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Abstract

Introduction: Personalizedmedicine has exposed wearable sensors as new sources of biomedical
data which are expected to accrue annual data storage costs of approximately $7.2 trillion by
2020 (>2000 exabytes). To improve the usability of wearable devices in healthcare, it is neces-
sary to determine the minimum amount of data needed for accurate health assessment.
Methods: Here, we present a generalizable optimization framework for determining the mini-
mum necessary sampling rate for wearable sensors and apply our method to determine optimal
optical blood volume pulse sampling rate. We implement t-tests, Bland–Altman analysis, and
regression-based visualizations to identify optimal sampling rates of wrist-worn optical sensors.
Results: We determine the optimal sampling rate of wrist-worn optical sensors for heart rate
and heart rate variability monitoring to be 21–64 Hz, depending on the metric. Conclusions:
Determining the optimal sampling rate allows us to compress biomedical data and reduce stor-
age needs and financial costs. We have used optical heart rate sensors as a case study for the
connection between data volumes and resource requirements to develop methodology for
determining the optimal sampling rate for clinical relevance thatminimizes resource utilization.
This methodology is extensible to other wearable sensors.

Introduction

The practice of personalized medicine, including the combination of clinical, genomics,
imaging, wearables, and “real-world” data, has the potential to revolutionize healthcare.
However, this rapidly growing digital health trace poses significant challenges in healthcare
data management [1]. By 2020, the total amount of digital healthcare data worldwide is
projected to exceed 2000 exabytes (equivalent to 2 trillion GB) [2]. Healthcare data storage
requirements are quadrupling every 2–3 years and are projected to cost up to $600 billion/
month by 2020 [3,4]. The growing need for data storage and compute power is driving a move
toward secure cloud computing [1,5]. Currently, up to 80% of health data collected in clinics
is considered unusable because it is spread across numerous repositories and cannot be easily
linked to the electronic health record (EHR) [3]. In addition to expanding medical storage
capabilities, efficiency, usability, and compute power, we must determine how to trim data
volumes appropriately to retain important information while removing unnecessary or
repetitive information.

Sampling rate refers to the rate, or frequency, at which data are collected per second. For
continuous monitoring of the electrical activity of the heart and heart rate variability (HRV)
using the electrocardiogram (ECG), data are typically sampled at 1000 Hz which requires
approximately 192 kB/second of data storage [6]. Because of the extensive storage requirements
of continuous data and challenges surrounding its interpretability, the current data from con-
tinuous monitors like ECG are only stored in the EHR as summaries of the raw (signal-level)
data. However, it would be useful to preserve this raw data for research and clinical applications
that include the development of algorithms and digital biomarkers for improved patient care
and understanding of physiology.

Monitoring of vital signs has traditionally been limited to clinical visits with few exceptions.
This provides a very small window into a patient’s daily health and wellness. Continuous mon-
itoring using wearable sensors provides amore comprehensive view of a patient. While wearable
sensors generally sample at a much lower rate than ECG to preserve battery life, they also pro-
vide longitudinal data, which could lead to a data deluge. Determining the minimum sampling
rates required for wearable sensors to be relevant for clinical and research use will enable use of
this data within the clinical research ecosystem. Another motivation to decrease sampling rate is
the trade-off between battery power consumption and sampling rate. Higher sampling rates
have increased power consumption, which decreases battery life [7–10].

One wearable sensor that is used regularly in both consumer and clinical grade wearables is
photoplethysmography (PPG), a cost-effective, noninvasive optical technique for measuring
blood volume changes which result from the mechanics of pulsatile flow of the cardiovascular
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system. A standard PPG device is composed of a light source (typ-
ically a light-emitting diode [LED]) and a photodetector. There are
two types of PPG: transmittance- and reflectance-based PPG. In
transmittance-based PPG, tissue is between the LED and the
photodetector (e.g., on the finger probe or ear clip). Reflectance-
based PPG reflects light into tissue and the light reflected is col-
lected with a photodiode that is located next to the LED (e.g., wrist
or forehead PPG). Heart rate and approximate interbeat intervals
(IBI) can be extracted from the PPG signal using peak detection
methods. PPG is the technology behind most continuous wrist-
based heart rate monitors on the market today, and this wide
use makes PPG an optimal technology for exploring clinically rel-
evant diagnostics. Wearable wrist-worn PPG is popular due to its
portability, affordability, and ease of user experience with a seam-
less transition from watch to wearable.

