Studies of the genus Enchodelus Thorne, 1939 (Nematoda, Nordiidae) from Arctic polar deserts. I. Species with long odontostyle: E. makarovae sp. n. and E. groenlandicus (Ditlevsen, 1927) Thorne, 1939, with an identification key to the species of the E. macrodorus group

Milka Elshishka ${ }^{1, \dagger}$, Stela Lazarova ${ }^{2,7}$, Vlada K. Peneva ${ }^{3,5}$
I Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences
\dagger urn:lsid:zoobank.org:author:79DCEFF6-47EB-41DF-ABE3-69213F54806B
\ddagger urn:lsid:zoobank.org:author:83C802AD-6631-4008-8E2E-3B8F3ACA1F5C
§ urn:lsid:zoobank.org:author:D066DD81-0D99-4117-835C-34CD35BE6F41
Corresponding author: Vlada K. Peneva (vpeneva@ecolab.bas.bg)

Academic editor: Sergei Subbotin | Received 15 June 2012 | Accepted 26 July 2012 | Published 30 July 2012

urn:lsid:zoobank.org:pub:660A1144-1BCA-4D4B-9589-189B73CA77D7
Citation: Elshishka M, Lazarova S, Peneva VK (2012) Studies of the genus Enchodelus Thorne, 1939 (Nematoda, Nordiidae) from Arctic polar deserts. 1. Species with long odontostyle: E. makarovae sp. n. and E. groenlandicus (Ditlevsen, 1927) Thorne, 1939, with an identification key to the species of the E. macrodorus group. ZooKeys 212: 1-23. doi: 10.3897/zookeys.212.3464

Abstract

Two nematode species of the genus Enchodelus Thorne, 1939, one new and one known from Arctic polar deserts were studied. Enchodelus makarovae sp. n. is an amphimictic species, characterised by females with body length of $1.57-2.00 \mathrm{~mm}$, lip region $15-17.5 \mu \mathrm{~m}$ wide, amphid duplex, odontostyle $38-43 \mu \mathrm{~m}$ long or 2.3-2.8 times lip region diam. Odontophore with flanges, 1.2-1.4 times as long as odontostyle; pharynx length 320-377 $\mu \mathrm{m}$, pharyngeal expansion 113-130 $\mu \mathrm{m}$ long or $32-37 \%$ of total pharynx length; female genital system amphidelphic, uterus tripartite, pars refringens vaginae with two trapezoid sclerotisations, vulva a transverse slit ($\mathrm{V}=45-51 \%$); tail bluntly conoid ($25-35 \mu \mathrm{~m}, \mathrm{c}=45.8-70.3, \mathrm{c}^{\prime}=0.6-0.9$ in females, and $29-33 \mu \mathrm{~m}, \mathrm{c}=46.4-58.9, \mathrm{c}^{\prime}=0.7-0.8$ in males). Males with $65-74 \mu \mathrm{~m}$ long spicules and $10-12$ spaced ventromedian supplements. Additional information for Enchodelus groenlandicus is provided, this being a new geographic record for the Putorana Plateau, Russian Arctic.

Keywords

Taxonomy, morphology, morphometrics, Nematoda, cold desert, new geographic record

Introduction

Currently, the genus Enchodelus Thorne, 1939 (Nordiidae, Pungentinae) contains 28 species distributed mainly in the northern hemisphere (Peña-Santiago et al. 2005); only one species (E. signyensis Loof, 1975) has been described from Antarctica. The members of the genus are common at high altitudes (1260-4400 m a.s.l) and latitudes, frequently associated with mosses and rock vegetation (Ahmad and Jairajpuri 1980, Eliava and Eliashvili 1990, Peneva et al. 2009). According to their feeding habits, representatives of the genus Enchodelus are attributed to the omnivorous trophic group (Yeates et al. 1993).

Ahmad and Jairajpuri (1980) provided a revision of the genus and grouped species into five subgenera (Enchodelus, Paraenchodelus, Heterodorus, Rotundus, Nepalus) on the basis of tail shape, odontostyle length, odontophore morphology and presence of a peculiar chamber in the female reproductive system. Recently, Guerrero et al. (2007a, 2008) divided the genus into three groups, based on tail shape and odontostyle length: species with long odontostyle ($>35 \mu \mathrm{~m}$) and rounded tail; species with medium size odontostyle ($<35 \mu \mathrm{~m}$) and rounded tail, and species with conical tail. The subgenera of Enchodelus are also not recognized by Andrássy (2009a) and species with conical tail are considered as belonging to the genus Heterodorus Altherr, 1952 (Andrássy 2011).

Here we provide data on two species of Enchodelus which belong to the first group with long odontostyles recovered from Arctic polar deserts.

Materials and methods

Soil samples were collected by Dr Olga Makarova (Institute for Problems of Ecology and Evolution, Russia) from two arctic regions, i.e. Bol'shevik Island, Severnaya Zemlya Archipelago, representing a zonal type of landscape (polygonal polar desert) and the highlands of Putorana Plateau, southern Taymyr, representing an altitudinal analogue of the zonal polar deserts, i.e. a nival desert. Nematodes were extracted from $1-3 \mathrm{~g}$ of soil by using a Baerman funnel method for 48 hours exposition, killed by gentle heat and fixed in 4% formalin.

Nematodes were processed in anhydrous glycerin by a Seinhorst method (1959) and mounted on permanent slides. Drawings and photographs were taken using an Olympus BX51 compound microscope. Images were taken with a ColorView IIIu camera and Cell^P software (Olympus Soft Imaging Solutions Gmbh). Measurements were made using an Olympus BX 41 light microscope with a drawing tube and digitizing tablet (CalComp Drawing Board III, GTCO CalCom Peripherals, Scottsdale, AZ, USA) and Digitrak 1.0 f computer program (Philip Smith, John Hutton Institute), Dundee, UK). Identification key was performed by DELTApackage software (Dallwitz 1974).

Taxonomy

Enchodelus makarovae sp. n.

urn:lsid:zoobank.org:act:FFC630CE-A71F-4361-A611-8CA1862AE381
http://species-id.net/wiki/Enchodelus_makarovae
Figs 1-6

Material examined. Eight females, six males and two first stage juveniles collected from Bol'shevik Island, Severnaya Zemlya Archipelago, Russian Arctic (Table 1).

