apoptosis [80]. Among the types of sphingolipids,
ceramides, structural membrane components, and secondary messengers in cell signal-
ing have been implicated in the pathophysiology of diseases such as diabetes, cancer,
Alzheimer’s disease, multiple sclerosis, and others [70]. In our study, sphingomyelin
(d18:0/14:1(9Z)(OH)) and sphingomyelin (d18:1/16:0) decreased in the urine of occupa-
tionally exposed workers and was significantly associated with early toxic effects induced
by benzene. Decline in plasma sphingolipids has also been described in carriers and
AML [73,81]. A similar result was found by Robinson et al., (2021) [81], the authors in-
vestigated the relationship between reactive oxygen species (ROS) and the metabolome
in AML cells. Sphingolipids were significantly decreased. Based on these findings, the
authors postulated that ROS are important in regulating the synthesis and/or degradation
of sphingolipids.

Polyunsaturated fatty acids have also been implicated in benzene-induced toxicity.
In our study, in addition to fatty acids, fatty acid amides (oleamide, linoleamide and
palmitoleamide) and oxylipin 14,15-DiHETrE were also detected in the urine of workers
exposed to benzene, and were significantly reduced.

These lipids are considered essential and play an important role in membrane mainte-
nance, signal transduction, and anti-inflammatory properties. Musharraf et al., (2016) [82]
investigated the serum metabolome of individuals with AML, acute lymphocytic leukemia,
and aplastic anemia using the CG-MS technique. The authors reported that palmitic acid
was significantly reduced in patients with ALL and AML. Stearic and oleic acids, on the
other hand, had higher concentrations in patients with these diseases [82]. It has been
shown that AML patients have an overproduction of reactive oxygen species (ROS), and
that these produce changes in carbohydrate metabolism, sphingolipids, fatty acid oxida-
tion, purine metabolism, and amino acid homeostasis [81]. The α-linoleic acid (ALA),
a polyunsaturated fatty acid, has an anti-inflammatory action due to its bioconversion
into long-chain polyunsaturated fatty acids and, later, into oxylipins, bioactive lipid me-
diators [73]. Pabst et al., (2017) [73] reported an increase in fatty amides (oleamide and
palmitoleoyl ethanolamide) in AML cells. A oleamide is an endogenous bioactive signaling
molecule, similar to endocannabinoids, which participates in sleep regulation via the CB1
receptor and has anti-inflammatory action [83,84]. It is believed that the reduction of these
bioactive metabolites in the urine of occupationally exposed workers is a consequence of
their increased consumption, an adaptive response triggered in order to contain the toxic
effects induced by benzene.
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It should be noted that folate, also identified as an important pathway related to ben-
zene exposure, is necessary for cell division and DNA synthesis; and according to Morgan
and Smith (2002) [85], folate metabolism is associated with the maintenance and integrity
of DNA. Folate insufficiency can lead to anemia, neutropenia, and pancytopenia [85].

Metabolomics also identified tryptophan metabolites—indoleacetic acid, 5-hydroxyin-
doleacetic acid and 5-hydroxy-6-methoxyindole, all of which had VIP >1. Urine indoleacetic
acid was identified as a potential biomarker of benzene-induced toxicity in mice in the
study by Sun et al., (2012) [59]. Evidence indicates that indoleacetic acid activates the
aryl hydrocarbon receptor (AhR) and positively regulates cytochrome P-450 enzymes,
implicated in tumorigenesis and cancer proliferation [86].

The propanoate metabolism and amino acid degradation of valine, leucine, and
isoleucine were also listed among the most important pathways in the biological response
to benzene exposure. These pathways are believed to be consequences of protein oxidation.
Propanate is a short-chain fatty acid formed during the catabolism of branched-chain amino
acids and methionine, and its concentration in plasma increases in amino acid oxidation
states [87]. The reactive species produced during benzene bioactivation are able to form
adducts with albumin, hemoglobin, and bone marrow proteins. Spatari et al., (2012) [88]
found higher levels of advanced protein oxidation products in the serum of workers at an oil
refinery located in Sicily, exposed to low concentrations of benzene (70.14 ± 69.71 µg/m3).
Avery, (2011) [89] states that the susceptibility of proteins to oxidation depends on the
relative content of oxidation-sensitive amino acid residues, the presence of metal-binding
sites, location of proteins in the cell, molecular conformation, and rate of degradation. Me-
thionine is one of the amino acid residues most prone to oxidation, and almost all organisms
express methionine sulfoxide reductase enzymes to reverse this change. Oxidized cysteine
and tryptophan residues are other useful markers of oxidation-modified proteins [89].

Based on the developed PLS-DA and OPLS-DA models, 38 metabolites in the urine
responsible for discrimination between groups of workers exposed to benzene were identi-
fied. It is observed that they are metabolites belonging to the classes of peptides, carnitines,
and predominantly lipids (Table 2).