HRV is a clinically relevant marker that can be derived from
PPG [11] and is a widely used metric to evaluate autonomic nerv-
ous system function. HRV is the fluctuation in the time intervals
between adjacent heartbeats and low HRV is linked to numerous
chronic conditions, including diabetes, hypertension, cardio-
vascular disease, and psychological illness [12,13]. Traditionalmet-
rics of HRV are measured using electrocardiography (ECG), which
records the electrical activity of the heart. However, ECG is
traditionally limited to clinical assessment or short-term home
monitoring because it is inconvenient and costly. Wearable PPG
monitoring of HRV is a more convenient and continuous solution
as compared to ECG, but it generates even larger volumes of data
due to its longitudinal nature.

ECG and finger probe PPG sampling rates have been thor-
oughly examined to minimize data volumes required for HRV
diagnostics [14,15]. While the optimal sampling rate for transmit-
tance-based PPG on finger probes has been explored in silico [16],
no study has yet examined the reflectance-based PPG that is
utilized in wrist-wearable sensors against ECG to determine the
optimal sampling rate. To our knowledge, no study has examined
the minimum sampling rate of wrist-wearable PPG for both HR and
HRV diagnostics. The purpose of this study is to examine the
limitations of wrist PPG for determining the minimum sampling
frequency necessary to obtain clinically relevant HRV metrics
when compared to the gold standard ECG.

Methods

Optimization Framework

The optimization framework presented here examines a sensor
providing health data and performs validation testing across
sampling rates against the clinical standard in order to inform
minimum sampling rate to maintain clinical accuracy (Fig. 1).
We then apply this framework to optical HR (PPG) measurements
on wearable devices. This data is compared to ECG, the clinical
standard, across sampling rates.

Data Collection

This study is a retrospective analysis of a previously conducted
study [17]. A total of 56 participants were recruited for the original
study. Data from three participants were excluded from the
original study due to incomplete ECG records. Of the remaining
53 participants, 16 participants had either missing (10 partici-
pants) or incomplete (6 participants) IBI data. Thus, we utilized
the remaining 37 participants for this analysis. We only utilized
the data when the participants were seated at rest. Five minutes,
the standard for short-term HRV analysis [12], was chosen as
the time duration that HR and HRV metrics were calculated over
for this study.

ECG and PPG were recorded simultaneously for 5 min from
37 volunteers (22 females, 25.4 ± 6.0 years, 169.8 ± 9.1 cm height,
and 64.3 ± 10.8 kg weight. All Fitzpatrick skin tone categories were
represented). Data were collected while participants were at rest in
an upright seated position. PPG data were recorded at 64 Hz (the
standard sampling rate of the device) from the right wrist using the
Empatica E4 wristband. ECG data were recorded at 1000 Hz from
three leads using a Bittium Faros 180 ECG.

Raw ECG was processed using the clinical standard, Kubios
HRV Premium (version 3.3) to extract RR intervals, as shown in
Fig. 2. PPG data from the Empatica E4 device are supplied as both
raw PPG (green LED light only) and an IBI sequence. The IBI
sequence provided by Empatica is obtained from their wrist-
band-integrated processing algorithm that removes peaks deemed
likely to be incorrect due to noise in the raw PPG signal, which they
compute from the red and green LEDs on the device. Red LEDPPG
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Fig. 1. Sampling rate optimization framework. The optimization framework presented here takes a sensor providing health data and performs validation testing across sampling
rates against the clinical standard in order to inform minimum sampling rate to maintain clinical accuracy. The use case we present here uses optical HR measurements (photo-
plethysmography, PPG) fromwearable devices. This PPG data is compared to ECG, the clinical standard, across the different PPG sampling rates. The goal is to use continuous PPG
measurements to continuously extract digital biomarkers to report in the EHR rather than a single timepoint ECG which results in a single summary stored as a PDF.
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signal is not provided and, to our knowledge, is only used in the
calculation of the provided IBI sequence. Because we do not have
access to the raw red LED data from the device, we utilized the IBI
sequence provided by Empatica to reverse engineer the signal and
remove motion artifacts that were removed by the Empatica red
LED-based algorithm.