Measurements. See Table 2.
Description. Female. Body slightly ventrally curved after fixation, rarely adopting an open C shape. Cuticle smooth when viewed under light microscopy, composed of several layers with optically different appearance. Cuticle $2-4 \mu \mathrm{~m}$ thick at postlabial region, $2-3 \mu \mathrm{~m}$ - at mid body and $8-11 \mu \mathrm{~m}$ on tail, posterior to anus. Subcuticle clearly striated. Lateral chord 6-9 $\mu \mathrm{m}$ wide, occupying 10-12 \% of mid body diam. Lip region with slightly angular appearance, offset by depression, 2.3-3.1 times as broad as high. Labial and cephalic papillae distinct. Amphid duplex, amphidial fovea cup-shaped, opening at level of depression. Cheilostom almost cylindrical with a narrower mid-section. Odontostyle 2.3-2.8 times longer than lip region diam. or $2.0-2.6 \%$ of total body length. Odontophore 1.2-1.4 times as long as odontostyle, with flanges. Guiding ring double, located at 1.4-2.0 lip region diam. from anterior end, collar (distance between the first and second guiding ring) $3 \mu \mathrm{~m}$. Pharynx attains the full width at $65-70 \%$ of its length from anterior end. Pharyngeal expansion 113-130 $\mu \mathrm{m}$ long or 32-37\% of total pharynx length. Pharyngeal characters are presented at Table 3. Nuclei of dorsal glands $4.5-5 \mu \mathrm{~m}$ diam. and ventrosublateral $1 \mu \mathrm{~m}$ and $3-4 \mu \mathrm{~m}$ of the first and second pair, respectively. Cardia small, rounded to elongate conoid. Genital system amphidelphic, both branches almost equally developed, anterior 264-310 $\mu \mathrm{m}$, posterior $240-310 \mu \mathrm{~m}$. Ovaries large, 206-218 $\mu \mathrm{m}$ long; oocytes first in two or more rows, then in one row. Oviduct 168-172 $\mu \mathrm{m}$ long, 2.1-2.4 times body diam., pars dilatata oviductus well developed. Sphincter between oviduct and uterus distinct. Uteri long, anterior and posterior uterus with almost equal length ($267.6 \pm 56.3(220-346) \mu \mathrm{m}, \mathrm{n}=5$ and $284.0 \pm 25.5(256-332) \mu \mathrm{m}, \mathrm{n}=6)$, or 2.9-4.9 times corresponding body diam. Uterus tripartite, consisting of a wider proximal portion with distinct lumen ($146 \mu \mathrm{~m}, \mathrm{n}=1$), followed by a slender median portion ($118,112 \mu \mathrm{~m}, \mathrm{n}=2$) and ending with a well developed spheroid pars dilatata distalis uteri. Vagina extending inwards $27-42 \mu \mathrm{~m}$ or $38-59 \%$ of body diam., pars proximalis 24×26 $\mu \mathrm{m}(\mathrm{n}=1)$, pars refringens with two trapezoid sclerotisations, with a combined width of $20-21 \mu \mathrm{~m}$ and length $6-8 \mu \mathrm{~m}(\mathrm{n}=2)$, pars distalis $5-7 \mu \mathrm{~m}, \mathrm{n}=4$. Two females with 3 and 4 uterine eggs, respectively, measuring $37-45 \times 98-106 \mu \mathrm{~m}$. Prerectum variable in length, 2.1-3.5 times the anal body width; rectum 0.6-1.1 anal body diam. long. Tail bluntly conoid with elongated saccate bodies present mostly along ventral side. Hyaline part of tail $8-12 \mu \mathrm{~m}$ thick or $24-47 \%$ of total tail length. Two pairs of subterminal caudal pores, one subdorsal, another lateral.

Table I. Distribution of Enchodelus makarovae sp. n. and E. groenlandicus in Arctic polar deserts.

Locality and samples	Type of landscape and vegetation	Abbreviation	Nematode species
Bol'shevik Island Severnaya Zemlya Archipelago $78^{\circ} 12^{\prime} \mathrm{N}$, $103^{\circ} 17^{\prime} \mathrm{E}$	Polygonal polar desert		Enchodelus makarovae sp. n.
Site 1 Collected on 09.08.1997			
Sample № 2	Alopecurus alpinus Sm.	AA	$3 ¢ 10$
Sample № 3	Gymnomitrium coraloides Nees.	GC	$1+10$
Site 2 Collected on $13.08 .2000$			
Samples № 6, 8 and 9	G. coraloides and Lopadium sp.	GC \& L	493 ¢
Sample № 13	Black crust with a small tuft Deshampsia borealis (Trautv.) Roshev.	DB	$1{ }^{\text {® }}$
Sample № 7	Black crust	BC	2 J,
Putorana Plateau Taymyr Peninsula $69^{\circ} 09^{\prime} \mathrm{N}, 91^{\circ} 52^{\prime} \mathrm{E}$	Polygonal nival desert		Enchodelus groenlandicus
$\begin{aligned} & 750 \mathrm{~m} \text { a.s. } \\ & \text { Collected on } 3.08 .1996 \end{aligned}$			
Sample № 7	Old D. borealis tuft with G. corralioides and Cladonia sp.	DB, GC, C	3 9
Samples № 9 and 10	Large green D. borealis tuft	DB,	7 아

Male. General morphology similar to that of the female, except for genital structures. Arrangement of pharyngeal gland nuclei is presented at Table 3. Lateral chord very narrow ($4-6 \mu \mathrm{~m}$) occupying $10-12 \%$ of mid body diam. with scattered glandular bodies. Reproductive system diorchic, composed of two opposed testes, anterior 311, $319 \mu \mathrm{~m}(\mathrm{n}=2)$ and posterior $275,285 \mu \mathrm{~m}(\mathrm{n}=2)$ long. Sperm cells spindle-shaped, measuring $6-9 \times 2 \mu \mathrm{~m}$. Spicules dorylaimoid, 1.5-1.7 times anal diam. long, lateral accessory pieces paired, more or less cylindrical with bifurcate end, measuring 16-18 $\times 3 \mu \mathrm{~m}(\mathrm{n}=2)$. Ventromedian supplements $10-12$ in number preceded by one adcloacal pair of papillae located at $8-11 \mu \mathrm{~m}$ apart from cloacal opening, $0-1$ in the range of spicules; moderately developed postcloacal papilla present. Prerectum 3.3-4.0 anal body diam. long. Tail bluntly conoid, ventrally almost straight, dorsally convex with broadly rounded terminus, two pair of caudal pores.

Juveniles. Two first stage juveniles were recovered. Body almost straight. Lip region flat, continuous with the body, genital primordium $11 \mu \mathrm{~m}$ long, tail conical with long central peg, 30, $33 \mu \mathrm{~m}$ long.

Diagnosis and relationships. The new species E. makarovae sp. n. is an amphimictic species distinguished by females with body length of $1.57-2 \mathrm{~mm}$, lip
Table 2. Morphometrics of Enchodelus makarovae sp. n. from Bol'shevik Island, Severnaya Zemlya. All measurements, unless indicated otherwise, are in $\mu \mathrm{m}$.

Characters		GC\&L		GC		AA		DB	Range		BC
	Holotype	Female	Male	Female	Male	Female	Male	Male	$\begin{gathered} \text { Female } \\ n=8 \end{gathered}$	$\begin{gathered} \text { Male } \\ \mathrm{n}=6 \end{gathered}$	$\underset{\substack{\mathbf{J}_{1} \\ \mathbf{n}}}{ }$
L (mm)	2.00	1.76, 1.79, 1.62	1.70; 1.67; 1.79	1.85	1.71	1.64,1.57,1.85	1.77	1.49	$\begin{gathered} 1.76 \pm 0.1 \\ (1.57-2.00) \\ \hline \end{gathered}$	$\begin{gathered} 1.69 \pm 0.1 \\ (1.49-1.79) \end{gathered}$	0.62, 0.53
a	28.3	33.1, 25.6, 21.6	28.1, 26.5, 29.2	24.2	29.8	22.6,23.1, 23.1	23	19.6	$\begin{gathered} 25.2 \pm 3.8 \\ (21.6-33.1) \end{gathered}$	$\begin{gathered} 26.0 \pm 3.9 \\ (19.6-29.8) \end{gathered}$	24.7, 25.7
b	5.6	5.7, 5.3, 4.4	5.4, 4.4, 5.3	4.9	4.9	5.1, 4.7, 5.3	5.2	4.5	$\begin{gathered} 5.1 \pm 0.4 \\ (4.4-5.7) \end{gathered}$	$\begin{gathered} 4.9 \pm 0.4 \\ (4.4-5.4) \end{gathered}$	3.9, 3.4
c	70.3	69.9, 60.5, 45.8	58.9, 54.9, 55.8	59.7	51.7	54.1, 49.6, 61.2	53.0	46.4	$\begin{gathered} 61.1 \pm 7.6 \\ (45.8-70.3) \end{gathered}$	$\begin{gathered} 53.4 \pm 4.2 \\ (46.4-58.9) \\ \hline \end{gathered}$	11.4, 9.8
$c^{\text {c }}$	0.6	0.6, 0.7, 0.9	0.7, 0.7, 0.8	0.7	0.8	0.8, 0.9, 0.6	0.7	0.8	$\begin{aligned} & 0.7 \pm 0.1 \\ & (0.6-0.9) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.7 \pm 0.1 \\ & (0.7-0.8) \\ & \hline \end{aligned}$	2.9, 3.1
V \%	51	49, 51, 48	-	49	-	48, 48, 45	-	-	$\begin{gathered} 48.6 \pm 1.8 \\ (45-51) \end{gathered}$		-
Lip region width	17	17, 17, 16	16, 17, 17.5	17.5	16	17, 16, 15	17	16	$\begin{aligned} & 16.6 \pm 0.8 \\ & (15-17.5) \end{aligned}$	$\begin{gathered} 16.7 \pm 0.5 \\ (16-18) \end{gathered}$	9, 9
Odontostyle	40	41, 41.5, 38	44, 39, 44	43	44	38.5, 42, 41	44.5	43	$\begin{gathered} 40.7 \pm 1.6 \\ (38-43) \end{gathered}$	$\begin{aligned} & 42.9 \pm 2.1 \\ & (39-44.5) \end{aligned}$	10, 9.5
Replacement odontostyle	-	-	-	-	-	-	-	-			12,11
Odontophore	54	49, 49.5, 50	49, 50, 53	57.5	52	47, 53, 57	52	54	$\begin{aligned} & 52.3 \pm 3.9 \\ & (47-57.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 51.3 \pm 1.6 \\ & (49-54) \\ & \hline \end{aligned}$	-
Spear	95	90, 91, 89	93, 89, 96	100.5	96	85.5, 95, 99	96	97	$\begin{gathered} 93 \pm 5.1 \\ (85.5-100.5) \end{gathered}$	$\begin{gathered} 94.3 \pm 2.9 \\ (89-97) \\ \hline \end{gathered}$	-
Anterior end guiding ring	26	24, 24, 24	22, 25, 28	26	27	25, 28, 28	26	28	$\begin{gathered} 25.7 \pm 1.8 \\ (24-28) \\ \hline \end{gathered}$	$\begin{gathered} 25.9 \pm 2.0 \\ (22-28) \\ \hline \end{gathered}$	5.5, 6.0
Neck length	355	320, 336, 366	318,384, 342	377	354	321,341,349	340	333	$\begin{gathered} 345.7 \pm 20.3 \\ (320-377) \end{gathered}$	$\begin{gathered} 344.9 \pm 22.3 \\ (318-384) \end{gathered}$	160, 155
Width at pharynx base	63	51, 63, 69	56, 62, 58	66.5	60	66, -, 69	72	70	$\begin{gathered} 64.0 \pm 6.1 \\ (51-69) \end{gathered}$	$\begin{gathered} 62.9 \pm 6.6 \\ (56-72) \\ \hline \end{gathered}$	25, 22

Characters		GC\&L		GC		AA		DB	Range		BC
	Holotype	Female	Male	Female	Male	Female	Male	Male	Female $\mathbf{n = 8}$	Male $\mathbf{n = 6}$	$\mathbf{J}_{\mathbf{1}}$ $\mathbf{n = 2}$
Width at mid-body	71	$54,70,75$	$61,63,62$	77	58	$73,68,80$	77	76	70.9 ± 8.06 $(54-80)$	66.0 ± 8.3 $(58-77)$	25,21
Prerectum length	138	$87,-, 139$	$-, 185,132$	126	163	$140,-, 138$	-	163	128 ± 20.6 $(87-140$	160.7 ± 21.7 $(132-185)$	$53,-$
Rectum length	40	$23,47,40$	-	49	-	$41,-, 42$	-	-	40.3 ± 8.3 $(23-49)$		$10,-$
Tail	29	$25,30,35$	$29,31,32$	31	33	$30,32,30$	33	32	29.2 ± 3.3 $(25-35)$	31.7 ± 1.6 $(29-33)$	55,55
Spicules	-	-	$65,73,67$	-	71	-	74	70		70.1 ± 3.5 $(65-74)$	
Ventromedian supplements	-	-	$10,12,10$	-	11	-	12	11		$10-12$	

Figure I. Enchodelus makarovae sp. n. Female: A Anterior region C Entire body D Pharyngeal bulb, dorsal and ventrosublateral glands E, F Vulval region. Male: B Entire body. Scale bars: A, D, E, F 50 $\mu \mathrm{m}$; B, C 0.5 mm .

Figure 2. Enchodelus makarovae sp. n. A, B Female: A Anterior genital branch B Neck region Male: C, D, E Posterior ends. Scale bars: A-E $50 \mu \mathrm{~m}$.

Figure 3. Enchodelus makarovae sp. n. A-C Female: Variability of female tail. Scale bars: A-C $50 \mu \mathrm{~m}$.
region $15-17.5 \mu \mathrm{~m}$ wide, amphid duplex, odontostyle $38-43 \mu \mathrm{~m}$ long or 2.3-2.8 times lip region diam. Odontophore with flanges, $1.2-1.4$ times as long as odontostyle, pharynx length 320-377 $\mu \mathrm{m}$, pharyngeal expansion 113-130 $\mu \mathrm{m}$ long or $32-37 \%$ of total pharynx length, female genital system amphidelphic, uterus tripartite, pars refringens vaginae with two trapezoid sclerotisations, vulva transverse slit, $\mathrm{V}=45-51 \%$, tail rounded conoid $\left(25-35 \mu \mathrm{~m}, \mathrm{c}=45.8-70.3, \mathrm{c}^{\prime}=0.6-0.9\right.$ in females, and $29-33 \mu \mathrm{~m}$, $\mathrm{c}=46.4-58.9, c^{\prime}=0.7-0.8$ in males). Males with $65-74 \mu \mathrm{~m}$ long spicules and $10-12$ spaced ventromedian supplements.

Based on tail morphology and odontostyle length this species can be assigned to the E. macrodorus - group as defined by Guerrero et al. (2008). This group includes E. babakicus Pedram et al. 2009, E. carpaticus Ciobanu et al., 2010, E. distinctus Ahmad \& Jairajpuri, 1980, E. groenlandicus (Ditlevsen, 1927) Thorne, 1939, E. macrodorus (de Man, 1880) Thorne, 1939, E. microdoroides Baqri \& Jairajpuri, 1974 and E. saxifragae Popovici, 1995. This homogeneous group is characterised by the presence of a rather long odontostyle ($>35 \mu \mathrm{~m}$), odontophore with well developed flanges, uterus tripartite (except for E. distinctus, which has been described with a bipartite uterus (Ahmad and Jairajpuri 1980) and hemispheroid to rounded conoid tail.

In having a lip region set off by a depression the new species is most similar to E. carpaticus, E. groenlandicus, E. macrodorus and E. microdoroides. However, it can be separated from E. carpaticus by its shorter pharyngeal expansion (113-130 vs 136-167 $\mu \mathrm{m}$), different arrangement of pharyngeal glands, DN and S 2 N situated more posteriorly ($\mathrm{DN}=69-72 \%$ vs $\mathrm{DN}=63-65 \%, \mathrm{~S} 2 \mathrm{~N}=86-89 \%$ vs $\mathrm{SN}=82-86 \%$, respectively), absence of dorsal cell mass near cardia vs presence, ovaries large (206-218 $\mu \mathrm{m}$ long) vs short ($61-155 \mu \mathrm{~m}$ long), prerectum shorter ($87-140$ vs $164-272 \mu \mathrm{~m}$ or $2.1-3.5$ vs 4.1-6.6 anal body diam), saccate bodies present $v s$ absent, males abundant $v s$ absent (in

Figure 4. Enchodelus makarovae sp. n. A-J Female: A-C Variability of anterior region D Amphidial fovea \mathbf{G} Entire body $\mathbf{E}, \mathbf{F}, \mathbf{J}$ Variability of tail with saccate bodies \mathbf{H}, \mathbf{I} Tail end $\mathbf{K}-\mathbf{M}$ Juveniles \mathbf{K} Anterior region \mathbf{L} Genital primordium \mathbf{M} Tail. Scale bars: A-D H-M $50 \mu \mathrm{~m} ; \mathbf{G} 1 \mathrm{~mm}, \mathbf{E}, \mathbf{F} 10 \mu \mathrm{~m}$.

Figure 5. Enchodelus makarovae sp. n. Female A Pharyngeal bulb, dorsal and ventrosublateral glands B Cardia C, D Pars dilatata oviductus and ovarium E Pars dilatata distalis uteri $\mathbf{F}-\mathbf{G}$ Vulval region. Scale bars: A-G $50 \mu \mathrm{~m}$.

Figure 6. Enchodelus makarovae sp. n. A-J Male: A-C Anterior ends D Amphidial fovea E Entire body \mathbf{F} Sperm cells in testis \mathbf{G} Lateral piece \mathbf{H}, \mathbf{I} Tail ends \mathbf{J} Tail with saccate bodies. Scale bars: A-D, F-J $50 \mu \mathrm{~m}$; E 1 mm .

Table 3. Pharyngeal characters of E. makarovae sp. n. and E. groenlandicus. For abbreviations see (*) Loof and Coomans (1970) and ${ }^{(* *)}$ Andrássy 1998. All data are given in percent.

	E. makarovae sp. n.						E. groenlandicus	
	Bol'shevik Island						Putorana Plateau	
Characters	GC\&L		GC		AA	DB	DB,	DB, GC, C
	females	males	female	male	females	male	females	females
DN=D	69, 70,70	69, 67, 70	71	70	72, 71	69	64-71 (n=7)	62, 60
$\mathrm{S}_{1} \mathrm{~N}_{1}$ *		76	77				75-80 (n=5)	72, 70
$\mathrm{S}_{1} \mathrm{~N}_{2}{ }^{*}$			78				76	
$\mathrm{S}_{2} \mathrm{~N}_{1}$ *	86, 87, 86	85, 87, 87	87		87, 88	86	85-87 (n=7)	84, 81
$\mathrm{S}_{2} \mathrm{~N}_{2}$ *	87, 87, 86	84, 87, 87	88		88, 89	86	85-88 (n=7)	84, 81
AS, **		18	21				15-35 (n=5)	26, 24
$\mathrm{AS}_{2}{ }^{* *}$			26				17	
$\mathrm{PS}_{2}{ }^{* *}$	55, 57, 53	53, 60, 56	55		55, 58	55	52-60 (n=7)	56, 54
PS, **	59, 56, 52	49, 59, 55	56		56, 61	54	53-60 (n=7)	58,53

E. carpaticus males not found, but sperm cells were observed in one female from a Romanian population (Ciobanu et al. 2010)); it should be mentioned also that there are differences in average values of odontostyle (av. $40.7(38-43 \mu \mathrm{~m}) ~ v s \mathrm{av} .43 .3$ (39.5-47 $\mu \mathrm{m}$) and tail length (av. $29.2(25-35) ~ v s$ av. $23.7(21-29) \mu \mathrm{m}$), and c' value (c'= av. 0.7 (0.6-0.9) vs av. 0.6 (0.5-0.7); from E. groenlandicus by its shorter odontostyle (38-43 vs $44-53 \mu \mathrm{~m}$), somewhat more anteriorly located guiding ring ($24-28$ vs $27-37 \mu \mathrm{~m}$), narrower lip region ($15-17.5$ vs $19-22 \mu \mathrm{~m}$), males present vs absent; from E. macrodorus this new species differs in having a longer ovarium and oviduct (206-218 vs 83$188 \mu \mathrm{~m}$ and 168-172 vs 97-159 $\mu \mathrm{m}$, respectively (Thorne's specimens), longer uterus (220-346 vs 61-143 and 56-115 $\mu \mathrm{m}$) and shorter prerectum (2.1-3.5 vs 3.9-5.8 anal body diam), tail somewhat longer ($25-35$ vs $18-24$ and $22-28 \mu \mathrm{~m}$) and differently shaped (bluntly conoid $v s$ rounded to hemispherical), saccate bodies large elongated $v s$ small round; males abundant $v s$ males rare; longer tail in males (29-33 vs 18-22 $\mu \mathrm{m}$, $\mathrm{c}=46.4-58.9$ vs $67-100$ and $\mathrm{c}^{\prime}=0.7-0.8$ vs 0.6) (Guerrero et al., 2007b, 2008); from E. microdoroides by its longer body in females (1.57-2 vs $0.94-1.29 \mathrm{~mm}$), wider lip region (15-17.5 vs $13-14 \mu \mathrm{~m}$), guiding ring located more anteriorly (24-28 vs 28-39 $\mu \mathrm{m}$ from anterior end), different shape of pars refringens vaginae (trapezoid vs rectangular), longer tail ($25-35$ vs $13-27 \mu \mathrm{~m}$) and males with longer spicules ($65-74$ vs $45-50 \mu \mathrm{~m}$).

The new species can be distinguished from the remaining three species of E. macrodorus group by its lip differentiation: lip region set off by depression $v s$ offset by a distinct constriction. Further, it differs from E. babakicus by its longer body in female (1.57-2 vs 1.21-1.56 mm), ovaries longer ($206-218 \mu \mathrm{~m}$ vs $39-63 \mu \mathrm{~m}$), longer uterus ($220-346$ vs $130-175 \mu \mathrm{~m}$) and tail ($25-30$ vs $16-22 \mu \mathrm{~m}$); shorter prerectum ($87-140$ vs $151-232 \mu \mathrm{~m}$ or $2.1-3.5$ vs $4.5-8.5$ anal body diam. long), males with longer spicules ($65-74$ vs $49-61 \mu \mathrm{~m}$) and narrower lateral chord ($10-12$ vs $15-20 \%$ of corresponding body diam.); different tail shape in first stage juvenile (straight vs ventrally curved); from E. distinctus the new species is differentiated by its longer odontostyle (38-43 vs
$36 \mu \mathrm{~m}$), more posteriorly located guiding ring (24-28 vs 21-23 $\mu \mathrm{m}$), different structure of uterus (tripartite $v s$ bipartite), saccate bodies present $v s$ absent. Finally, the new species can be distinguished from E. saxifragae by a narrower lip region (15-17.5 vs 18-22 $\mu \mathrm{m}$ or 2.3-2.8 vs 1.8-2.3 odontostyle as lip region diam.), shorter pharyngeal expansion (av. 121 (113-130) vs av. 153 (144-162.5) and av. 147 (116-186) $\mu \mathrm{m}$), shorter prerectum (87-140 vs $140-294 \mu \mathrm{~m}$ or $2.1-3.5$ vs $4-8$ anal body diam) and fewer ventromedian supplements (10-12 vs 13-16) (Popovici 1995, Guerrero et al. 2008).

Type-locality and habitat. Different types of vegetation from a polygonal polar desert on Bol'shevik Island, Severnaya Zemlya Archipelago, Russian Arctic (Table 1).

Type-material. Holotype, 5 paratype females, 4 paratype males and 2 juveniles deposited in the Nematode collection of the Institute of Biodiversity and Ecosystem Research, BAS; one female and one male paratypes each at the nematode collections of the following institutions: The Center of Parasitology of Institute for Problems of Ecology and Evolution, RAS, Russia and Plant Protection Service, Wageningen, The Netherlands.

Etymology. The species is named in honor of Dr. Olga Makarova (Institute for Problems of Ecology and Evolution, Russia) who is an outstanding biologist investigating polar habitats and has kindly provided us with numerous nematode materials from Arctic polar deserts.

Enchodelus groenlandicus (Ditlevsen, 1927) Thorne, 1939

http://species-id.net/wiki/Enchodelus_groenlandicus
Figs 7-11

Material examined. Ten females collected from Putorana Plateau, Russian Arctic (Table 1).
Measurements. See Table 4.
Description. Female. Nematodes of medium to large size, habitus from slightly curved ventrad to open C- shape after fixation. Cuticle with fine, but distinct transverse striations, especially visible at neck and on tail regions; 4-6 $\mu \mathrm{m}$ thick at postlabial region, 3-4 $\mu \mathrm{m}$ at mid-body and $7-8 \mu \mathrm{~m}$ on tail. Lateral chord narrow, $6-9 \mu \mathrm{~m}$ wide or occupying ca $9-13 \%$ of mid body diam. Lip region rounded, offset by a depression, 2.3-3.1 times as wide as high. Amphidial fovea cup-shaped, located at level of labial depression, occupying 65% of lip diam. Cheilostom cylindrical. Odontostyle long, 2-2.5 times longer than lip region diam. or $2.2-2.7 \%$ of total body length. Odontophore distinctly flanged, 1.1-1.3 times as long as odontostyle. Guiding ring double, located 1.4-1.6 lip region diam. from anterior end. Pharynx attains full width at 56-64\% of its length from anterior end. Pharyngeal characters are presented at Table 3. Cardia rounded measuring 6-10 $\times 15-17 \mu \mathrm{~m}$. Genital system amphidelphic, both branches equally and well developed, anterior 277-370 $\mu \mathrm{m}$, posterior $287-375 \mu \mathrm{~m}$ long. Ovaries relatively large, 142-303 $\mu \mathrm{m}$ long; oocytes firstly in two or more rows, then in a single row. Anterior and posterior oviduct $119-143 \mu \mathrm{~m}(\mathrm{n}=9)$ and $119-153 \mu \mathrm{~m}(\mathrm{n}=8)$ long, 1.6-1.9 and 1.6-2.0 times body diam. respectively, consisting of slender part and well developed pars dilatata oviductus. Sphincter distinct. Uterus thick walled, tripartite, consisting of

Table 4. Morphometrics for females of Enchodelus groenlandicus (Ditlevsen, 1927) Thorne, 1939. All measurements, unless indicated otherwise, are in $\mu \mathrm{m}$ (and in the form: mean \pm SD (range).

Characters	Russia - Putorana Plateau		Greenland	Spain	Albania	Iran
	Present study		Ditlevsen, 1927	Guerrero et al. 2008	Andrássy 2009b	Pedram et al. 2011
	DB_{1}	DB, GC, C				
n	7	3	1*	14	2	4
L (mm)	$\begin{aligned} & 1.94 \pm 0.16 \\ & (1.8-2.16) \end{aligned}$	1.77, 1.70, 1.92	2.5	$\begin{gathered} 1.78 \pm 0.15 \\ (1.57-2.07) \end{gathered}$	1.54-1.68	$\begin{gathered} 1.86 \pm 0.09 \\ (1.76-1.97) \end{gathered}$
a	$\begin{gathered} 24.4 \pm 1.8 \\ (21.7-25.9) \end{gathered}$	24.3, 25.9,	25	$\begin{gathered} 23.4 \pm 1.6 \\ (21.3-25.3) \end{gathered}$	22-23	$\begin{array}{\|c\|} \hline 23.0 \pm 2.5 \\ (20.3-26.0) \\ \hline \end{array}$
b	$\begin{gathered} 5.3 \pm 0.3 \\ (5-5.6) \end{gathered}$	4.6, 4.7, 4.8	6	$\begin{gathered} 5.1 \pm 0.3 \\ (4.5-5.5) \end{gathered}$	4.0-4.6	$\begin{gathered} 5.0 \pm 0.2 \\ (4.6-5.1) \end{gathered}$
c	$\begin{gathered} 64.9 \pm 4.9 \\ (59.9-70.8) \end{gathered}$	61.5, 52.4, 62.1	50	$\begin{gathered} 67.5 \pm 9.2 \\ (53-83) \\ \hline \end{gathered}$	40-46	$\begin{gathered} 85.5 \pm 14.0 \\ (73-104) \\ \hline \end{gathered}$
c^{\prime}	$\begin{gathered} 0.6 \pm 0.1 \\ (0.5-0.7) \end{gathered}$	0.6, 0.7, 0.7	0.7	$\begin{gathered} 0.7 \pm 0.1 \\ (0.6-0.8) \end{gathered}$	0.7-0.8	$\begin{gathered} 0.5 \pm 0.1 \\ (0.4-0.6) \end{gathered}$
V \%	$\begin{gathered} 42.4 \pm 1.8 \\ (40-44) \\ \hline \end{gathered}$	46, 43, 42	43	$\begin{gathered} 44.2 \pm 1.9 \\ (41.6-49.4) \end{gathered}$	44-45	$\begin{array}{c\|} \hline 42.5 \pm 1.0 \\ (41.5-44.0) \\ \hline \end{array}$
Lip region width	$\begin{aligned} & 19.8 \pm 0.8 \\ & (19-20.5) \end{aligned}$	21, 21, 19	20	$\begin{gathered} 20.5 \pm 0.9 \\ (19-22) \end{gathered}$	19-20	$\begin{gathered} 22.5 \pm 0.5 \\ (21-23) \end{gathered}$
Odontostyle	$\begin{gathered} 46.7 \pm 0.4 \\ (46-47) \\ \hline \end{gathered}$	47, 44, 43	48-49	$\begin{gathered} 49.3 \pm 2.3 \\ (44-53) \\ \hline \end{gathered}$	50-51	$\begin{gathered} 48.5 \pm 0.5 \\ (48-49) \end{gathered}$
Odontophore	$\begin{gathered} 49 \pm 0.2 \\ (48.7-49) \\ \hline \end{gathered}$	50, 48, 55	49	$\begin{gathered} 50.4 \pm 2.9 \\ (45-55) \end{gathered}$	52-54	$\begin{gathered} 52 \pm 1 \\ (51-53) \end{gathered}$
Spear	$\begin{gathered} 95.6 \pm 0.3 \\ (95-96) \\ \hline \end{gathered}$	97.5, 93, 98	98	$\begin{aligned} & 100 \pm 4.1 \\ & (94-108) \\ & \hline \end{aligned}$	102-106	$\begin{aligned} & 102.5 \pm 1.0 \\ & (101-103) \end{aligned}$
Anterior end to guiding ring	$\begin{gathered} \hline 30.4 \pm 1.9 \\ (29-33) \\ \hline \end{gathered}$	30, 28, 30	29	$\begin{gathered} 32.8 \pm 2.4 \\ (27-37) \end{gathered}$	-	-
Neck length	$\begin{gathered} \hline 376.6 \pm 12.4 \\ (361-398) \\ \hline \end{gathered}$	389, 361, 398	417	$\begin{aligned} & 354 \pm 24.0 \\ & (322-401) \\ & \hline \end{aligned}$	-	$\begin{gathered} 377.5 \pm 19.0 \\ (350-392) \\ \hline \end{gathered}$
Width at pharynx base	$\begin{gathered} 68.5 \pm 3.9 \\ (65-75) \\ \hline \end{gathered}$	69, 60, 62	-	$\begin{gathered} 66.0 \pm 9.0 \\ (49-75) \end{gathered}$	-	$\begin{gathered} 78.5 \pm 5.0 \\ (75-82) \end{gathered}$
Width at mid body	$\begin{aligned} & 79.5 \pm 4.1 \\ & (75.5-83) \end{aligned}$	73, 66, 68	100	$\begin{gathered} 76.1 \pm 5.5 \\ (67-87) \\ \hline \end{gathered}$	77-80	$\begin{gathered} 82.0 \pm 9.5 \\ (68-89) \end{gathered}$
Prerectum length	$\begin{gathered} 185.6 \pm 10.6 \\ (178-193) \\ \hline \end{gathered}$	187,-, 213	50	$\begin{gathered} 186 \pm 36 \\ (116-252) \\ \hline \end{gathered}$	-	$\begin{gathered} 203.0 \pm 19.5 \\ (176-223) \end{gathered}$
Rectum length	$\begin{aligned} & 42.1 \pm 2.5 \\ & (39-44.5) \\ & \hline \end{aligned}$	38, 46, 42	-	$\begin{gathered} 42.1 \pm 7.3 \\ (27-52) \end{gathered}$	-	-
Tail	$\begin{gathered} 29.9 \pm 1.7 \\ (28-32) \\ \hline \end{gathered}$	29, 33, 31	31	$\begin{gathered} \hline 26.8 \pm 4.2 \\ (22-37) \\ \hline \end{gathered}$	28-30	$\begin{gathered} 22.0 \pm 2.5 \\ (19-24) \\ \hline \end{gathered}$

*followed by Guerrero et al. 2008
a wider proximal portion with distinct lumen, followed by a narrower median portion (43-115 $\mu \mathrm{m}(\mathrm{n}=4))$ and ending with a well developed spheroid pars dilatata distalis. Vagina extending inwards $42-53 \mu \mathrm{~m}$ or 53-68 \% of body diam., pars proximalis 25-30 $\mu \mathrm{m} \times 21-22 \mu \mathrm{~m}$, pars refringens with two trapezoid sclerotisations, with a combined width of $18-18.5 \mu \mathrm{~m}$ and length $6-8 \mu \mathrm{~m}(\mathrm{n}=2)$ pars distalis $6 \mu \mathrm{~m}$ long $(\mathrm{n}=2)$. Vulva a transverse slit, pre-equatorial (40-47\%). Eggs observed in eight females, measuring

Figure 7. Enchodelus groenlandicus. A-D Female A Neck region B Anterior genital branch C, D Entire body. Scale bars: A, B $50 \mu \mathrm{~m}$; C, D $500 \mu \mathrm{~m}$.
$96-109 \times 43-64 \mu \mathrm{~m}$, most frequently located in pars dilatata oviductus ($\mathrm{n}=6$), rarely in uterus ($\mathrm{n}=2$). Prerectum 3-4.5 anal diam. long, rectum $0.8-1.0$ times anal body width. Tail hemispheroid. Numerous small elongated saccate bodies observed on tail, mostly on ventral side. Hyaline part of tail $8.0-10 \mu \mathrm{~m}$ thick or $25-33 \%$ of total tail length.

Male. Unknown

Figure 8. Enchodelus groenlandicus. A-F Female A, C Vulval region and uterus B Vulval region D Anterior region, lateral view \mathbf{E} Amphidial fovea \mathbf{F} Anterior region, ventral view. Scale bars: A-F $50 \mu \mathrm{~m}$.

Figure 9. Enchodelus groenlandicus. A-E Female A-E Tail ends. Scale bars: A-E $50 \mu \mathrm{~m}$.

Locality and plant associations. Different types of vegetation from a polygonal polar desert on Plateau Putorana, Russian Arctic (Table 1).

Remarks. The data on E. groenlandicus geographical distribution, i.e. the original description from Disko Island, Greenland (Ditlevsen 1927) and recent reports from Spain, Albania and Iran (Guerrero et al. 2008, Andrássy 2009b, Pedram et al. 2011) indicate a disjunctive type of range. It occurs at high altitudes 950 m to 2450 m a.s.l in Southern Europe and Iran, and at high latitudes in the polar region (Putorana Plateau and Greenland), Guerrero et al. (2008) hypothesize that such a distribution pattern might stem from quaternary glacial events. The specimens examined generally agree well with data reported for this species, although some differences occurred: the Arctic population has somewhat shorter odontostyles (43-47 vs 44-53 $\mu \mathrm{m}$) and a more anterior position of the vulva ($40-46$ vs $41.5-49.4 \%$, see Table. 4 for details); Iranian specimens had shorter female tails (19-24 vs $28-33 \mu \mathrm{~m}$ and $c^{\prime}=0.4-0.6$ vs $0.5-0.7$). We consider the morphometric differences as representing intraspecific variation.

Figure 10. Enchodelus groenlandicus. A-K Female: A, B Anterior region C, D Amphideal fovea E Entire body F-H Tail ends I Subterminal caudal pores indicated by arrows J Tail with saccate bodies \mathbf{K} Tail in ventral view, anus marked by an arrow. Scale bars: A-D, F-K $50 \mu \mathrm{~m}$; E 1 mm .

Figure II. Enchodelus groenlandicus. A-E Female: A Pharyngeal bulb B Pars dilatata distalis uteri (arrows) \mathbf{C} Vulval region in subventral view D, E Vulval region in lateral view. Scale bars: A-E $50 \mu \mathrm{~m}$.

Identification key to species belonging to E. macrodorus group

1 Odontostyle $\leq 36 \mu \mathrm{~m}$; uterus bipartite ($\mathrm{q} \mathrm{L}=1.85 \mathrm{~mm}, \mathrm{a}=20, \mathrm{~b}=5.1, \mathrm{c}=58$, $c^{\prime}=0.76, \mathrm{~V}=53 \%$, Odontostyle $=36 \mu \mathrm{~m}$; $\widehat{\sigma}^{\lambda}$ unknown) (India)
E. distinctus (Ahmad \& Jairajpuri, 1980)

- Odontostyle $\geq 37 \mu \mathrm{~m}$; uterus tripartite .. 2

2 Lip region separated by constriction ... 3

- Lip region separated by depression.. 4

3 Body long $(>1.6 \mathrm{~mm})(\not) \mathrm{L}=1.8-2.38 \mathrm{~mm}, \mathrm{a}=21-34, \mathrm{~b}=4.8-6.1, \mathrm{c}=54-92$, $c^{\prime}=0.6-0.9, \quad V=44-50 \%$, Odontostyle $=38-45 \mu \mathrm{~m}$; $\sigma^{\lambda} \mathrm{L}=1.66-2.21 \mathrm{~mm}$ $\mathrm{a}=24.4-32.7, \mathrm{~b}=5.1-5.9, \mathrm{c}=53.2-68, \mathrm{c}^{\prime}=0.7-0.8$, Odontostyle $=27.5-40 \mu \mathrm{~m}$, Spicules $=56-70 \mu \mathrm{~m})($ Romania, Spain)......E.. saxifragae (Popovici, 1995)

- \quad Body short $(<1.6 \mathrm{~mm})($ Q $\mathrm{L}=1.21-1.56 \mathrm{~mm}, \mathrm{a}=20-25.5, \mathrm{~b}=3.0-5.0, \mathrm{c}=60.5-$ 92.5, $c^{\prime}=0.5-0.7, \mathrm{~V}=44-49 \%$, Odontostyle $=40-45 \mu \mathrm{~m}$; ठ $\mathrm{L}=1.31-1.53$ $\mathrm{mm}, \mathrm{a}=22.5-28, \mathrm{~b}=4.3-5.1, \mathrm{c}=49-71.5, \mathrm{c}^{\prime}=0.5-0.9$, Odontostyle=39-44 $\mu \mathrm{m}$, Spicules=49-61 $\mu \mathrm{m}$) (Iran)............E. babakicus (Pedram et al., 2009)
Uterus short (1-2 times corresponding body diam.) ($\mathrm{q} \mathrm{L}=1.38-1.92 \mathrm{~mm}$, $\mathrm{a}=19-32, \mathrm{~b}=4.0-6.2, \mathrm{c}=55-91, \mathrm{c}^{\prime}=0.5-0.7, \mathrm{~V}=37-47 \%$, Odontostyle $=37-44$ $\mu \mathrm{m} ; ~ \overparen{ } \mathrm{~L}=0.94-2.16 \mathrm{~mm}, \mathrm{a}=19-39, \mathrm{~b}=3.6-6.0, \mathrm{c}=41-100, \mathrm{c}^{\prime}=0.6-0.9$, Odontostyle $=24-33 \mu \mathrm{~m}$, Spicules=46-70 $\mu \mathrm{m}$) (Holarctic region)
E. macrodorus (de Man, 1880) Thorne, 1939)
- Uterus long (> 2 times corresponding body diam.) 5

5 Body length $<1.3 \mathrm{~mm}$; ($\mathrm{q} \mathrm{L}=0.94-1.29 \mathrm{~mm}, \mathrm{a}=19-28, \mathrm{~b}=3.5-5.6, \mathrm{c}=47-$ 73, $c^{\prime}=0.5-1.0, \mathrm{~V}=43-55 \%$, Odontostyle $=37-45 \mu \mathrm{~m}$; ठ $\mathrm{L}=1.24-1.28 \mathrm{~mm}$, $\mathrm{a}=26-37, \mathrm{~b}=4.6-4.8, \mathrm{c}=52-54, \mathrm{c}^{\prime}=0.7-0.8$, Odontostyle $=38-40 \mu \mathrm{~m}$, Spicules $=45-50 \mu \mathrm{~m}$) (India, Korea).....E. microdoroides (Baqri \& Jairajpuri, 1974) Body length > 1.5 mm.. 6
6 Dorsal cell mass near cardia present. ($q \mathrm{~L}=1.59-1.87 \mathrm{~mm}, \mathrm{a}=21.1-28.6$, $\mathrm{b}=4.3-5.3, \mathrm{c}=55.3-87.5, \mathrm{c}^{\prime}=0.5-0.7, \mathrm{~V}=41.7-49.7 \%$, Odontostyle=39.5-47 $\mu \mathrm{m})$ (Romania).
.E. carpaticus (Ciobanu et al., 2010)

- Dorsal cell mass near cardia absent. .7
7 Lip region narrow $<18 \mu \mathrm{~m}$, males present (q $\mathrm{L}=1.57-2 \mathrm{~mm}, \mathrm{a}=21.6-33.1$, $\mathrm{b}=4.4-5.7, \mathrm{c}=45.8-70.3, \mathrm{c}^{\prime}=0.6-0.9, \mathrm{~V}=45-51 \%$, Odontostyle $=38-43 \mu \mathrm{~m}$; $\widehat{\sigma}^{\top} \mathrm{L}=1.49-1.79 \mathrm{~mm}, \mathrm{a}=19.6-29.8, \mathrm{~b}=4.4-5.4, \mathrm{c}=46.4-58.9, \mathrm{c}^{\prime}=0.7-0.8$, Odontostyle=39-44.5 $\mu \mathrm{m}$, Spicules=65-74 $\mu \mathrm{m}$) (Russia - