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A broad spectrum detection platform that provides sequence level resolution of target regions would have a significant impact
in public health, case management, and means of expanding our understanding of the etiology of diseases. A previously
developed respiratory pathogen microarray (RPM v.1) demonstrated the capability of this platform for this purpose. This newly
developed RPM v.1 was used to analyze 424 well-characterized nasal wash specimens from patients presenting with febrile
respiratory illness in the Washington, D. C. metropolitan region. For each specimen, the RPM v.1 results were compared against
composite reference assay (viral and bacterial culture and, where appropriate, RT-PCR/PCR) results. Across this panel, the RPM
assay showed $98% overall agreement for all the organisms detected compared with reference methods. Additionally, the
RPM v.1 results provide sequence information which allowed phylogenetic classification of circulating influenza A viruses in
,250 clinical specimens, and allowed monitoring the genetic variation as well as antigenic variability prediction. Multiple
pathogens (2–4) were detected in 58 specimens (13.7%) with notably increased abundances of respiratory colonizers (esp. S.
pneumoniae) during viral infection. This first-ever comparison of a broad-spectrum viral and bacterial identification
technology of this type against a large battery of conventional ‘‘gold standard’’ assays confirms the utility of the approach for
both medical surveillance and investigations of complex etiologies of illness caused by respiratory co-infections.
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INTRODUCTION
Emerging infections with nonspecific symptoms have enormous

impact on public health and global economics (e.g. severe acute

respiratory syndrome outbreaks, and avian (H5N1) influenza). Such

outbreaks emphasize the need for efficient simultaneous detection of

multiple organisms that will facilitate timely and judicious

implementation of countermeasures for outbreak containment,

treatment interventions, and case management [1]. Ideally, a system

capable of detecting all potentially relevant organisms is needed.

There are many technologies being developed with a view toward

addressing this issue, for example MasscodeTM multiplex RT-PCR

system [2], electrospray ionization mass spectrometry analysis of

PCR amplicons [3], LuminexH xMAPTM [4], and other microarray

based approaches [5,6,7,8,9,10,11]. While promising, these tech-

nologies have only been tested for detection of a few pathogens or

particular classes of pathogens simultaneously. In addition, these

technologies provide a very limited range of genetic resolution and

require additional testing for determination of detailed mutation or

strain-variations in detected pathogens. High density resequencing

arrays provide resolution of individual nucleotides in long target

sequences (hundreds to thousands of nucleotides) [12,13]. We have

demonstrated discrimination of mutations in targeted pathogens as

well as sensitivities and specificities that are similar to or improved

over those of other technologies based on a subset of the organisms

the microarray is designed to detect. The respiratory pathogen

microarray version 1 (RPM v.1), while not providing comprehensive

coverage of all potential causes of respiratory illness, targets a much

broader range of organisms (including bacteria and DNA and RNA

viruses) in a single test than other potential methods [14,15,16,17].

Our previous work on the RPM v.1 demonstrated detection of

pathogens individually at 101–103 genome copies using spiked

samples as well as select organisms in clinical samples. We have

also demonstrated the use of culture isolates of clinical samples in

which a more detailed analysis of strain distribution in influenza

viruses was possible [17]. Unfortunately, when directly using

clinical samples, only the successful attribution of flu samples to the

correct flu season was accomplished [15]. The accuracy of the

base calls from the array has been compared with only de novo

sequencing using culture isolates of clinical samples. Our studies

demonstrate that one of the challenges in developing multiplex

detection systems for a broad range of very different organisms is

the validation of the test results. Few samples are available that
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have been subjected to testing for a large number of diverse

pathogens. Similarly, the archived clinical specimens used in our

previous studies were originally only tested for a few select targets.

When multiple organisms were detected by the RPM v.1, it was

not always possible to perform confirmatory testing due to a lack of

available materials. This is a limitation of using archived samples

for validating newly developed multiplex assays as it is very time-

consuming and costly thus making multiple confirmatory assays in

clinical specimens very difficult to achieve.