Our updated PPG signal could then be downsampled. In order
to examine the sampling frequency effect on HRVmetrics, we gen-
erated the downsampled PPGs by decimation, which divides the
sampling rate by an integer factor after low-pass filtering the signal.
First, high-frequency signal components were reduced using a
standard digital low-pass filter (IIR, Chebyshev order 8) to reduce
distortion from aliasing [18]. Next, decimation via rate reduction
by an integer factor was performed. The PPG signal (original
64 Hz) was decimated into frequencies by factors of 64: 64/1,
64/2, 64/3, 64/4, 64/5, 64/6, 64/7, 64/8, 64/9, and 64/10 Hz.
A Kolmogorev–Zurbenko low-pass linear filter [19,20] and outlier
removal were used to mitigate any additional motion artifact not
removed by the Empatica processing algorithm. Following the
process described by Empatica for determining their IBI sequence,
local minima were detected using a rolling minimum detector and
the IBI values were calculated as the difference between these local
minima values, as shown in Fig. 2. Outlier capping at 1.5 * inter-
quartile range (IQR) was performed for each downsampled signal.
The preprocessing pipeline code is available here: https://github.
com/Big-Ideas-Lab/OptimizingWearableSR.

HRV Metric Calculation and Statistical Analysis

We examined HR (mean HR, minimum HR, maximum HR) from
the ECG and PPG. We analyzed HRV from the ECG and PPG
using standard HRV metrics in the time domain: HRV (mean
HRV, median HRV, maximum HRV, and minimum HRV),
SDNN (standard deviation of the NN interval, which corresponds
to all of the cyclic components responsible for variability in the
period of the recording because variance is equal to the total power
of the spectral analysis), RMSSD (square root of the mean squared
differences of successive NN intervals; reflective of the beat-to-beat
variance in HR and used to estimate the vagally mediated changes
inHRV [12]), and pNN50 (the percentage of adjacent NN intervals
that differ from each other by greater than 50 ms). Long-termHRV

time domain metrics were excluded in this study due to the short
time frame of recording (5 min). All calculations for HRV were
performed using code that we developed in Python (3.5.2) that
were validated using Kubios HRV Premium (version 3.3). Our
code for HRV analysis is available here: https://github.com/Big-
Ideas-Lab/OptimizingWearableSR.

Metrics of both HR and HRV from ECG and downsampled
PPG were compared. The differences between each downsampled
PPG and the ECG were calculated and statistically evaluated using
a Bland–Altman analysis, where mean bias and 95% limits of
agreement were calculated. Paired two-sided t-tests were per-
formed between the ECG and each of the downsampled PPG met-
rics (significance threshold is Bonferroni-corrected p< 0.0005, 100
different analyses performed, 10 metrics × 10 sampling rates). All
statistical analyses were conducted in Python (3.8.3).

We performed simple linear regressions between each ECG
metric and the error (difference between ECG metric and PPG
metric) for each sampling rate to visualize whether errors are
driven by higher or lower values in each metric and for each sam-
pling rate.

Data Volumes with Decreasing Sampling Rates

Required data storage was computed from the file size of the raw
signals of the ECG and each of the downsampled PPG signals. The
file size was used as an input to estimate of the amount of data stor-
age required for a 24-h period for each of these modalities. Costs of
on-premise, secure medical data storage range from $0.15 to $0.30/
GB/month [3]. We performed cost calculations using Equation 1
for a user (p) for 12 months (n= 12) with an average days per
month of 30.42 using our calculated data volumes over 24 h and
the minimum cost $0.15/GB/month.

Costp n½ � ¼ Datap GBð Þ � 30:42 days � n n� 1ð Þ
2

� Cost $ð Þ
(1)

Results

Optimal Sampling Rate of PPG for HR

The mean and standard deviation of the HR metrics for each of
the downsampled signals across the 37 subjects are reported in
Table 1. Error in HR metrics increases as sampling rate decreases
(Table 1; Fig. 3a–c). Decreased sampling rate biases measurements
toward lower HR values (Table 1; Fig. 3a–c). Bland–Altman
analysis demonstrates that the limits of agreement increase
as the sampling rate is decreased (Fig. 3a–c; Supplementary
Table 1). There is a rise in the positive bias and confidence intervals
between 21 and 16 Hz, with the greatest error occurring at the
lowest sampling rate, 6.4 Hz. Paired t-tests between each HR met-
ric calculated from the ECG and each sampling rate are shown in
Table 1. In our sample, there was insufficient information to sug-
gest sampling PPG at 64 Hz estimates a significantly different
mean HR than ECG using paired t-tests. For minimum HR and
maximum HR, within our sample, there was insufficient informa-
tion to suggest sampling the PPG signal at 32 and 64 Hz is signifi-
cantly different from the ECG using paired t-tests. Our linear
regression visualization showed that mean HR error between
ECG and PPG is not affected by lower or higher values at 64 Hz
but is affected at other sampling rates, where error increases with
increasingmeanHR (Supplementary Fig. 1).MinimumHR error is

