
RESEARCH ARTICLE

An adjustable predictive score of graft survival

in kidney transplant patients and the levels of

risk linked to de novo donor-specific anti-HLA

antibodies
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néphrologie, dialyse-transplantations, Limoges, France, 8 CHU Limoges, Service de pharmacologie,

toxicologie et pharmacovigilance, Limoges, France

☯ These authors contributed equally to this work.

* aurelie.premaud@unilim.fr

Abstract

Most predictive models and scores of graft survival in renal transplantation include factors

known before transplant or at the end of the first year. They cannot be updated thereafter,

even in patients developing donor-specific anti-HLA antibodies and acute rejection.We

developed a conditional and adjustable score for prediction of graft failure (AdGFS) up to 10

years post-transplantation in 664 kidney transplant patients. AdGFS was externally vali-

dated and calibrated in 896 kidney transplant patients.The final model included five baseline

factors (pretransplant non donor-specific anti-HLA antibodies, donor age, serum creatinine

measured at 1 year, longitudinal serum creatinine clusters during the first year, proteinuria

measured at 1 year), and two predictors updated over time (de novo donor-specific anti-

HLA antibodies and first acute rejection). AdGFS was able to stratify patients into four risk-

groups, at different post-transplantation times. It showed good discrimination (time-depen-

dent ROC curve at ten years: 0.83 (CI95% 0.76–0.89).

Introduction

Scoring systems that predict survival outcome after kidney transplantation can help physicians

improve risk stratification among recipients and make the best therapeutic decision for a

patient who develops de novo donor-specific anti-human leucocyte antigen (HLA) antibody

(DSA). Serum creatinine (Scr) and estimated glomerular filtration rate (GFR) are not suffi-

ciently reliable predictors for long-term risk of graft loss or patient death [1]. In the last decade,

predictive models of graft survival based on large panels of data collected in the donor [2], in
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the recipient before transplantation [3], and/or in the first year post-transplantation [4,5] have

been proposed. A limitation of these models is that they do not take into account the onset of

adverse events over time, which modify graft outcome. In particular, these models never con-

sider the impact of the development of de novo (dn)DSA beyond one year post-transplantation

on graft outcome, although this has been demonstrated to be strongly associated with graft

loss through antibody-mediated rejections [6,7]. All the studies focusing on the impact of the

development of de novo DSA on graft outcome have concluded that post–transplant DSA

monitoring could improve prediction of individual risk for kidney allograft loss [5,8]. The pre-

viously proposed tools were globally validated in patient cohorts but they often lost their pre-

dictive power in small patient subgroups with specific risks of graft failure, i.e. the patients

who need them most.

Development of a graft failure risk score is most often based on Cox’s proportional hazards

models (eventually with time-dependent covariates) to identify predictive risk factors [4,9,10]

Random survival forest (RSF) modeling is an alternative non-parametric method based on an

ensemble tree method for the analysis of right censored survival data [11]. RSF was found able

to identify complex interactions among multiple variables and performed better than tradi-

tional cox proportional hazard model [12]. Other advantages of RSF are (i) insensitivity to

noise brought by missing values or error data [11] and (ii) inclusion of an internal validation

process [11]. Thus, RSF has been used in several risk models in cardiology [13] and oncology

[14,15]. A conditional scoring system may be more appropriate than the addition of weights as

derived from Cox model if the impact of a risk factor is different, whether or not it is associated

with other factors. Finally, a prognostic tool that can be updated with comorbidity onset may

be more powerful [16].

The objective of the present study was to build (using RSF) and validate a new conditional

risk-scoring system of graft failure up to ten years post-transplantation, taking into account

onset of emerging risks over time such as development of dnDSA. Our score highlights the

impact of renal function during the first year and the evolution of the risk of graft loss with the

onset of dnDSA and acute rejection.

Methods

This study adheres to the Declaration of Istanbul.

Database

Of the 819 transplantations performed at the University Hospital of Limoges (France) between

december 1984 and december 2011, 664 were included in the primary cohort (development

database). A flow-chart showing patient selection is shown in Fig 1. All 664 transplants studied

came from heart-beating deceased donors and had a follow-up of at least one year after trans-

plantation. The maintenance immunosuppressive regimen consisted mainly of one calcineurin

inhibitor (cyclosporine or, since 2001, tacrolimus) associated with azathioprine (until 1996) or

mycophenolate mofetil (after 1996) and corticosteroids (generally stopped between 3 and 6

months post-transplantation). All patients received induction therapy. Patient outcome was

known for each patient at the date of the last follow-up. Death was considered as a censored

event when the recipient died with a functioning graft. When graft function was not known on

the exact date of death, the date of the last biological assessment before death was then consid-

ered as the censoring time. Usually, graft function was recorded a few days before death.

When patients died because of graft loss, death was considered as a graft failure.

Donor, recipient and graft characteristics were collected from the CRISTAL register (from

the French public agency “Agence de la Biomédecine”). Samples for immunological analysis
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were available in the local biobank, declared to the Ministry of Health (N˚ DC-2010-1074). At

the time of transplantation, DNA was systematically extracted from the cells of the spleen or

lymph node of the donor. DNA (storage 4˚C) and cells (storage nitrogen) were preserved for

each donor. Sera of the patients were systematically preserved at -20˚C.

The study database was approved by the French Informatics and Liberty National Commis-

sion (CNIL, registration number 1795293).

Anti-HLA antibodies screening

Anti-HLA-A, -B, -C, -DP, -DQ, -DR antibodies were screened and identified using Lumi-

nex1 solid-phase assay (One Lambda LABScreen assays) in samples collected before trans-

plantation and routinely after transplantation (three, six, twelve months, once every year

thereafter, and whenever clinically indicated). Results were expressed as median fluorescence

intensity (MFI). MFI >1000 was considered positive. All sera tested using the Complement

Fig 1. Flowchart showing selection of renal transplant patients.

https://doi.org/10.1371/journal.pone.0180236.g001
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Dependent Cytotoxicity method prior to the availability of Luminex1 technology in our cen-

ter (2007), were re-analyzed using Luminex1. As DQ, DP and C HLA typing was not previ-

ously systematically performed in our center, a molecular DNA typing of donor and recipient

was performed in case of detection by Luminex1 of an anti-HLA-C, -DQ or -DP antibody

during the survey. This procedure allowed to determine the specificity (donor-specific or non

donor-specific) of the anti-HLA antibody and to avoid bias in the determination of DSA. DSA

diagnosis prior to renal transplantation was an exclusion criterion for transplantation in our

center. Patients in whom the Luminex1 reanalysis identified presence of DSA before trans-

plantation (n = 13) were excluded from the database studied.

Cluster analysis of serum creatinine over the first year post-

transplantation

Homogeneous subgroups of trajectories of serum creatinine measured within the first year

post-transplantation were identified by a clustering method based on k-means, specifically

designed to analyze longitudinal data and implemented in the ‘kml’ R-package (version 1.1.3)

[17]. This method does not require any assumption regarding the shape of the serum creati-

nine-time curves, contrary to model-based methods which fit the trajectories with a specific

model (e.g. linear, polynomial or exponential). The optimal number of clusters was selected

using the statistical criterion proposed by Calinski and Harabasz [18].

Identification of factors predictive of graft survival

The impact of the following variables was investigated on graft survival: (i) donor characteris-

tics (age, cause of death—cardiac, stroke or traumatic injuries-); (ii) recipient demographic

variables (age at time of transplantation, gender); (iii) transplantation characteristics [time

period of transplantation (i.e. 1984–1993, 1994–2003 or 2004–2011), cold ischemia time, previ-

ous kidney transplantation(s)]; (iv) immunological variables (HLA-A, HLA-B and HLA-DR

mismatches, pre-transplant anti-HLA antibodies, source of anti-HLA alloimmunization (i.e.

previous transplantation, pregnancy, blood transfusion), occurrence of de novo donor-specific

and/or non-donor-specific anti-HLA antibodies (dnDSA and dnNDSA, respectively) with the

date of the first diagnosis; (v) biological variables [repeated measurements of serum creatinine

(μM) over the first year post-transplantation, proteinuria (g/L) at one year post-transplanta-

tion]; (vi) clinical variables (initial renal disease, date of first acute rejection diagnosis, date of

return to dialysis, date of end of follow-up); and (vii) immunosuppressive drugs administered.

Patient ethnicity was not recorded since it is not authorized by French law.

RSF analysis was performed to select and rank the most predictive covariates of graft failure

using the date of transplantation as time origin [11]. RSF was implemented in the ‘randomFor-

estSRC’ R-package (version 2.0.0). Briefly, a RSF was generated by creating 1000 trees, each

tree built on a randomly selected bootstrap sample (using 63% of the original data) using a ran-

domly selected subset of covariates. Each bootstrap sample excluded, on average, 37% of the

data, which were reserved for a test set called “out-of-bag” data (OOB). RSF evaluated the

change in prediction error attributable to each covariate. The prediction error (i.e. the percent-

age of patients misclassified) was assessed with the Harrell’s concordance index (Harrell’s c-

index) using OOB data [19]. The c-index was computed using an OOB set constructed with

the 1000 OOB datasets provided by the 1000 bootstrap samples used in growing the forest. The

OOB prediction error is defined as 1 minus Harrell’s c-index [11]. The prediction error ranges

between 0 and 1, where a value of 0.5 corresponds to a prediction no better than random

guessing and a value of 0 reflects perfect accuracy. The parameter “nsplit” used to specify ran-

dom splitting was fixed at 3. The predictive performance of the studied variables was evaluated
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by their “variable importance” (VIMP), calculated by RSF. VIMP measures the change in pre-

diction error for a forest grown with or without this variable.