In this study, we validate the potential of the respiratory

pathogen microarray (RPM v.1) for providing broad-spectrum

pathogen detection. A set of 424 clinical samples collected in the

Washington, DC metropolitan region from December 2004 to

February 2005 were subjected to a full panel of conventional

microbial analysis (culture and/or RT-PCR/PCR) as well as

analysis by the RPM v.1 microarray. This set of samples

demonstrated good agreement across the panel of tests making

authentication of multiple detection events by the RPM v.1

microarray possible. Many specimens from this set represented co-

infections providing a range of multi-target samples for analysis.

Here we use clinical samples rather than culture isolates and

demonstrate detailed analysis of strain distributions of influenza

viruses within a flu season as well as providing a phylogenetic

measure of circulating influenza strains. The accuracy of the base

calls was confirmed by comparison to de novo sequencing using

representative clinical samples. This comparison of a broad-

spectrum viral and bacterial identification technology with a large

battery of conventional ‘‘gold standard’’ assays represents more

rigorous testing of our approach for both medical surveillance and

investigation of complex etiologies than has been carried out

previously. This study provides a previously unavailable funda-

mental assessment of a multiple pathogen detection assay and

paves the way to improvements for a microarray-based platform

which would provide more comprehensive multiple pathogen

detection in a single test. The implications and limitations of the

assay are also discussed.

METHODS

Specimen collection and processing
Specimens were collected at six military treatment facilities in the

Washington, DC metropolitan region between December 2004

and February 2005. The demographics of the Washington, DC

metropolitan region have previously been shown to have a broad

age, gender, and geographic distribution [18]. Patients were

recruited from both emergency department and clinic settings,

after the nature and possible consequences of the study were

explained and informed consents were obtained from participants.

Patient samples were stored in CVM media (Hardy Diagnostics,

Santa Maria, CA) for viral culture processing, or stored in tryptic

soy broth with glycerol for bacterial analysis, and were shipped

frozen to destination laboratories for analysis. These samples were

collected, and this research has been conducted in compliance

with all applicable federal and international regulations governing

the protection of human subjects in research, under Naval Medical

Center protocols #B05LHOOOOO-018.

Microarray hybridization and analysis
The RPM v.1 design and specimen process protocols for

microarray analysis were described in detail in previous publica-

tions [14,15,16,17]. Microarray hybridization and processing were

carried out according to the manufacturer’s recommended

protocol (Affymetrix Inc., Santa Clara, CA) with the following

modifications: Purified PCR products were fragmented at 37uC

for 5 minutes, and then labeled with Biotin-N6-ddATP at 37uC
for 30 minutes. Hybridization was carried out in the hybridization

oven at 45uC and 60 rev/min for 4 hours. The image scanning

and processing to produce FASTA output file were performed as

previously described [16]. Final pathogen identification for the

RPM v.1 assay was performed using Computer-Implemented

Biological Sequence Identifier (CIBSI) Version 2.0 software [19],

an automatic pathogen identification algorithm (based on nucleic

acid sequence) that was developed and tested in detail in previous

studies [16,20].

Reference assays
Independent assays were performed using bacterial and viral

culture except for difficult-to-culture pathogens, for which PCR

methods were used. Additional assays, primarily conventional

and/or real-time PCR and RT/PCR, were performed on culture

negative samples to test for pathogens occurring at titers too low

for culture and/or loss of viability from transportation. Overall,

a specimen was defined as ‘‘positive’’ for a pathogen if the com-

posite assay results (culture and/or duplicate PCR assays) were

positive.

Viral analyses were performed by FOCUS Diagnostics, Inc.,

a CAP-certified reference laboratory (Cypress, CA) or by Air

Force Institute for Operational Health (Brooks City Base, TX).

Viral processing included: inoculation of sample, monitoring for

cytopathic effect (7–15 days of monitoring), sub-passage as

necessary and confirmatory testing as needed (i.e., direct mono-

clonal immunofluorescence assay, indirect immunofluorescence

assay or PCR).

Bacterial analyses were performed at the Naval Health

Research Center (NHRC, San Diego, CA) Respiratory Disease

Laboratory. Samples were then analyzed for the presence of

bacterial pathogens utilizing classic culture techniques with

selective agar plates. For all culture methods, if growth resembled

colonies appropriate to a targeted pathogen, confirmatory tests

(e.g., susceptibility disks, biochemical testing) were conducted to

verify the identity of the suspected colony.

Initial PCR analyses of difficult-to-culture pathogens (Bordetella

pertussis, Chlamydia pneumoniae/psittaci, coronavirus OC43 and 229E,

and Mycoplasma pneumoniae) were performed at the NHRC

Respiratory Disease Laboratory or FOCUS Diagnostics, Inc.

(Cypress, CA). Further species-specific RT/PCR amplification

assays were performed on culture-negative but RPM v.1-positive

samples with positive (culture-positive, RPM v.1-positive) and

negative (culture-negative, RPM v.1-negative) controls. These

assays were performed at NRL using previously published primers

(Table S1). In general, 25 ml PCR reactions were run on MyiQTM

real-time PCR detection systems (Bio-Rad, Hercules, CA, USA).

Conventional PCR assays were analyzed by electrophoresis

thorugh1.5% TAE agarose gels. Sequencing reactions were

performed by SequeTech (Mountain View, CA).

Sequence alignments for influenza-positive samples were per-

formed on HA3 hemagglutinin sequences using MagAlign function of

Lasergene version 6 (DNASTAR, Inc. Madison, WI). Rooted

phylogenetic trees were generated by using neighbor-joining

method in PAUP* 4.0 (Sinauer Associates, Inc., Publishers,

Sunderland, MA) and rooted to A/Panama/2007/99. Reliability

estimates were assessed using 1,000 bootstrap replicates.

RESULTS
A total of 424 samples were tested using RPM v.1 assays and

parallel reference assays (culture and/or PCR tests). The sensitivity

and specificity of the RPM v.1 assay were determined using

Multiple Pathogen Detection
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various prototype strains and clinical samples in a previous study

[15]. Table 1 shows the collective number of positive results

obtained using culture assays only, all reference assays, and RPM

v.1. Of the 424 samples, 269 (63.4%) were identified as positive for

influenza A by RPM v.1, compared to 176 (41.5%) by culture (30

to 42-day). Similarly, 46 (10.8%) were positive for influenza B

using RPM v.1, while culture identified 28 (6.6%) as influenza B-

positive. RPM v.1 identified 24 (5.6%) as positive for coronavirus

(229E or OC43), while PCR identified 28 (6.6%) samples as

coronavirus (229E and OC43) positive. Additional pathogens were

identified in low incidence–shown here as [RPM v.1 vs. culture],

including adenovirus-[9 (2.1%) vs. 2 (0.5%)], Streptococcus pneumo-

niae-[38 (8.9%) vs. 8 (1.9%)], and S. pyogenes-[13 (3.1%) vs. 9

(2.1%)]. RPM v.1 also identified type I and III parainfluenza (PIV)

virus, PIV1 (1, 0.2%), PIV3 (2, 0.5%), rhinovirus type 89 (2, 0.5%),

M. pneumoniae (3, 0.7%), and Neisseria meningitides (14, 3.3%) which

were not identified by culture. The RPM v.1 did not contain

resequencing tiles for PIV2 or Haemophilus influenzae, both of which

were detected by culture, PIV2 (2, 0.5%) and H. influenzae (7;

1.7%).

In this study, influenza virus was the most commonly identified

respiratory pathogen by all methods. With respect to all reference

assays, the RPM v.1 method showed a detection sensitivity of 99%

and a specificity of 96%, and an overall agreement of 98%

(Table 2) for influenza A virus. For influenza B, the RPM v.1

detection sensitivity and specificity were 98% with an overall

agreement of 97% (Table 2). All but three influenza culture-

positive specimens were also positive on microarrays. However,

two specimens identified as influenza A-positive by culture were

clearly detected as influenza B on microarrays. Real-time RT-

PCR later concurred with the microarray results and not culture

that these 2 specimens were indeed influenza B-positive. The

RPM v.1 also demonstrated excellent detection sensitivity,

specificity, and overall agreement with respect to the reference

assay results for other pathogens detected (Table S2–S3).

The capability of the RPM v.1 system for the identification of

complex mixtures of pathogens [15,16,17] were further demon-

strated through assessment of the incidence of co-infections in the

424 samples. Of these samples, 58 (13.7%) showed viral or viral/

bacterial co-infections as determined by RPM and/or culture

(Table 4). These co-infections were further verified using published

type-specific PCR assays and in-house specific PCR primers

(Table S1). It is well known that S. pneumoniae and N. meningitidis

colonize the mouth and upper respiratory system, so it is not

surprising that these were common co-infections found in clinical

samples. However, consistent with our previous study [15],

quantitative real-time PCR data showed that most of the S.

pneumoniae present in influenza-positive samples harbored a high

titer ($104 genome copies/ml) as compared to influenza-negative

samples (data not shown). The high titer bacteria present in these

clinical samples was possibly virally induced bacterial superinfec-

tion, as first suggested by the findings of Madhi et al. [21] and

Peltola and McCullers [22].

A critical aspect for influenza epidemiology is to track genetic

changes within influenza strains, since antigenic drift is the

mechanism by which influenza viruses escape from immunological

pressure induced by previous natural exposures and vaccinations.

Analysis of the key amino acids (deduced from nucleotide

sequence) in the HA3 sequences of all influenza A H3N2 positive

isolates revealed two major circulating strains: A/New York/258/

2005 (Group I) and A/Aichi/133/2005 (Group II) (Table 3).

Group I belongs to the A/California/7/2004 lineage and carries

signature amino acids substitutions in antigenic site D: valine to

isoleucine at position 226 (V226I) and serine to proline at position

227 (S227P). Group II showed an A/Wellington/1/04 lineage

signature amino acid substitution at position 227 (S227P), and

serine to asparagine at position 216 (S216N), the key amino acid at

antigenic site B. Surprisingly, the only outlier sample was identified

as A/Wyoming/3/03 (with IS)-like isolate. Amino acids position at

216 correspond to 188, 226 corresponds to 198, and 227

corresponds to 199 on the tiled prototype sequence (Table 3).

Using 15 representative samples, phylogenetic analysis compar-

ison between the sequences generated from RPM v.1 (68 to 96%

resolved bases) (Fig. 1A) and the sequences generated via

conventional sequencing (100% resolved bases) (Fig. 1B), showed

similar results, indicating that ambiguous base calls from the

microarray did not affect phylogeny determination for influenza A

viruses (Table 3, Fig. 1). The representative samples were the A/

Wyoming/3/03 (with IS)-like isolate and 14 other samples

randomly selected from the two groups. The resulting phyloge-

netic trees clearly confirmed that the influenza A/H3N2 positive

samples consisted of two major groups: A/New York/258/2005

(A/California/7/2004 lineage) and A/Aichi/133/2005 (A/Wel-

lington/1/04 lineage) with one A/Wyoming/3/03 (with IS)-like

isolate as an outlier. Further confirmation using all HA3 sequences

produced the same groups that were identified by tracking key

amino acid substitutions (data not shown). Both groups apparently

originated from the common ancestor A/Fujian/411/2002

Table 1. Pathogens identified for 424 matched specimens-
overall microarray vs. reference methods.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Organism
Culture
(+)

Ref�

(+)
RPM
v.1 (+)

Ref� (+),
RPM
v.1 (2)

Ref� (2),
RPM
v.1 (+)

Adenovirus 2 8 9 0 1

Coronavirus 28* 29 24 6 2

Influenza A 176 263 269 1 7

Influenza B 28 41 46 1 6

PIV 1 0 0 1 0 1

PIV3 0 0 2 0 2

Rhinovirus 0 1 2 1 1

M. pneumoniae 0 2 3 0 1

S. pneumoniae 8 40 38 3 1

S. pyogenes 9 13 13 0 0

Negative 176 52 59 0 7

Note: *Coronaviruses were identified through CAP-certified PCR method, Ref�:
reference assays-culture and/or RT-PCR/PCR positive.
doi:10.1371/journal.pone.0000419.t001..
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Table 2. Evaluation of the detection efficiency for influenza A
and B viruses in clinical samples

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Influenza A Influenza B

Ref�+ Ref�2 Ref �+ Ref�2

RPM v.1+ 262 7 40 6

RPM v.12 2 153 1 377

Sensitivity 99% 98%

Specificity 96% 98%

Overall agreement 98% 98%

Ref�: reference assays-culture and/or PCR
doi:10.1371/journal.pone.0000419.t002..
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lineage. The Wellington-like strains had longer distances than New

York-like strains suggesting that Wellington-like strains had more

genetic variations and they might be evolved from California

lineage. For influenza B, the results showed that all the isolates

were close to the B/Texas/3/2002 strain, which belongs to

B/Yamagata/16/88 lineage and was the circulating strain from

the 2004–2005 influenza season.

DISCUSSION
Despite the effort to establish completely blind independent testing

for every pathogen (viral and bacterial culture and, where appro-

priate, RT-PCR/PCR), differences in detection sensitivities of the

methods and transportation issues necessitates using further

confirmatory testing. This is because a measure of uncertainty is

introduced in the quality of the reference assays as the services of

a local reference laboratory could not be arranged (samples were

transported to San Diego, CA). Furthermore, although large

sample volumes are set aside for reference assays, a reduction in

detection sensitivity is still inevitable because these samples are

split and frozen before testing for each viral and bacterial agent in

separate cultures. To reduce this uncertainty, archived samples

stored at the time of the original testing are retested using real-time

RT-PCR/PCR in house as an additional reference method on

RPM-positive but culture-negative samples, using positive (positive

for both RPM and culture) and negative controls (negative for

both RPM and culture). Combining the results of all confirmatory

tests demonstrates an excellent concordance with RPM v.1

(Table 2 and Table S2–S3) with $98% overall agreement for all

the organisms detected. The false positive/negative rate is within

a reasonable range expected when testing any two methods such as

is seen when PCR assay methods are compared to culture methods

for all but two of the organisms. The detection sensitivity for

Coronaviruses and S. pneumoniae by RPM v.1 is lower compared to

Table 3. Nucleotides difference in hemagglutinin (HA3) genes identified by RPM v.1 from 250 influenza A/H3N2 isolates.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Position aa/nt* Amino acid and nucleotide substitution&

A/Fujian/411/02# A/Wyoming/3/03 A/Wellington/1/04 A/California/7/04

8 (36)/25 Val/GTT Val/GTT 1 Val/GTC 71 Val/GTT 166

28 (56)/83 His/CAT His/CAT 1 His/CAT 56 His/CAT 166

Tyr/TAT 15

39 (67)/116 Ile/ATA Val/GTA 1 Ile/ATA 71 Ile/ATA 167

81(109)/244 Arg/AGG Arg/AGG 1 Arg/AGA 64 Arg/AGG 161

Arg/AGG 3

100 (128)/299 Ala/GCT Thr/ACT 0 Thr/ACT 33 Thr/ACT 90

117 (145)/352 Lys/AAA Asn/AAC 1 Asn/AAC 62 Asn/AAC 144

131 (159)/393 Tyr/TAC Phe/TTC 1 Phe/TTC 65 Phe/TTC 159

149 (177)/446 Leu/TTG Leu/TTG 1 Leu/CTG 39 Leu/TTG 144

161 (189)/483 Ser/AGT Asn/AAT 1 Asn/AAT 67 Asn/AAT 152

188 (216)/564 Asn/AAT Asn/AAT 1 Ser/AGT 67 Asn/AAT 144

Ser/AGT 1

195 (223)/584 Val/GTA Val/GTA 1 Ile/ATA 59 Val/GTA 160

198 (226)/593 Val/GTC Ile/ATC 1 Val/GTC 61 Ile/ATC 43

199 (227)/596 Ser/TCC Ser/TCC 1 Pro/CCC 66 Pro/CCC 5

Note: * Amino acid (aa) and nucleotide (nt) positions correspond to the ‘‘prototype sequence’’ for hemagglutinin of influenza A/H3N2 (HA3) on RPM v.1; the number in
the parenthesis correspond to the position of full length HA3 sequence, & amino acid and its corresponding codon at each position were separated by ‘‘/’’. SNPs relative
to the prototype sequence are underlined. The numbers in column 4, 6, and 8 indicate the number of samples containing the amino acid substitution; #HA3 prototype
sequence was derived from A/Fujian/411/02 strain. A/New York/258/2005 (California-lineage) and A/Aichi/133/2005 (Wellington-lineage) represent two major groups
identified from all isolates. The one outlier was identified as A/Wyoming/3/03 (with IS)-like isolate.
doi:10.1371/journal.pone.0000419.t003..
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Table 4. Comparative results for specimens positive for
multiple pathogens.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Organism Culture (+) RPM v.1 (+)

Adenovirus+Influenza A N.C. 3

Coronavirus+Influenza A 4* 8

Coronavirus+N. meningitides - 1

Influenza A+Influenza B N.C. 3

Influenza+PIV N.C. 1

Influenza A+H. Influenzae 2 N.C.

Influenza A+M. pneumoniae N.C. 1

Influenza A+N. meningitides N.C. 7

Influenza A+S. pneumoniae 1 15

Influenza B+Adenovirus N.C. 1

Influenza B+Coronavirus N.C. 1

Influenza B+S. pneumoniae N.C. 5

Influenza B+S. pyogenes N.C. 3

N. meningitides+S. pneumoniae N.C. 2

Influenza A+N. meningitides+S. pneumoniae N.C. 2

Influenza A+Neisseria spp.+S. pneumoniae N.C. 1

Influenza B+Neisseria spp.+S. pneumoniae N.C. 1

Influenza A+Influenza B+S. pneumoniae N.C. 1

Influenza A+Influenza B+Coronavirus+S.
pneumoniae

N.C. 1

Rhinovirus+PIV+N. meningitides+S. pneumoniae N.C. 1

Note: *Coronaviruses were identified through CAP-certified PCR method, N.C.:
no coinfection found, samples may have identified as positive for one of the
organisms
doi:10.1371/journal.pone.0000419.t004..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..

Multiple Pathogen Detection

PLoS ONE | www.plosone.org 4 May 2007 | Issue 5 | e419



the PCR methods and indicates the need to improve and/or

optimize the primers sets used in the RPM v.1 assay for these

organisms. However, the specificity remains very high for all

organisms.

The ability to test for multiple pathogens is increasingly recogn-

ized as a necessity, especially in cases where differential diagnosis

of etiological agents is difficult. Broad-spectrum diagnostics are

particularly useful when different etiological agents that cause

similar symptoms (such as respiratory illness) co-circulate in the

same populations, or when co-infections of multiple organisms are

of potential importance to epidemiology, symptomology, or

treatment. However, it is difficult, cumbersome and costly to

detect multiple pathogens and co-infections using culture methods

or single test PCR methods. Currently, the reported coinfection

rate among respiratory pathogens varies (4.5–23%) due to the

different breadth and sensitivities of the detection methods [23].

Using RPM v.1 (and confirmed by real-time RT-PCR/PCR), this

study found that 58 (13.7%) of the tested samples showed viral or

viral/bacterial co-infections (Table 4). It is a challenge that will

only increase in difficulty as more organisms are covered to

establish the validity of any broad spectrum platform against

‘‘gold’’ standards as few existing archive samples have been tested

for such a large number of organisms.

In addition to pathogen detection, sequences obtained using the

RPM v.1 provide useful additional information for tracking strain

variation without additional testing. This study shows that the

majority of the clinical samples tested are positive for influenza A/

B virus (74%), which is not surprising for the samples collected

during the flu season. Comparison of conventional sequencing for

representative influenza A positive samples demonstrates the utility

of this information from RPM v.1. The isolates belong to two

major lineages of influenza A/H3N2 and all isolates are evolved

from the A/Fujian/411/02 strain, one component of the influenza

vaccine for 2004–2005 season. Antigenic drift selected by

vaccination apparently leads to new strains of influenza A/

H3N2 during 2004–2005. As anticipated, the RPM v.1 identifies

the A/California/7/2004 lineage as the dominant circulating

strain. The interesting feature is the emergence of Wellington

lineage strains at the same time in significant numbers, which are

of the same clade as the A/Wisconsin/67/2005 strain, a suggested

Figure 1. Rooted phylogenetic analysis of the hemagglutinin (HA3) genes of 15 representative influenza A/H3N2 isolates and reference strains.
(A) phylogenetic tree generated using sequences obtained from RPM v.1, (B) phylogenetic tree generated using de novo sequences from the same
set of the isolates. Reference sequences were obtained from GenBank and indicated in underlined, bold font. Numbers above branches indicate
bootstrap values from 1000 replicates. Note: ***-the A/Wyoming/3/03 (with IS)-like isolate. Bootstrap values above 50% were shown at branches.
Scale near the bottom of each panel relates the length of a branch to the number of nucleic acid substitutions.
doi:10.1371/journal.pone.0000419.g001
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vaccine component for 2006–2007 season. These results confirm

that the RPM v.1 is a useful tool itself not only for influenza

surveillance but also for predicting antigenic variation that will be

beneficial for vaccine candidate predication. Considering all of

these results, a high level of confidence in the general reliability of

the resequencing approach for simultaneous pathogen detection

and strain/variant identification directly from clinical samples has

been established.

The results show excellent correlation with reference assays, but

neither the RPM v.1 nor the tests conducted in the reference

assays represent complete coverage of all respiratory pathogens.

Consequently, no pathogen is detected for 14% of the specimens,

but the patients still exhibit flu-like symptoms. Furthermore, the

RPM v.1 is designed as a proof-of-concept microarray for the

detection of more than 20 common respiratory pathogens

encountered among military basic trainees with large section of

the chip dedicated to adenoviruses and influenza viruses, but in

this work it is used for surveying a slightly different population

within Washington, D.C. metropolitan region, which have a broad

age, gender, and geographic distribution and may have a different

mix of common pathogens. In addition, the major causes of the

common cold, rhinoviruses and enteroviruses, are under repre-

sented on the RPM v.1. Subsequently, only a few strains of the

recognized 99 strains of rhinovirus and none of the enteroviruses

can be detected by RPM v.1. The confirmatory assays do identify

several organisms (i.e. PIV2, H. influenzae) in clinical specimens

that the RPM v.1 is not designed to detect. Additionally,

preliminary testing of a new chip design with more thorough

coverage (.75 pathogens) identifies pathogens that the confirma-

tory assays detect but which the RPM v.1 cannot detect

(unpublished data). This indicates the potential of this technology

to reduce the number of samples not attributed to a tested

organism to a significantly smaller number than is currently

possible.

The major difficulties of the current technology are associated

with the primer selection for amplification of the chosen targets.

The design of the multiplex amplification strategy is a time

consuming effort. The current system remains somewhat vulner-

able to the rapid mutation of RNA viruses and each new

resequencing array design that increases the number of pathogens

would require recalibrating the multiplex primers mix. One

solution that already mitigates this is the grouping of pathogens

into subsets for amplifications that are recombined for chip

analysis. In the future, the more variable pathogens can be

partitioned into their own mix so that the performance for the

conserved pathogens i.e. bacteria are not affected when primers

are changed and only mixes that have targets added to them

require recalibration. Simplified redesign and alternative amplifi-

cation methods that provide the necessary sensitivity with more

comprehensive coverage are also currently being investigated.

Despite these limitations, the positive results of this study lead us to

believe the resequencing microarray is an excellent candidate for

the next generation pathogen detection tools and provide

a modern, broad-spectrum infectious disease surveillance solution

for critical decision makers, including healthcare providers,

patients, public health authorities, and framers of biosecurity

policy.
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