Fig. 2. Comparison of ECG (RR intervals) and PPG (IBI). Decimation reduces the num-
ber of points (shown in blue) by an integer factor. ECG is shown sampled at 1000 Hz.
PPG sampled at a high sampling rate (i.e., 64 Hz) and PPG sampled at a low SR
(i.e., 16 Hz) are shown.
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not affected by lower or higher values at 32–64Hz but is affected at
other sampling rates, where error increases with increasingminimum
HR. At all sampling rates, maximum HR error between PPG and
ECG increases as maximum HR increases (Supplementary Fig. 1).

Optimal Sampling Rate of PPG for HRV

Evaluating HRV accuracy using PPG revealed that, similar to HR,
error in HRV metrics increases as PPG sampling rate decreases
(Table 1; Fig. 3d–j). The mean and standard deviations of the
HRV metrics (mean, median, minimum, maximum, SDNN,
RMSSD, pNN50%) for each of the downsampled signals across
the 37 subjects are reported in Table 1. Decreased sampling rate
biases measurements toward higher HRV values. The greatest
differences between the PPG-derived metrics and the ECG-
derived metrics were found in RMSSD and pNN50% (Fig. 3i, j).
Bland–Altman analysis demonstrates that the limits of agree-
ment increase as the sampling rate is decreased (Fig. 3d–j;
Supplementary Table 1). Again, there is a rise in the negative bias
and confidence intervals between 21 and 16 Hz, with the greatest
error occurring at the lowest sampling rate, 6.4 Hz. Paired t-tests
between each HRV metric calculated from the ECG and each
sampling rate are shown in Table 1. In our sample, there was
insufficient information to suggest sampling PPG at 64 Hz esti-
mates a significant difference in mean HRV and minimum
HRV than ECG using paired t-tests. For median HRV, the paired
t-tests showed that in our sample, there was insufficient evidence
to suggest a significant difference between the ECG and the PPG
signal sampled at 32 and 64 Hz. For maximum HRV and SDNN,
the paired t-tests showed that in our sample, there was insuffi-
cient evidence to suggest a significant difference between the
ECG and the PPG signal sampled at 21, 32, and 64 Hz.
Because SDNN achieved accuracy across 21–64 Hz according
to the paired t-tests and the Bland–Altman analysis, we examined
its Bland–Altman analysis in more detail in the spectrum
21–64 Hz (Supplementary Fig. 2). In our sample, there was evi-
dence to suggest a significant difference for RMSSD or pNN50
at every sampling rate tested in the study, indicating that these
metrics require a sampling rate >64 Hz to achieve optimal accu-
racy from a wrist-worn device. The linear regression visualization
showed that mean HRV error between ECG and PPG is mini-
mally affected by higher mean HRV at 64Hz and at all other
sampling rates error increases with decreasing mean HRV
(Supplementary Fig. 3). Median HRV follows the same trend as
mean HRV. Minimum HRV error is only minimally affected by
lower or higher values at 21–64Hz but is affected at other sampling
rates, where error increases with decreasing minimum HRV
(Supplementary Fig. 3). Maximum HRV error is only minimally
affected by lower or higher values at 32–64 Hz but is affected at
other sampling rates, where error increases with decreasing
maximum HRV (Supplementary Fig. 3). At all sampling rates,
SDNN, RMSSD, and pNN50 error between PPG and ECG
increases as SDNN, RMSSD, and pNN50 decrease, respectively
(Supplementary Fig. 3).