Changes in lipid metabolism and increased oxidative stress resulting from exposure
to benzene have been reported in recent studies. Rothman et al. (2021) [90] investigated
the urinary metabolome of Chinese workers exposed to high concentrations of benzene
(weighted average exposure of 8 h; 20 ppm), using liquid chromatography and high-
resolution Fourier transform mass spectrometry (HRMS). The results showed that exposure
to benzene leads to alterations in carnitine transport, fatty acid metabolism, sulfur amino
acid metabolism, glycolysis, gluconeogenesis, and branched-chain amino acid metabolism.
Mono- and polyunsaturated and short-chain fatty acids are also significantly associated
with S-phenylmercapturic acid and leukocytes, and reported as key mediators of benzene-
induced hematotoxicity in the study by Guo et al. (2022) [91].

The β-oxidation of fatty acids is a crucial pathway for hematopoietic stem cells (HSCs)
and leukemic cells. Sun et al., (2014) [60] demonstrated that exposure to benzene induced
disturbances in the levels of metabolites of the fatty acid β-oxidation pathway in the bone
marrow of C3H/He mice. In another later study, Sun et al., (2016) [92] identified that
exposure to benzene resulted in abnormal transport of fatty acids and β-oxidation of these
lipids in bone marrow cells from C3H/He mice. It is worth noting that carnitine transport
and fatty acid metabolism are involved in mitochondrial function.

L-carnitine (LC) is responsible for the transport of fatty acids across the mitochondrial
membrane, and its levels were significantly reduced in animals treated with benzene. Mi-
tochondrial dysfunction has been reported with a significant reduction in ATP levels and
membrane potential. Furthermore, an increase in the generation of ROS and H2O2 was
also observed, which led to oxidative stress and lipid peroxidation [92]. The disturbance
in the β-oxidation of fatty acids decreased the production of NADPH, an important mito-
chondrial antioxidant, as well as the levels of ATP. These findings indicated that benzene
induces mitochondrial dysfunction and oxidative stress, which may be one of the causative
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mechanisms of hematotoxicity [67,90]. In a recent study, Sun, Man, et al., (2020) [93]
demonstrated that co-treatment with L-carnitine in K562 erythroleukemia cells treated with
1,4-benzoquinone, reduces the rate of apoptosis, DNA damage, reduces oxidative stress
and promotes the β-oxidation of fatty acids.

Ten metabolites showed significant, low and non-linear correlations with biomark-
ers of oxidative stress and chromosomal aberrations (Tables 3 and 4). These have been
recognized as potential early-effect metabolomic biomarkers, induced by exposure to low
concentrations of benzene. All of them are involved in metabolic pathways associated
with the synthesis and metabolism of lipids and fatty acids. Based on these results, we
speculate that oxidative damage is especially related to disturbances in lipid metabolism
and transport. These results represent relevant information to guide future investigations
into the mechanism underlying benzene-induced oxidative damage.

3.8. Limitations of the Study

Among the limitations of this study, the small sample size (n = 60) stands out, which
may have been a source of random variation in the results of the two groups analyzed. The
cross-sectional approach of the study also represents a limitation, considering that in this
type of study, exposure and effect are evaluated concomitantly. Furthermore, the intensities
of exposure to benzene in both groups of workers (environmental and occupational) were
similar. Finally, the identification of metabolites was putatively, according to level 2,
recognized by the Metabolomics Standards Initiative (MSI).

4. Conclusions

The study of metabolomic using the UHPLC-ESI-Q-TOF-MS technique revealed
metabolic disturbances in workers exposed to low concentrations of benzene. Despite the
history of low exposure to hydrocarbons for both groups, the intensity of exposure among
workers at gas stations is greater during operations that involve direct contact with fuel.

The disturbances identified involved several metabolic pathways, with emphasis on
the metabolism and transport of lipids and fatty acids. Ten urinary metabolites showed
significant correlations, low and non-linear, with biomarkers of oxidative stress and chro-
mosomal aberrations—toxic effects induced by benzene in the participants of this study,
previously identified. Thus, the determination of the ten urinary metabolites can be used
for a more comprehensive and accurate assessment of benzene-induced cytotoxicity and
genotoxicity.

It is noteworthy that this study has advantages and limitations. Among the advantages
is the unprecedented association established between chronic exposure to low doses of
benzene and alterations in the urinary metabolome. On the other hand, the main limitation
refers to the small size of the studied population. Furthermore, the unambiguous iden-
tification of urinary metabolites by comparing spectra with analytical standards is also
necessary. Therefore, the ability of potential biomarkers to predict health outcomes needs
to be confirmed through future and similar studies in a larger population.

Additionally, this study proves the power of metabolomics to provide relevant in-
formation to understand the biological response to exposure to low concentrations of
xenobiotics and identification of early effect biomarkers.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/metabo12100978/s1. Table S1: Descriptive analysis and
comparison between groups for sociodemographic variables, Table S2: Time of exercise in the current
occupation for workers in the environmental and occupational groups exposed to benzene, Table
S3—Descriptive analysis and comparison between groups for biomarkers of exposure, effect, and
biochemical and hematological parameters, Table S4— Correlation between candidate metabolites
for exposure biomarkers and working time in the current occupation; Figure S1. Scatter diagrams
between some metabolites and thiol and MDA, Figure S2. Scatter diagrams between some metabolites
and chromosome breaks, fragment and metaphases presenting premature chromatid separation.
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