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Sleep apnea (SA), a condition associated with increased cardiovascular risk, has been 
traditionally associated with obesity and aging. However, in patients with fluid-retaining 
states, such as congestive heart failure and end-stage renal disease, both prevalence 
and severity of SA are increased. Recently, fluid shift has been recognized to play an 
important role in the pathophysiology of SA, since the fluid retained in the legs during 
the day shifts rostrally while recumbent, leading to edema of upper airways. Such simple 
physics, observed even in healthy individuals, has great impact in patients with fluid 
overload. Correction of the excess fluid volume has risen as a potential target therapy 
to improve SA, by attenuation of nocturnal fluid shift. Such strategy has gained special 
attention, since the standard treatment for SA, the positive airway pressure, has low 
compliance rates among its users and has failed to reduce cardiovascular outcomes. 
This review focuses on the pathophysiology of edema and fluid shift, and summarizes 
the most relevant findings of studies that investigated the impact of treating volume 
overload on SA. We aim to expand horizons in the treatment of SA by calling attention to 
a potentially reversible condition, which is commonly underestimated in clinical practice.

Keywords: sleep apnea, fluid overload, edema, fluid shift, continuous positive airway pressure, congestive heart 
failure, chronic kidney disease

iNTRODUCTiON

Sleep apnea (SA) is a condition characterized by repeated episodes of complete or partial airflow 
cessation during sleep, typically referred as apnea and hypopnea. Individuals with SA usually present 
witnessed episodes of snoring, choking, and are more likely to suffer from daytime sleepiness (1), 
depression (2, 3) and are at increased risk of motor vehicle crash (4), and occupational accidents (5). 
Other important adverse consequences of SA include neuropsychiatric disorders, such as cogni-
tive impairment (6), abnormal sympathetic activity (7), and cardiovascular abnormalities such as 
hypertension (8), stroke, and arterial obstruction (9).

The apnea–hypopnea index (AHI), defined as the total number of episodes of apnea and hypopnea 
per hour of sleep, is routinely used to diagnose SA and to classify it as mild (AHI between 5 and 15), 

Abbreviations: AHI, apnea–hypopnea index; CHF, congestive heart failure; CKD, chronic kidney disease; CPAP, continuous 
positive airway pressure; CSA, central sleep apnea; EABV, effective arterial blood volume; ESRD, end-stage renal disease; LBPP, 
lower body positive pressure; OSA, obstructive sleep apnea; PCWP, pulmonary capillary wedge pressure; SA, sleep apnea.
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TAble 1 | Studies on the relationship between volume overload and SA that have included patients with fluid-retaining states.

Study Condition Population Methods Findings

Inoshita et al. (39) CHF 17 patients with CHF vs. 34 without 
CHF matched for BMI and OSA severity

Craniofacial anatomy 
evaluation

Patients with CHF had larger, edematous tongue and more  
collapsible airway

Kasai et al. (41) CHF 18 patients with obstructive and 10 
central-dominant SA

LBPP by using anti-shock 
trousers for 15 min

LBPP reduced LFV and increased NC. Transpharyngeal 
resistance and PCO2 increased in patients with OSA, while the 
opposite occured in CSA-dominant patients

Yumino et al. (13) CHF 57 patients with obstructive or central-
dominant SA

BIS, PSG, and overnight 
NC variation

Reduction in LFV correlated inversely with AHI and overnight 
change in NC in all patients and also correlated positively with 
PCO2, only in patients with CSA

Kasai et al. (42) CHF 35 men and 30 women with CHF BIS, PSG, and overnight 
NC variation

Overnight NC variation was lower in women, despite the same 
fluid displaced from the legs. AHI severity was significantly 
correlated with fluid shift in men but not in women

Elias et al. (14) ESRD 26 patients on HD BIS, PSG, and overnight 
NC variation

Change in LFV was inversely correlated with apnea-hypopnea 
time and change in overnight NC

Lyons et al. (61) ESRD 21 patients on HD BIS, PSG, and 
echocardiogram

In men, AHI correlated with left atrial size, while LFV variation 
correlated with AHI and left atrial size

Elias et al. (60) ESRD 20 patients on HD BIS, PSG, and MRI Increased upper airway water content and internal jugular vein 
volume were positively correlated with AHI

Lyons et al. (62) ESRD 15 patients on HD BIS, PSG A single ultrafiltration session (2.17 ± 0.45 L) decreased AHI  
by 36%

Tang et al. (15) Nephrotic 
syndrome

23 patients with nephrotic syndrome 
and lower limb edema

BIS, PSG Reduction in extracellular body water after nephrotic syndrome 
treatment attenuated SA from 16.3 ± 5.1 to 7.8 ± 2.3 events/h

CHF, congestive heart failure; pts, patients; BMI, body mass index; OSA, obstructive sleep apnea; SA, sleep apnea; LBPP, lower body positive pressure; LVF, leg fluid volume; NC, 
neck circumference; CSA, central sleep apnea; BIS, bioimpedance spectroscopy; PSG, polysomnography; AHI, apnea–hypopnea index; MRI, magnetic resonance imaging; HD, 
hemodialysis; ESRD, end-stage renal disease.
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moderate (15–30), or severe (>30) (10). The prevalence of AHI > 5 
is 9% in women and 24% in men in the general population (1), 
not taking into account the presence of symptoms. Nevertheless, 
the prevalence of SA increases over time, since obesity, one of the 
most important risk factors, has increased in general population. 
More recent data suggest that more than 20% of adults have mild 
SA and up to 7% have moderate or severe SA (11).

Even though aging and obesity are clearly the most relevant 
associated risk factors, the prevalence of SA is much higher 
among patients with edematous states, such as end-stage renal 
disease (ESRD) (12) and congestive heart failure (CHF) (13). 
Hypervolemia and overnight rostral fluid shift from the legs are 
the likely cause of the high frequency of SA in edematous states, 
as indicated by several recent studies of ESRD (14), CHF (13), and 
nephrotic syndrome (15) (Table 1).

Despite its high prevalence in edematous patients, SA is often 
overlooked because of its oligosymptomatic nature (16, 17). Even 
when SA is adequately diagnosed by polysomnography, manage-
ment of this condition is of great concern, since the gold standard 
treatment, the use of continuous positive airway pressure (CPAP) 
(18–21), presents low compliance rates (22, 23).

Although prevention of fluid accumulation is a plausible 
alternative strategy to alleviate SA in edematous patients, 
current guidelines do not include treatment of edema as part 
of the therapeutic effort against this condition. In this review, 
we discuss the impact of edema on the pathogenesis of SA in 
patients with CHF, ESRD and nephrotic syndrome, as well as 
the corresponding implications for innovative therapeutic 
strategies.

PATHOPHYSiOlOGY OF eDeMA: A 
SUMMARY

edema: interstitial Accumulation of 
Sodium and water Retained by the 
Kidneys
Edema is defined as an abnormal buildup of fluid anywhere in the 
body. When utilized with no qualifier, the term “edema” usually 
refers to the accumulation of plasma transudate in the interstitial 
space, as in CHF, nephrotic syndrome, and hepatic cirrhosis 
(24–26).

For fluid to accumulate at the interstitial space, a positive 
sodium balance must establish. Since the kidneys are ultimately 
responsible for maintaining sodium balance, it follows that 
edema formation always demands some degree of renal sodium 
retention. Nevertheless, impaired sodium excretion is insufficient 
to ensure fluid accumulation. For instance, in primary hyperal-
dosteronism, excess sodium reabsorption by the distal nephron 
translates into hypertension, rather than edema formation. To 
reach the interstitial space, fluid retained by the kidneys must be 
driven by an imbalance of Starling forces at the complex interface 
between the intravascular and interstitial compartments (27).

Under normal conditions, small amounts of fluid do reach 
the interstitial compartment due to a slight predominance of 
hydrostatic over oncotic forces. Actually, the normal interstitium 
contains about 10 L of fluid, an amount kept within narrow limits 
by three mechanisms (27): the action of lymphatic capillaries, 
carrying extravasated fluid back to the circulation; the dilution of 
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FiGURe 1 | Overflow and underfilling mechanisms in edematous states. CKD, chronic kidney disease; EC, extracellular; IV, intravascular; CHF, congestive  
heart failure.
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interstitial protein that results from transcapillary fluid passage; 
and the tight disposition of the protein molecules that constitute 
the interstitial matrix—due to this arrangement, substantial 
elevation of local hydraulic pressure is required to accommodate 
even small amounts of extra fluid (low interstitial compliance).