Reducing Sampling Rates Translates to Decreased Resource
Requirements

Data storage requirements for ECG are 99.0X greater than PPG
sampled at 64 Hz. PPG sampled at 32 Hz reduces the data storage
requirement by an additional 50% (Fig. 4a). Costs of on-premise,
secure medical data storage range from $0.15 to $0.30 per GB per
month [3]. Continuous ECG data storage cost is $242.07 perTa
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Fig. 3. Bland–Altman analysis results between HR metrics and time domain HRV metrics according to sampling rate. (a) Mean HR, (b) minimum HR, (c) maximum HR, (d), mean
HRV, (e) median HRV, (f) minimum HRV, (g) maximum HRV, (h) SDNN, (i) RMSSD, and (j) pNN50%. Blue dashed lines: limits of agreement; black dashed line: bias; points represent
differences between ECG and PPG sampling rate.



user/year (Fig. 4b). PPG sampled at 64 Hz costs $6.95/user/year.
Reducing the sampling rate to 32 Hz translates to reduction in cost
and storage of 50% (to $3.48/user/year).

Discussion

There are currently 60.5 million people in the United States using
117 million wearable devices. These numbers are expected to dou-
ble in the next 3 years [21]. This significant rise in the accessibility
of wearable devices and recent improvements in mobile health
technologies provide an unprecedented opportunity to revolution-
ize chronic disease detection and intervention through the devel-
opment of digital biomarkers, which are markers of disease
extracted from digitally collected data [22]. With wearables posed
to transform personalized medicine, it is critical to evaluate the
limitations of wearable device sensors that will be used to make
healthcare decisions [23–25].

Framework for Assessing Optimal Sampling Rate

Continuous monitoring presents significant and unforeseen chal-
lenges to the healthcare industry. Enormous amounts of healthcare
data are being generated daily. In the drive for personalized medi-
cine, wearable sensor data will need to be stored in an accessible
way. This sensor data may be used in the future for research pur-
poses and potentially in healthcare practice by applying new digital
biomarker algorithms to previously collected patient data to enable
longitudinal evaluation of patients. As we have shown, sampling
rates are directly proportional to data resource requirements.
The ability to reduce a sampling rate by half would reduce data
storage requirements and associated costs by nearly 50%. In addi-
tion, higher sampling rates have increased power consumption,
which decreases battery life. Thus, another motivation to decrease
sampling rate is the trade-off between battery power consumption
and sampling rate.

In this study, we used optical heart rate monitors to demon-
strate the connection between sampling rate and resource utiliza-
tion (e.g., data storage space and cost, device battery life). We
developed methodology for determining the optimal sampling rate
for clinical and research relevance that minimizes the sampling
rate requirements. This is extensible to other wearable sensors,
including accelerometry, blood pressure, spO2, glucose monitors,
and other traditional clinical metrics that can now be measured
outside of the clinic using wearable sensors.

Optimal Sampling Rate for HR and HRV Metrics for
Wrist-Worn Wearable Devices

When considering use of optical heart rate measurements on the
wrist, it is important to acknowledge that biases exist, including
consistently lower HR metrics and higher HRV metrics from
the PPG as compared with the ECG. Health-related insights drawn
from PPG data should take these biases into account. Our results,
using a combination of Bland–Altman analysis, paired t-tests, and
linear regression visualizations, demonstrate that we can reduce
the sampling rate by half (from 64 to 32 Hz) or more (from
64 to 21 Hz) in half of the HR and HRV metrics studied here
(Table 1; Fig. 3). For applications that require high precision of
mean HR and/or mean HRV, 64 Hz may be the optimal sampling
frequency. For applications requiring high accuracy in all other
metrics, a 32-Hz PPG sampling rate would maintain sufficient
accuracy while reducing the storage requirements for this data
by half. For applications that require less precision, sampling rates
of 21 Hz may be appropriate, further reducing the data storage
requirements. This study shows that, in our sample, there was
insufficient information to suggest that there were significant
differences between ECG and PPG sampled at 64 Hz for all HR
metrics and all HRV time domain metrics with the exception of
pNN50% and RMSSD, which would require a sampling rate
>64 Hz to achieve optimal accuracy from a wrist-worn device.
Thus, if an application requires the use of pNN50% or RMSSD,
as is the case in certain psychiatric fields [26], a higher sampling
rate or a more robust motion artifact removal algorithm will be
necessary to achieve accuracy of the pNN50% or RMSSD value
at sampling rates less than or equal to 64 Hz on a wrist-worn
device. pNN50% and RMSSDhave been shown to achieve accuracy
in finger probe PPG at higher sampling rates [14] and further study
would be necessary to determine optimal sampling rates for
pNN50% and RMSSD on wrist-worn PPG. Researchers determin-
ing the minimum sampling rate for their particular application
should examine the biases and loss of information presented in
our analyses. There is not a “one-size-fits-all”model that will work
for every application, thus it is important to examine each of the
analyses presented in the context of the acceptable loss of informa-
tion and bias for each particular application.

The linear regressions to visualize error between ECG and
PPG at the range of metrics and sampling rates provides further
support for the minimum sampling rate ranging from 21 to
64 Hz, depending on the metric. These visualizations further show

Fig. 4. Data storage and costs of ECG compared to PPG at various sampling rates. (a) Required data storage for 24 h. (b) Cost in USD for 1 user for 1 year at the given sampling
frequency.
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that wrist-worn PPG sensor HR metrics are biased lower than the
reference standard ECG metrics and that HRV metrics are biased
higher than the reference standard ECG metrics, so higher values
of HR metrics have higher error and lower values of HRV metrics
have higher error.

Reducing data volumes by half (from 64 to 32 Hz) or more
(from 64 to 21 Hz) would significantly reduce the data storage
and management necessary for clinically relevant PPG sensor data
(Fig. 4). This would allow data from these sensors to be stored,
accessed, and utilized within the clinical framework, which would
provide a more comprehensive picture of a patient’s health and
wellness. It would enable the diagnosis of autonomic dysfunction
and certain cardiometabolic diseases from longitudinal HR and
HRVmetrics. Through daily monitoring via wearable sensors, per-
sonalized medicine will be integrated into the healthcare frame-
work through digital biomarkers, providing significant benefits
to both patients and providers.

Limitations and Future Directions

This study is limited in that it only includes heart rate and time
domain HRV metrics. Frequency domain metrics were excluded
from this study because there is no previous literature to support
wearable PPG monitors being able to accurately determine fre-
quency domain metrics at the highest sampling rate recorded of
64 Hz. The study size is limited to 37 participants and the short
time period of data obtained (5 min) is a limitation of this study.
Another study limitation is the narrow age range of subjects.
Future studies with more participants or a longer duration of mea-
surement would be useful for validation of these findings. Future
studies with age ranges including older participants and children
would further support the conclusions made in this study.
Future studies that include analysis while a subject is in motion
and participating in daily activities of living will be necessary to
determine the optimal sampling rates to calculate the HR and
HRV metrics in real-world conditions, including during various
types and intensities of physical activity. Future studies of wrist-
worn PPG sensors with original sampling rates>64 Hzmay enable
the analysis of the HRV metric pNN50, which appears to require
sampling rate >64 Hz or a different measurement modality to
achieve sufficient clinical accuracy.

Conclusion

Including data fromwearable sensors in clinical frameworks would
provide a more comprehensive and longitudinal picture of a
patient’s health and wellness. Continuous monitoring of relevant
health parameters via wearable sensors can provide significant
benefits to both patients and providers by tracking health longitu-
dinally and monitoring responses to interventions in real time. We
have used optical HR sensors as a case study for the connection
between data volumes and resource requirements to develop
methodology for determining the optimal sampling rate for clinical
relevance that minimizes resource utilization. This is extensible to
other wearable monitors, including blood pressure, spO2, glucose
monitors, and more.

In this study, we sought to discover the optimal sampling rate
for PPG data to provide clinically relevant heart rate metrics while
minimizing the storage and data management requirements. This
is a necessary step to facilitate rapid digitization and scalability of
this wearable sensor data. We determined that the optimal sam-
pling rate for a wrist-worn wearable device optical heart rate sensor

for all HR and HRV metrics is 64 Hz (for all HRV metrics except
pNN50 and RMSSD, which require sampling rate >64 Hz). For
many applications that require accuracy across all metrics except
meanHR, meanHRV, andminimumHRV, the PPG sampling rate
can be cut in half to 32 Hz while achieving sufficient accuracy
relative to the ECG. Further reduction of the sampling rate to
21 Hzmay be acceptable in specific applications. We conclude that
wrist-worn PPG sensor HRmetrics are biased lower than the refer-
ence standard ECG metrics and that HRV metrics are biased
higher than the reference standard ECG metrics. This should be
considered when making physiological assessments based on
PPGmetrics of HR and HRV. Further studies that include analysis
while a subject is in motion and participating in daily activities of
living are necessary to further validate this research methodology.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/cts.2020.526.
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