Variables selection was successively done by (1) fitting data by RSF and ranking all available

variables and (2) iteratively fitting RSF by removing at each iteration a variable from the bot-

tom of the positive variable importance ranking list. The minimal combination of variables

leading to the smallest “out-of-bag” prediction error rate, assessed by the Harrell’s c-index, was

selected.

A conditional survival tree [20] was subsequently drawn from the whole original dataset,

using the most predictive variables selected from RSF [‘party’ (version 1.0–21) R-package].

Prediction of graft failure

Score calculations were derived from both the VIMP sourced from the final RSF model and

the conditional survival tree. The weight of each variable (i.e. each risk factor) was based on

the ratio between its VIMP and the VIMP of the last predictive variable retained. A same value

of weight was allocated for variables split at the same tree-depth in the conditional survival

tree. The weighted risk score was calculated by adding the weights of the different risk factors

within each branch of the conditional survival tree. This strategy led to a score for each patient

subgroup identified at each terminal node of the conditional survival tree. Time-dependent

receiver operating characteristic (ROC) curves with area under the curve (AUC) for censored

survival data were used to evaluate the discrimination of the developed score. Additional

weights were attributed for variables not selected in the conditional survival tree but highly

associated with graft survival in the RSF analysis, provided their inclusion improved the ROC

AUC. The weight of a factor could be increased if it allowed maximization of the ROC AUC at

ten years post-transplantation. The predictive performance of the developed score was evalu-

ated by time-dependent sensitivity, specificity, positive predictive value (PPV) and negative

predictive value (NPV) with their standard error, all estimated at several cutpoints, i.e. for dif-

ferent threshold score values and for different times after transplantation. Therefore, ‘time-

ROC’ (version 0.2) R package was employed using the Kaplan-Meier estimator of the

censoring distribution. Baseline (i.e. including variables available at one year post-transplanta-

tion) and adjusted (i.e. adding variables collected after one year post-transplantation) scores

were also compared using time-dependent ROC AUC.

External validation

External validation of the developed score was performed in patients transplanted between

2002 and 2010 in two independent French transplantation centers (CHU Tours n = 706; CHU

Poitiers n = 190). As in the development cohort, patients with pre-transplant DSA were

excluded. All anti-HLA antibodies screenings were performed using Luminex1. The valida-

tion database (Astre database) was approved by the CNIL (Authorization number DR-2012-

518).

Validation procedure included: recalculation of the Scr clusters considering the external

database only, calculation of the individual scores using the developed scoring system, deter-

mination of the time-dependent ROC AUC at ten years post-transplantation and calibration

based on Hosmer-Lemeshow goodness-of-fit test adapted for survival data [21]. The calibra-

tion evaluation consisted in comparing numbers of patients with graft failure expected and

observed in the validation cohort using the calculation of the numbers of events based on

Kaplan-Meier survival estimates which was by proposed by D’Agostino-Nam [22]. In a first

step, the number of graft failures observed in the validation cohort in different time-intervals

([0–2[, [2–4[, [4–6[, [6–8[, [8–10] years after transplantation) were calculated for each risk

Adjustable kidney graft failure score

PLOS ONE | https://doi.org/10.1371/journal.pone.0180236 July 3, 2017 5 / 16

https://doi.org/10.1371/journal.pone.0180236


group as the product ni(1-KMi(t)) where KMi is the Kaplan-Meier survival estimate at a fixed

time t for groupi and ni the number of observations in groupi. The survival probabilities

expected in the validation cohort were calculated using the Kaplan-Meier estimates obtained

in the development cohort. With this test, the p value has to be higher than 0.05.

Statistical analyses

The study used a conditional approach to determine a patient risk-stratification with several

(>2) levels of risk of graft failure. An estimated 616 patients were needed for a power of 80%

and a two-sided significance level of 5%. Based on published data and expert opinion, we

assumed (i) a 10-years free graft failure survival of 82% in the studied population of renal

transplant patients and (ii) that kidney function one year after the transplantation and occur-

rence of de novo DSA over time will be major discriminant parameters to classify the patients

in the different risk levels. We hypothesized that 25% of the studied patients would have an

impaired renal function one year after transplantation (i.e a serum creatinine concentration

higher than 1.8 mg/dL (160 μmol/L) [1]) resulting in 10-years free graft failure survival being

decreased to 70%. In agreement with Wiebe et al. [23] we hypothesized cumulative incidence

of de novo DSA of 15% resulting in a 10-years free graft failure survival decreased to 60% and

to 40% in the groups with a serum creatinine concentration lower than 160 μmol/L and higher

than 160 μmol/L, respectively. Acute rejection being a known major risk factor of graft failure

in patients with DSA [24], we considered that around 33% of the patients with DSA would

have developed acute rejection and that their graft survival would be reduced to 25%.

Comparison between categorical data was done using the Pearson chi-square test or the

exact Fisher test. Normally distributed data were analyzed by Anova and the parametric t-test,

whereas nonparametric tests (Kruskall-Wallis and Mann–Whitney tests respectively) were

used otherwise. Kaplan-Meier analysis was used to assess graft survival (graft loss, i.e. return to

dialysis). Graft survival in different patient subgroups was compared using the log rank test.

Statistical analyses were performed with MedCalc for Windows, version 14.10.2. (MedCalc

Software, Ostend, Belgium) and R version 2.15.1 (www.R-project.org). The R packages are

freely available through the Comprehensive R Archive Network distribution system (http://

cran.r-project.org).

Results

Development database

The characteristics of the studied kidney transplants are listed in Table 1.

During the whole study period, 137 patients have been treated for a first acute rejection

among them 122 (89%) were biopsy proven. One hundred nine first rejections occurred dur-

ing the first year post-transplantation. Borderline rejection was evidenced in 36 patients and

T-Cell mediated rejection (TCMR) in 105 patients, Antibody-mediated rejection (ABMR) in

14 patients and mixed (ABMR + TCMR) in three patients. Only two patients displayed ABMR

criteria on a biopsy done before the definition of ABMR in the Banff classification.

During follow-up, dnDSA were present in 62 patients. The median time to dnDSA diagno-

sis was significantly lower in patients who exhibited pretransplant NDSA than in patients who

did not (1.42 vs 4.87 years, p = 0.0012). Sixty-four percent of patients with dnDSA (n = 39) had

class II antigens, 34% (n = 21) had class I and 2% (n = 2) had both class I and II antigens.

Nearly all patients who developed dnDSA after transplantation had previously (n = 19) or con-

comitantly (n = 36) developed dnNDSA. Except for one patient who presented dnDSA tran-

siently (i.e., detected at 1.6 years after transplantation and absent at subsequent screenings),

DSA remained persistent at all screenings following the first detection. Thirteen patients with
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dnDSA returned to dialysis, including six within the year following the diagnosis of dnDSA

(median 1.04 years, range: 0.03–4.46). Eleven out the 17 patients with ABMR on histology had

developed dnDSA.

Scr profiles over the first year post-transplantation were best partitioned in three clusters

(Fig 2). Graft survival after transplantation was significantly different in these three subgroups

(p<0.0001) (Fig 2). The percentage of donors over 60 years of age increased from cluster A to

C (29 [7.7%], 57 [23.4%], and 19 [44.2%], respectively, p<0.0001). The mean cold ischemia

time was significantly higher in cluster C than in clusters A and B, p = 0.034). No cold ischemia

time lower than 12 hours was observed in cluster C.

Identification of factors predictive of graft survival after the first year post-

transplantation

The classification of the variables according to their out-of-bag importance in the full RSF

model is illustrated in the Fig 3. The best model was obtained using the log rank splitting rule

with 1000 trees with a Harrell’s Concordance error rate of 21% (standard deviation 0.2%) (Fig

3). This final model included five baseline variables (pretransplant NDSA, donor age, Scr

Table 1. Kidney transplant characteristics of the development and validation databases.

Development Database

(n = 664)

Validation Database

(n = 896)

Tours Poitiers

Total number of transplants 664 706 190

Duration of follow-up (years) 6.4 (± 3.3) 7.4 (± 2.3) 7.9 (± 1.2)

Functional renal grafts at 10 years post-transplantation 202 (30.4%) 171 (24.2%) 31 (16.3%)

Recipient gender (M/F) 405/259 NA NA

Recipient age (years) 49 (± 14)

(15–77)*
NA NA

Donor age (years) 44 (± 16) 51 (± 17) 48 (± 15)

HLA A Mismatch 1.2 (± 0.7) NA NA

HLA B Mismatch 1.5 (± 0.6) NA NA

HLA DR Mismatch 1.2 (± 0.7) NA NA

First transplantation 608 (91.6%) NA NA

Pretransplant NDSA 105 (15.8%) 151 (21.4%) 34 (17.9%)

Serum creatinine at M12 (μM) 139 (± 71) 136 (± 49) 131 (± 40)

Proteinuria at M12 (g/L) 0.18 (± 0.50) 0.19 (± 0.45)

Proteinuria at M12 (g/24h) 0.63 (± 1.96) 0.37 (± 0.80)

Return to dialysis 69 (10.4%) 116 (16.4%) 22 (11.6%)

Death with a functional graft (censured data) 60 (9.0%) NA NA

de novo NDSA 142 (21.3%) NA NA

Median (range) time to onset (years) 3.02 (0.02–10)

de novo DSA 62 (9.3%) 113 (16%) 41 (21.6%)

Median (range) time to onset (years) 3.92 (0.02–9.83) 2.94 (0.79–5.04) 3.12 (1.95–5.1)

Patients with onset of dnDSA in the first year after transplantation 11 (17.7%) 35 (31.0%) 7 (16.7%)

First acute rejection episode 137 (20.6%) 219 (31%) 48 (25.3%)

Median (range) time to onset (years) 0.26 (0.01–9.27) 0.15 (0.04–0.35) 0.25 (0.03–0.40)

Data are n (%), mean (± SD) or median (range)

*4 patients under the age of 18 years (3 of them aged 17 years)

DSA = donor-specific anti-HLA antibodies. NDSA = non-donor-specific anti-HLA antibodies. M12 = month 12 post-transplantation. NA Not Appropriate

https://doi.org/10.1371/journal.pone.0180236.t001
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measured at 12 months post-transplantation (ScrM12), Scr clusters, proteinuria measured at

M12 (ProtM12)), and two predictors which could be updated during the follow-up of the graft

(onset of dnDSA and first acute rejection whatever the time of onset after transplantation).

The partial plots of graft survival, predicted in the RSF analysis using the retained continu-

ous variables (after adjusting for all other predictors) showed decreased survival when donor

age exceeds 60 years, and very steep survival curves when ScrM12 >150 μM, so that small

increments in ScrM12 would result in large survival declines (Fig 4).

Fig 2. Serum creatinine clusters. (A) Mean trajectories of serum creatinine resulting from k-means for the longitudinal data

clustering method superposed with individual profiles over the first 12 months post-transplantation. (B) Kaplan-Meier estimates

(±95% confidence intervals) of graft survival according to the first-year creatinine profile cluster. The free graft failure survival was

significantly associated with clusters (log-rank test, p<0.0001).

https://doi.org/10.1371/journal.pone.0180236.g002

Fig 3. Out-of-bag data variable importance values obtained by random survival forest analysis. (A) full model and (B) final model. The log-rank

splitting rule was used.

https://doi.org/10.1371/journal.pone.0180236.g003
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Adjustable graft failure score (AdGFS) for prediction of graft survival

A scoring system was constructed using conditional survival tree analysis, with nodes corre-

sponding to the variables selected in the final RSF model. The tree identified height terminal

nodes, corresponding to height patient subgroups (Fig 5). The hierarchical order of the

Fig 4. Partial plots for the continuous variables retained in the random survival forest analysis as predictors of graft failure. The

vertical axis represents the predicted survival at 10 years for a given predictor, after adjusting for all other predictors. Points indicate partial values

and dashed lines are ±2 standard error bars.

https://doi.org/10.1371/journal.pone.0180236.g004

Fig 5. Conditional inference tree applied for graft survival with predicted Kaplan-Meier curves in the terminal nodes. The tree was

obtained using recursive partitioning for censored response in a conditional inference framework implemented in ‘party’ R-package.

https://doi.org/10.1371/journal.pone.0180236.g005
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variables in predicting graft survival provided by the conditional survival tree was in accor-

dance with the variable ranks obtained by RSF analysis.

Our scoring system, named AdGFS (Adjustable Graft Failure Score), is shown in Fig 6.

AdGFS outperformed the baseline score including predictors available at one year after trans-

plantation (time-dependent ROC AUC at ten years: 0.83 (CI95% 0.76–0.89) vs 0.75 (CI95%

0.68–0.82), p = 0.0075). Taking into account onset of dnDSA and first acute rejection devel-

oped over time, after one year post-transplantation improved survival prediction beyond 5

years post-transplantation (p = 0.0244).

AdGFS values are reported for each patient subgroup in Fig 5. Table 2 presents, for the dif-

ferent cutpoints of AdGFS values, the performance characteristics of graft survival prediction

at different post-transplantation times. For example, a patient with low score (AdGFS = 2) has

a probability of graft survival up to 10 years post-transplantation of approximately 94.5%

(NPV). Onset dnDSA during the follow-up increased the score value (adjusted score = 6) and

led to a probability of graft loss of 64.9% at 8 years and 83.6% at 10 years post-transplantation

(PPV) (Table 2). Probabilities of graft survival lower than 20% (PPV > 80%) at ten years post-

transplantation were obtained for score values of 6 and more. Risk groups were defined

according to the AdGFS value: low risk (0), intermediate risk (2–4), high risk (6–8), and very

high risk (10–12). Ten years graft survival was significantly different between these four risk

groups (p< 0.0001) (Fig 7).

Fig 6. Scoring system for computing AdGFS values. ScrM12 = serum creatinine at 12 months post-transplantation.

ProtM12 = proteinuria at 12 months post-transplantation. Scr = serum creatinine. dnDSA = de novo donor-specific anti-HLA antibodies.

NDSA = non donor-specific anti-HLA antibodies.

https://doi.org/10.1371/journal.pone.0180236.g006
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External validation of AdGFS

Table 1 reports the characteristics of the patients. Graft survival within each risk group was

similar in the development and external validation datasets (Fig 7). The accuracy of the score

at predicting graft failure remained high in the validation dataset, with a time-dependent ROC

AUC of 0.79 (CI 95% 0.74–0.84) at ten years after transplantation. Results of calibration evalu-

ation of AdGFS in the external dataset were good: observed numbers of patients with graft fail-

ure were close to the expected numbers using the AdGFS risk groups ((χ2 = 2.39, p = 0.30)

(Table 3).

Table 2. Performance characteristics of adjustable graft failure score (AdGFS) for cutpoints 0, 2, 4, 6, 8, 10 and for different times over 10 years

post-transplantation.

Cutoff

point (c)

Number of positive

tests (>c)

Number of negative

tests (�c)

Censored post-transplantation

time (years)

Se

(se_Se)%

Sp

(se_Sp)%

PPV

(se_PPV) %

NPV

(se_NPV)%

0 292 365 2 100 (0) 59.7 (2.1) 4.3 (1.3) 100 (0)

299 358 4 95.7 (4.2) 60.9 (2.3) 11.1 (2.1) 99.6 (0.4)

303 354 6 85.7 (5.9) 66.2 (2.6) 17.9 (2.9) 98.1 (0.8)

309 348 8 80.7 (5.5) 69.2 (2.9) 29.1 (3.8) 95.8 (1.4)

314 343 10 79.4 (5.4) 72.5 (3.2) 35.9 (4.5) 94.8 (1.5)

2 264 393 2 100 (0) 63.2 (2.1) 4.6 (1.4) 100 (0)

271 386 4 91.9 (5.5) 64.6 (2.3) 11.7 (2.3) 99.3 (0.5)

275 382 6 83.3 (6.2) 68.5 (2.5) 18.5 (3.0) 97.9 (0.9)

282 375 8 79.3 (5.6) 69.9 (2.9) 29.2 (3.9) 95.5 (1.4)

288 369 10 78.3 (5.4) 73.1 (3.2) 36.0 (4.5) 94.5 (1.5)

4 120 537 2 100 (0) 85.4 (1.5) 11.0 (3.2) 100 (0)

122 535 4 75.7 (8.6) 87.0 (1.6) 23.0 (4.6) 98.5 (0.6)

125 532 6 70.6 (7.4) 91.0 (1.6) 40.2 (6.2) 97.3 (0.8)

130 527 8 58.5 (6.7) 95.0 (1.4) 64.9 (7.4) 93.6 (1.4)

134 523 10 53.7 (6.5) 97.7 (1.0) 83.6 (7.2) 91.6 (1.6)

6 62 595 2 90.9 (8.7) 93.3 (1.1) 19.8 (5.7) 99.8 (0.2)

62 595 4 68.2 (9.2) 94.3 (1.1) 37.9 (7.2) 98.3 (0.6)

62 595 6 56.6 (8.0) 96.0 (1.1) 55.2 (8.4) 96.2 (1.0)

62 595 8 39.4 (6.4) 97.7 (1.0) 73.0 (9.0) 91.1 (1.6)

62 595 10 33.1 (5.7) 98.4 (0.9) 80.7 (9.5) 88.4 (1.9)

8 31 626 2 62.8 (14.7) 97.5 (0.7) 31.1 (10.0) 99.3 (0.4)

31 626 4 50.4 (9.7) 98.4 (0.6) 62.6 (10.9) 97.4 (0.7)

31 626 6 34.2 (7.5) 99.1 (0.5) 77.6 (11.0) 94.6 (1.1)

31 626 8 19.9 (4.9) 99.6 (0.4) 89.1 (10.0) 88.8 (1.7)

31 626 10 16.7 (4.2) 100.0 (0.0) 100 (0) 86.1 (1.9)

10 9 648 2 17.6 (11.4) 99.1 (0.4) 26.2 (16.2) 98.5 (0.5)

9 648 4 26.5 (8.7) 100 (0) 100 (0) 96.3 (0.8)

9 648 6 16.3 (5.8) 100 (0) 100 (0) 93.3 (1.2)

9 648 8 9.5 (3.5) 100 (0) 100 (0) 87.5 (1.7)

9 648 10 7.9 (3.0) 100 (0) 100 (0) 84.9 (1.9)

Time post-transplantation was defined as the duration between the date of transplantation and the time point where graft failure prediction was made. The

test was considered as positive when AdGFS score > cutpoint and negative when score was� cutpoint. Time dependent sensitivity (Se), Specificity (Sp)

Positive Predictive Value (PPV) and Negative Predictive Value (NPV) were computed with standard error (se) at the six given cutpoints: 0 and 2, 4, 6, 8, 10

for different censored post-transplantation times. AdGFS could be calculated in 657 patients, 7 patients were secondarily excluded due to missing data.

https://doi.org/10.1371/journal.pone.0180236.t002
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Discussion

In the present work, we developed and externally validated a conditional and adjustable pre-

dictive score (named AdGFS) of long-term kidney graft failure including pre-transplantation,

early post-transplantation predictors and two factors collected all along the patients’ follow-

up: onset of dnDSA and first acute rejection episodes. All the items included in the score are

available everywhere in the day-to-day clinical surveillance of the patients. This score can be

calculated from one year post-transplantation and updated all along the evolution of the graft

depending on the occurrence of dnDSA and acute rejection. The calibration and discrimina-

tion of this score were good in large cohorts of patients treated with the current standard of

care.

All previously published scores are computed using only individual factors known before

the end of the first year post-transplantation. They are never updated, even if the patient’s

prognosis is altered. The performance of these scores is usually evaluated with respect to

shorter term graft survival and at a single time point [3–5,10,25]. In this study, we used the

non-parametric RSF method which has several advantages compared to regression approaches

among which it does not test the goodness of fit of data to a hypothesis, but seeks a model that

explains the data [26].

Fig 7. Comparison of Kaplan-Meier graft survival curves for the four risk groups namely low-,

intermediate-, high-, and very high- risk of graft loss in the development dataset (solid lines) and in the

external validation dataset (dashed lines). Patients were partitioned according to the calculated score value:

low risk (0), intermediate risk (2 or 4), high risk (6 or 8), and very high risk (10 or 12). Graft survival in the

development and validation datasets did not differ within each of the four risk groups.

https://doi.org/10.1371/journal.pone.0180236.g007

Table 3. Goodness-of-fit test for external validation of the AdGFS score.

Risk group Number of patients with graft failure Number of patients without graft failure

Observed Expected Observed Expected

Low (0) 14 14.9 314 313.1

Intermediate (2 or 4) 47 53.8 286 279.2

High (6 or 8) 57 58.3 146 144.7

Very high (10 or 12) 18 14.8 14 17.2

Data refers to the number of patients. Chi-squared = 2.39 (p = 0.30) with 2 degrees of freedom. The number of patients with graft failure expected in the

validation cohort for the four different risk groups was calculated using the Kaplan-Meier survival estimates obtained in the development cohort.

https://doi.org/10.1371/journal.pone.0180236.t003
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Most of the baseline predictors selected for the calculation of AdGFS, are well-accepted

graft failure risk factors [3,4,9,10,27]. Renal function in the first year post-transplantation was

found to be predictive of graft survival at 3, 5 [28,29] and 8 years post-transplantation [4]. Pro-

teinuria has also recently been associated with graft failure in a cohort of 1518 patients [30].

The cut-off points for Scr and proteinuria defined in order to maximize time-dependent ROC

AUC, are in accordance with previously published values [30]. Comparison between a score

calculated with the baseline parameters included in AdGFS (i.e. the variables collected up to

one year post-transplantation) and AdGFS (i.e. adding variables collected after one year post-

transplantation) demonstrated the added value of taking into account follow-up data beyond

one year post-transplantation.

The present study confirmed the deleterious role of donor age and its link with Scr [2,31].

Donor age above 60 years was retained in different donor quality scoring systems [32] and was

also associated with graft outcome after acute ABMR [33]. In the present study, two other

baseline predictors were identified: Scr cluster and pretransplant NDSA. Longitudinal Scr clus-

ters, assessing the Scr time-profiles along the first year, have never been used before in predic-

tive model of graft failure. Clustering adds information to the use of single or repeated

measurement(s) of biological or clinical markers. Herein, it revealed patient subgroups with

homogenous Scr time-profiles. This approach is in line with FDA guidance to better differenti-

ate phenotypes of patients (http://www.fda.gov/downloads/Drugs/

GuidanceComplianceregulatoryInformation/Guidances/UCM458485.pdf). For future studies,

we propose a graphical tool dedicated to allocating new patients in the clusters (S1 Fig).

No previously proposed score takes into account onset of dnDSA beyond one year post-

transplantation and their impact on graft survival [5,6,34,35]. Our study, finding a cumulative

incidence of 9.3% of dnDSA and a 24% rate of graft failure at 3 years after the onset of dnDSA,

is in accordance with previous studies showing a 5-year post-transplantation cumulative inci-

dence of dnDSA from 5.5 to 20% [6,23], a 7 to 9% risk of graft failure in the first year after the

occurrence of dnDSA, and up to 24% of patients with chronic ABMR and renal failure within

3 years post-DSA [6,24].

AdGFS is the first score to include new-onset dnDSA to predict graft survival. The inclusion

of dnDSA requires an adjustable approach since they may appear at any time. AdGFS can be

updated during patient follow-up in case of dnDSA or acute rejection. DnDSA’s pathogenicity

depends on their association with acute rejection, as previously found by Cooper and col-

leagues [36]. Taking into account dnDSA improved survival prediction beyond 5 years post-

transplantation in accordance with published works highlighting that graft loss attributable to

dnDSA occurs several years after their onset [24].

Other factors classically reported to be associated with graft failure [4,27,32,37], such as

HLA mismatches, cold ischemia, recipient gender, and immunosuppressive treatments, were

not retained in the score because they did not allow a decrease in the error rate in the RSF anal-

ysis, and they did not improve the time-dependent ROC AUC. This was explained by their sig-

nificant association with the retained variables (e.g increased cold ischemia time was

associated with Scr clusters).

Contrary to published scores, AdGFS predicted graft failure at different post-transplanta-

tion times up to ten years and stratified the patients into four risk groups. Kasiske and col-

leagues [9] evaluated only the 5 year risk of graft failure and the discriminatory ability of their

scores remained modest as highlighted by the authors. In the Kidney Transplant Failure Score,

graft failure was evaluated at 8 years post-transplantation and patients were stratified into only

two groups [4]. The good results of our external validation in a population different with

regards to time of transplantation and standard-of-care supported the robustness of AdGFS.
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Assessment of the individual patient’s risk of transplant failure throughout the time after

transplantation may be a decisive tool to select the optimal care strategy for the patient. For

instance, in the high risk group, specific treatments for dnDSA might be questionable regard-

ing the balance between the probability of maintaining a functioning graft and the side effects

associated to these treatments.

The main strength of this study lies in the long follow-up and careful monitoring of anti-

HLA antibodies using a Luminex1 solid-phase assay, even for patients grafted before the year

2000. The database is one of the largest in which the impact of dnDSA was analyzed. Our study

has some limitations. It included fewer patients than some previously published cohorts and

was validated (i) beyond one year of transplantation, (ii) in deceased donors’ grafts, and (iii) in

patients without DSA at the time of transplantation. Thereby, AdGFS can be cannot be calcu-

lated before one year post-transplantation neither in case of living donor nor in patients with

DSA before transplantation.

In conclusion, we propose an adjustable score for risk stratification of graft failure at differ-

ent post-transplantation times. AdGFS showed good discrimination and could be more useful

than scores ignoring onset of dnDSA, for decisions regarding more or less intensive surveil-

lance and treatment of the patients.

Supporting information

S1 Fig. Median (10th-90th percentiles) serum creatinine profiles over the first year post-

transplantation for the three identified clusters, A, B and C. Supplementary individuals can

be allocated to a cluster using a graphical approach in which the individual serum creatinine

values obtained at each visit are superimposed to the 10th-90th percentiles interval of serum

creatinine values obtained in the three clusters for the same times. Examples of predicted clus-

ter for three different patients are shown.
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