An important consequence of these physical characteristics 
of the normal interstitial matrix is that fluid cannot move freely 
across the interstitium following gravity and, therefore, will not 
accumulate in the lower limbs while standing, or in the cervical 
region after several hours in the recumbent position.

Although the classical view centered on Starling forces still 
predominates, recent evidence suggests that this theory should 
be revised taking into account the segmentation of the capillary 
wall and the adsorption of ions by interstitial macromolecules 
(28, 29). An overview of the mechanisms evolved in edema 
formation is summarized in Figure 1.

edema Primarily due to impaired Renal 
Sodium excretion: The Overflow 
Mechanism
When sodium excretion is hindered by intrinsic renal disease, 
a positive sodium balance establishes, leading to expansion of 
the extracellular (EC) and intravascular volumes. If Starling 
equilibrium is not disrupted, sodium retention will cause 
hypertension, according to Guyton’s theory (27), but not edema. 
However, if tissue autoregulation fails, capillary hydraulic pres-
sure will rise, and the resulting imbalance of Starling forces will 
lead to fluid extravasation. This mechanism of fluid retention, 
known as overflow (also overfill), operates in primary renal 
disease, such as glomerulonephritis (30) and advanced chronic 
kidney disease (CKD). As EC volume is expanded, mechanisms 
that increase sodium excretion are triggered, counteracting 
the renal limitation and allowing a new sodium balance to be 
reached. For this reason, edemas accumulated by overflow are 
relatively modest and confined to the lower limbs and eyelids.

In patients on chronic dialysis, maintenance of fluid balance is 
entirely dependent on an artificial procedure. Therefore, develop-
ment of edema in this context usually results from insufficient 
fluid removal (31) or poor adherence to treatment. Thus, the 
mechanism of edema formation in these patients can be consid-
ered as analogous to overflow.

Do Not blame the Kidneys: edema 
Formation due to Circulatory Underfilling
In a number of situations, effective arterial blood volume 
(EABV), hence renal perfusion, cannot be maintained despite 
normal or even increased total blood volume. In this context, the 
kidneys (assumed to be normal) react to the reduction of EABV 
by retaining sodium and water, which nevertheless escape the 
intravascular space because of a disequilibrium of Starling forces, 
promoting further sodium retention. In this manner, the retained 
fluid tends to accumulate at the interstitial compartment, instead 
of recomposing the EABV (32).

This mechanism of edema formation resulting from chronic 
reduction of the EABV is known as underfilling. Unlike what 
happens with overflow, here renal dysfunction is not the primary 
cause of sodium retention. Rather, the kidneys act as expected, 
responding to hypoperfusion by reabsorbing as much sodium as 
possible. Underfilling is central to the pathogenesis of edema in 
CHF, hepatic cirrhosis and some cases of nephrotic syndrome.

edema in CHF: weak Pump, low eAbv, 
High venous Pressure
Under normal conditions, the heart easily meets the needs of all 
tissues, keeping cardiac output at physiological levels. In CHF, the 
weakened myocardium can no longer maintain adequate perfu-
sion of the peripheral territories, including the renal circulation. 
The consequent fall of EABV stimulates the kidneys to retain 
sodium. On the other hand, the malfunctioning pump leads 
to venous damming of blood. Retrograde transmission of the 
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resulting venous hypertension to the capillaries promotes the pas-
sage of fluid to the interstitial space. This process is continuously 
fueled by the renal retention of sodium, which nevertheless fails 
to restore the EABV. Therefore, the basic mechanism of edema 
formation in CHF is underfillling (33).

Formation of edema in Nephrotic 
Syndrome: Underfilling or Overflow?
About one-third of patients with nephrotic syndrome exhibit 
clear signs of hypovolemia despite massive EC fluid expansion. In 
these patients, edema formation is believed to result from hypoal-
buminemia, hence decreased systemic oncotic pressure, leading 
to an imbalance of starling forces, fluid displacement to the inter-
stitium, EABV reduction, and incessant renal sodium retention. 
This sequence is fully compatible with the concept of underfilling  
(25, 34). However, two-thirds of nephrotic patients exhibit 
clear clinical evidence of fluid overload. It is believed that, in 
these patients, the basic event is primary sodium retention by 
the kidneys, with hypoalbuminemia facilitating ultrafiltration 
through the capillary walls, so that the magnitude of swelling 
is much higher than in the nephritic syndrome. Therefore, the 
basic mechanism of edema formation in most cases of nephrotic 
syndrome is overflow, facilitated by the simultaneous decrease in 
plasma oncotic pressure (2, 12).

edema Accumulation Deeply Changes the 
Physical Properties of the interstitial 
Space
If fluid escape into the interstitium persists, the initially slow 
accumulation of edema raises gradually the local hydraulic pres-
sure, until it becomes positive. When this happens, the normally 
tight architecture of the interstitium is disrupted, leading to 
an abrupt increase of compliance, enabling the interstitium to 
accommodate increasing amounts of fluid with a small rise of 
hydraulic pressure. The shift of fluid throughout the interstitium 
is no longer restricted, being now governed by gravity: dur-
ing daytime, edema accumulates in the lower limbs; at night, 
interstitial fluid tends to be redistributed rostrally, reaching the 
cervical region. These movements largely explain the occurrence 
of airway obstruction and SA in edematous states.

Sleep apnea can be classified as obstructive sleep apnea (OSA), 
associated with airway obstruction and, therefore, respiratory 
effort, or central sleep apnea (CSA), in which the main patho-
genic factor is respiratory center instability. The most common 
sleep disorder is OSA. CSA is far less common although equally 
as dangerous as OSA.

SA iN CHF

Both SA modalities are more prevalent in patients with CHF, 
compared to the general population (1, 35–37), especially in the 
case of CSA, which affects 21–40% of CHF patients, as compared 
to less than 1% of the general population (38). In CHF patients, 
fluid retention, and in particular fluid shift can cause not only 
upper airway obstruction by local fluid accumulation, but also 
pulmonary congestion. Despite their different pathogeneses, 

OSA and CSA can occur simultaneously in patients with CHF. 
Actually, fluid shift can participate in both SA types and fluid 
overload can explain the higher prevalence of both OSA and CSA 
in patients with CHF (13).

Role of edema and Fluid Shift in OSA in 
CHF
In CHF, fluids displaced from the lower body during the night 
can accumulate at cervical and head areas, thus promoting 
upper airway obstruction and OSA. It has been postulated that 
systemic fluid retention, with consequent venous engorgement 
and mucosal fluid accumulation, can increase tongue volume, 
facilitating airway obstruction (39). Of note, fluid accumulation 
in the neck, causing mucosal edema and OSA, was seen in healthy 
men after IV saline infusion during sleep (40).

In men with CHF and OSA, Kasai and colleagues showed 
that application of lower body positive pressure (LBPP) in the 
awake state, thus forcing rostral fluid shift, was accompanied 
by a significant increase in neck circumference and an increase 
in upper airway resistance in proportion to the volume of fluid 
displaced from the legs (41). Interestingly, the relationship 
between rostral fluid shift and OSA in CHF is less pronounced 
in women (13, 42).

Role of edema and Fluid Shift in CSA in 
CHF
In CHF patients, fluid retention and fluid shift from the legs can 
also lead to pulmonary congestion. In this case, however, SA is 
unrelated to obstruction. Rather, it seems to result from a central 
respiratory mechanism, thus conforming to the CSA type.

The mechanism underlying the establishment of CSA in these 
patients has not been fully elucidated, although pulmonary con-
gestion, increased central and peripheral chemosensitivity, and 
frequent arousals may play a role (43, 44). Pulmonary congestion, 
a common finding in CHF, can stimulate so-called pulmonary 
vagal irritant “J” receptors (45), causing reflex inhibition of the 
respiratory drive through afferent C fibers. The consequent apnea 
causes PaCO2 to increase, now leading to hyperventilation and 
generating a Cheynes–Stokes-like pattern (35, 37, 46). In consist-
ency with this concept, PaCO2 in CHF is inversely proportional 
to pulmonary capillary wedge pressure (47), which is an index of 
pulmonary congestion (48).

Salt intake
Dietary sodium intake can be associated with the severity of both 
OSA and CSA in CHF patients, with increased sodium intake 
presumably resulting in worsening of edema around the upper 
airway (OSA) and/or pulmonary congestion and CSA, through 
the mechanisms discussed earlier. Increased leg fluid retention, 
and consequently nocturnal overnight rostral fluid shift, can also 
be favored by excessive sodium intake (49).

SA iN KiDNeY DiSeASe

The presentation of SA in patients with ESRD is quite distinct 
from that in the general population. First, the typical history 
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of loud snoring and witnessed apnea during sleep is seldom 
obtained. Second, the association with age, gender, and body 
mass index is less clearcut (50). Third, even classical symptoms 
such as daytime sleepiness are infrequent and dissociated from 
the severity of SA (51). Together, these atypical clinical charac-
teristics can render the diagnosis of SA quite difficult in ESRD 
patients.

Sleep apnea can exert a high impact on CKD mortality (52), 
given is very high prevalence (up to 80%) among these patients 
(14, 53, 54), and its well-known association with cardiovascular 
events (8, 55, 56). Therefore, recognizing SA in this population 
is imperative.

Uremia has been implicated as a possible cause of SA (57, 58). 
This concept, based on anecdotal reports of symptom improve-
ment following renal transplantation, have been disputed (59). 
It must be noted that, even if these observations were confirmed 
by large clinical trials, interpretation would be problematic, 
given the plethora of factors that can be ameliorated after kidney 
transplantation.

Role of edema and Fluid Shift in SA in 
Kidney Disease
Rostral fluid shift may exert a similar influence in CKD as in 
CHF. In a study of 26 patients on conventional hemodialysis, 
Elias and coworkers (14) showed that SA, present in 46.1% of 
subjects, was associated with age, male gender, and time spent 
in the sitting position during the day. Rostral fluid shift corre-
lated significantly with the severity of SA and with the overnight 
increase of neck circumference. In a related study, fluid shift was 
shown to correlate with the increase of internal jugular vein 
volume, mucosal water content, and AHI (60). Likewise, Lyons 
et al. (61) showed a correlation between the magnitude of ros-
tral fluid shift and the severity of both OSA and left atrial size in 
40 patients on conventional hemodialysis, reinforcing the view 
that fluid shift may have an impact on both OSA and cardiac 
dysfunction in ESRD. The proof of concept that fluid overload 
can impact in the severity of OSA in patient on dialysis was 
demonstrated by Lyons and coworkers, who showed that AHI 
fell by 36% after removal of an average of 2.2 L by ultrafiltration 
alone in ESRD patients (62).

The importance of fluid retention in the pathogenesis of SA 
is not restricted to CKD and ESRD. In patients with nephrotic 
syndrome, even with normal renal function, the treat-
ment of hypervolemia, with contraction of EC volume and 
disappearance of lower limb edema, was shown to alleviate  
SA (15).

In summary, patients with kidney disease, particularly those 
on dialysis, and patients with nephrotic syndrome are more 
prone to have SA. The role of fluid overload and overnight fluid 
shift as risk factors for SA were well demonstrated in these set-
tings (14, 15, 54, 60, 62–66). The data presented in these cited 
studies suggest that kidney disease and nephrotic syndrome 
might cause SA independently of confounding factors. Fluid 
overload per se contributed to the presence of SA in patients on 
hemodialysis that can be partly reversible through fluid removal 
by ultrafiltration (67).

TARGeTeD THeRAPY OF SA iN FlUiD-
ReTAiNiNG STATeS

Below, we describe different treatment options for the manage-
ment of OSA. All these treatments are summarized in Figure 2.

Continuous Positive Airway Pressure
Basically, the therapeutic action of CPAP is to mechanically 
impede the collapse of the upper airways, thus preventing OSA. 
In addition, CPAP prevents CSA because it maintains a continu-
ous airflow. CPAP seems to have no effect on overnight fluid shift 
in patients on hemodialysis (68), although is considered the 
mainstream treatment for OSA regardless of volume overload 
given its mechanism of action.

Diuretics, Fluid, and Salt Restriction
Targeted therapy for fluid retention and/or rostral fluid shift has 
been tested in several studies. In CHF patients with left ven-
tricular diastolic dysfunction and severe OSA, intensive diuretic 
therapy increased upper airway cross-sectional area and lowered 
AHI by 24% (69). Increased physical activity during cardiac 
rehabilitation has also been associated with attenuation of both 
OSA and CSA (70, 71), possibly by preventing lower body fluid 
accumulation.

Head-elevated Patient Positioning
Head-elevated patient positioning can ameliorate OSA in CHF 
by preventing cervical fluid accumulation (72). Interestingly, this 
maneuver can also prevent CSA in CHF patients. Similar results 
were obtained in CHF patients with predominant OSA (72), with 
no effect on thoracic fluid content or left ventricular hemodynam-
ics (73). This effect was attributed to increased venous return and 
dilation of the left heart while in the supine position, although 
lung congestion may also play a role.

increase of Dialysis Dose
As remarked earlier in this review, overflow is the mechanism 
of fluid retention in patients on hemodialysis. Accordingly, 
amelioration of SA in this population is expected to be pro-
portional to the efficiency of fluid removal. In patients on 
conventional hemodialysis (three 4-h sessions/week), the SA 
severity tends to increase during interdialytic periods, reach-
ing a maximum immediately before each session (12, 16, 51). 
Therefore, increasing the duration and/or frequency of ses-
sions, thus mimicking more faithfully the operation of normal 
kidneys, may be a sound strategy to prevent SA in ESRD. In 
a study of 14 patients transferred from conventional to inten-
sive hemodialysis (five 6-h sessions/week), AHI decreased by 
68%, with marked improvement of oxygen saturation (63). A 
similar trend was observed in patients treated with peritoneal 
dialysis (PD) (74). Tang et  al. (65) showed that in patients 
undergoing automated nocturnal PD, in which fluid removal 
was more efficient than with the manual procedure, a greater 
reduction of AHI was achieved, in association with less airway 
obstruction.
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FiGURe 2 | Flowchart of suggested therapeutic interventions to alleviate fluid shift in four different clinical scenarios: congestive heart failure, venous insufficiency, 
nephrotic syndrome, and chronic kidney disease. BP, blood pressure; HD, hemodialysis; PD, peritoneal dialysis; APD, automatic peritoneal dialysis.
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TAble 2 | Studies that evaluated the impact of target therapies on SA in patients with fluid overload conditions.

Study Condition Population Targeted Therapy Findings

Bucca et al. (69) Diastolic HF 15 patients with severe OSA Furosemide + Spironolactone for 3 days AHI reduced from 74.89 ± 6.98 to 57.17 ± 5.40  
events/h, associated with reduced body weight, 
improvement of or pharyngeal junction area and 
respiratory flow

Yamamoto  
et al. (70)

CHF 10 patients included in cardiac 
rehabilitation program vs. 8 
control patients

Aerobic exercise training for 6 months AHI remained stable in control group after 6 months,  
from 30.4 (19.9; 36.3) to 36.6 (8.6; 39.4) and improved 
after training: from 24.9 (19.2; 37.1) to 8.8 (5.3; 10.1) 
events/h. CSA, but not OSA, improved

Ueno et al. (71) CHF 8 patients with OSA, 9 with 
CSA and 7 without SA

Aerobic exercise training for 4 months In patients with OSA, AHI was reduced in 36% after 
exercise training

Soll et al. (73) CHF 25 patients with Cheyne–
Stokes apneas or hypopneas 
(index > 5 events/h)

Changes in sleeping angle degrees Moving patients from 0 to 45° reduced AHI from  
34.7 ± 30 to 23.2 ± 23.7 events/h

Basoglu  
et al. (72)

CHF 30 patients with diagnosed 
OSA

Changes sleep angle from 0 to 45° AHI reduced from 30.8 ± 20.7 to 17.8 ± 12.1 events/h

Hanly and  
Pierratos (63)

ESRD 14 patients with diagnosed SA Switching from conventional (4 h, 3 times 
a week) to nocturnal HD (8 h, 6–7 times 
a week)

AHI reduced from 25 ± 25 to 8 ± 8 events/h

Tang et al. (65) ESRD 24 incident dialysis patients Performing nocturnal cycler-assisted 
peritoneal dialysis before initiating CAPD 
program

AHI increased from 3.4 ± 1.34 to 14.0 ± 3.46 events/h 
after starting CAPD. TBW was significantly lower 
comparing nocturnal cycler-assisted PD with CAPD 
(32.8 ± 7.37 vs. 35.1 ± 7.35 L)

Redolfi et al. (76) Venous 
Insufficiency

12 patients with diagnosed SA Compression stockings for 1 week AHI reduced 36% after wearing compression stockings

HF, heart failure; pts, patients; OSA, obstructive sleep apnea; AHI, apnea-hypopnea index; CSA, central sleep apnea; CHF, congestive heart failure; SA, sleep apnea; HD, 
hemodialysis; CAPD, continuous ambulatory peritoneal dialysis; TBW, total body water; PD, peritoneal dialysis; ESRD, end-stage renal disease.
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