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Knocking Out Smoking and Pulmonary Hypertension with a K1

Althoughmany patients with chronic obstructive pulmonary disease
(COPD) develop mild pulmonary arterial hypertension (PAH),
believed to result from hypoxia-induced pulmonary vasoconstriction,
a small but significant fraction of patients with COPD develop more
severe PAH, often without clinical evidence of hypoxemia or out of
proportion to their degree of emphysema (1, 2). The mechanism for
the development of pulmonary hypertension in these patients is not
entirely clear, but pathologically, the pulmonary arterioles of these
patients demonstrate endothelial cell dysfunction (3), smooth muscle
cell hyperplasia, and arterial intimal fibrosis (4), features commonly
observed in other forms of primary or group I PAH. As a
consequence, these patients suffer significant morbidity and mortality,
often independent of the severity of their obstructive airway disease
(5). Why some patients with COPD develop significant PAH and the
mechanisms that drive this process are not completely understood.

The harmful effects of cigarette smoke are well known to not only
directly affect cells of the respiratory epithelium but also other cell types
in the lung, includingmesenchymal cells and vascular endothelial cells
(6). Indeed, the ability of toxins from cigarette smoking to traverse the

epithelial barrier and effect pulmonary and systemic vasculature is an
oft-cited mechanism for how smoking contributes to cardiovascular
disease, stroke, and other systemic diseases (7). Not surprisingly,
tobacco smoking is also a risk factor for PAH (8).

Dynamic vasoconstriction and vasodilation are mediated by the
contraction and relaxation of smoothmuscle andmesenchymal cells of
the vasculature, and like most muscle cells, they are mediated by the
opening and closing of various ion channels. From the initial discovery
of action potentials described by Hodgkin andHuxley in 1952, ion
channel behavior is one of the oldest andmost fundamental processes
that has been studied in cell andmolecular physiology. Patch clamp
recordings, invented by Neher and Sakmann, provided a technique to
study electrophysiology at the level of individual ion channels and cells.
Today, we know the human genome codes for more than 300 different
ion channels, whose function are not only limited to electrochemical
homeostasis or neuronal communication but also to diverse functions
including cell proliferation, differentiation, mitochondrial function,
cellular metabolism, DNA repair, and cell–cell communication.
Beyondmuscle contraction, ion channels play a role in organ
development, repair and regeneration, aging, and cellular senescence.

Potassium (K1) channels themselves have been in eukaryotic,
bacterial, and archaeal existence since before the evolution of
neuronal signaling (9). They are found in nearly all organisms and
cell types (10). In humans, they are often classified by their structure
(for example, inward-rectifying K1 channels have two
transmembrane domains, whereas others have six) and gating
mechanisms, where they may either remain constitutively open to
help maintain resting membrane potential or open only in response
to changes in voltage (often designated Kv) or calcium. Abnormalities
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in K1 channels have been implicated in PAH; indeed, PAH has been
associated with genetic defects inABCC8 and KCNK3 (11, 12).
KCNK3, which is also called TASK1, belongs to a family of tandem-
pore domain K1 channels that maintain resting membrane potential
and can be inhibited by local anesthetics, including lidocaine and
bupivacaine. Endothelin-1 and serotonin, which are elevated in PAH,
also inhibit KCNK3 function (13). Loss of KCNK3 function by these
mediators contributes to PAH by promoting vasoconstriction and
pulmonary artery smooth muscle proliferation (14). Dysfunction of
voltage-gated K1 channels, including Kv1.5 (KCNA5), has also been
implicated in PAH. PAH is associated with single-nucleotide
polymorphisms inKCNA5 (15), and loss of Kv1.5 function in
pulmonary artery smooth muscle cells contributes to increased
cytosolic Ca21 concentration and smooth muscle contraction.

In this issue of the Journal, Sevilla-Montero and colleagues
(pp. 1290–1305) examine the role of Kv7.4 (KCNQ4) in cigarette-
smoking–induced pulmonary vascular remodeling (16).Members of the
Kv7 family are also highly expressed in vascular smoothmuscle, andKv7.
4 has been implicated in systemic hypertension (17). Sevilla-Montero and
colleagues show that cigarette smoking contributes to pulmonary arterial
remodeling via induction of arterial smoothmuscle and adventitial
fibroblast senescence. They then show that cigarette smoking contributes
to loss of Kv7.4 expression, and this leads to impaired vasodilation
(Figure 1). They also interestingly observed impaired vasoactive
constriction as well in response to serotonin. Cigarette-induced
impairment in vasoactivity and loss of Kv7.4 were later confirmed in
animal models and finally in human tissue of patients with COPD.

Although these studies provide a comprehensive and elegant
analysis of how loss of Kv7.4 might contribute to cigarette-induced
pulmonary vascular remodeling and PAH, many questions remain.
Voltage-gated K1 channels like Kv7.4 allow cells to repolarize and are
thus critical for smooth muscle relaxation; loss of Kv7.4 would thus be
expected to contribute to PAH through impaired vasodilation.
However, cigarette smoke was also shown by the authors to impair
vascular responsiveness to vasoconstricting agents as well, and
whether this may be due to loss of Kv7.4 is unclear. It is increasingly
recognized that PAH is characterized by not just impairment in
vascular relaxation but also in defects of overall vascular
responsiveness to both vasodilating and vasoconstricting agents. How
might loss of Kv7.4 cause impairment in vasoconstriction? Could
cigarette smoking induce gain (or loss) of function of other ion
channels that results in impaired vascular responsiveness?

In the study by Sevilla-Montero and colleagues, cigarette smoke
exposure was also observed to contribute to arterial smooth muscle
and fibroblast senescence (16), but how it does so and whether it is
dependent on loss of Kv7.4 is not known. The effect of K

1 channel
opening is best thought to result in cellular repolarization, and K1

ions themselves are not often considered secondmessengers in
signaling. However, the importance of K1 channels in diverse cellular
processes suggests that their actions likely induce a variety of
downstream signaling effects, only some of which have been
explored. K1 channels, including Kv7.4, are known to locate not just
on plasmamembrane but also in organelles including mitochondria
(18), affecting cellular metabolism, aging, and survival. Different
classes of K1 channels, many of which are expressed simultaneously
in a given cell, also offer different gating thresholds and
electrochemical properties; how they integrate in a systems-based
fashion to regulate diverse processes such as cell proliferation,
differentiation, senescence, and metabolism remain a mystery.

The function of K1 channels has historically been focused on
neurons, cardiac muscle, and systemic vasculature, but accumulating
evidence has shown alterations in K1 channel biology to be important
in asthma, COPD, and pulmonary fibrosis (19, 20). Specificity of
different K1 channels and their expression on cell surfaces lend
themselves to easy therapeutic targeting by agonists and antagonists.
The work by Sevilla-Montero and colleagues leads to a long line of
accumulating evidence of the importance of K1 channels in not just
PAH but also a variety of lung diseases and offers unique opportunities
for targeting specific K1 channels as a novel line of therapeutics.�
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Figure 1. Schematic representation of the effects of cigarette smoking on Kv7.4 expression and vascular remodeling. SASP= senescence-associated
secretory phenotype.
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Time to Trust Transbronchial Cryobiopsy in Identification of Usual
Interstitial Pneumonia Pattern?

Usual interstitial pneumonia (UIP) refers to a morphologic pattern
characterized by a combination of 1) patchy interstitial fibrosis
sharply demarcated from areas of normal lung (“patchy fibrosis”), 2)
temporal heterogeneity of fibrosis characterized by scattered
fibroblastic foci in a background of dense acellular collagen, and 3)
architectural derangement mainly represented by cysts covered by
cells that usually express bronchiolar stem cells markers
(honeycombing) (1, 2). The patchy interstitial process often emanates
from the subpleural zones and septa or, occasionally, from one edge
of an airway. Therefore, the distribution of the lesion is better
described as periacinar instead of perilobular (1) (Figure 1). UIP
pattern is the histopathologic background of idiopathic pulmonary
fibrosis (IPF) but it may be observed in biopsies obtained from
subjects affected by a variety of other entities (collagen vascular
diseases, chronic hypersensitivity pneumonitis, etc.). Ancillary

Figure 1. Usual interstitial pneumonia pattern. The boundaries of a
secondary pulmonary lobule (marked by arrows) with fibrosis beneath
the pleura and along the interlobular septa are shown. Tongues of fi-
brosis, however, also run along the periphery of an acinus (stars) sur-
rounding a small bronchiole (arrowhead). An adjacent lobule is
occupied by honeycombing (hematoxylin and eosin, low power).
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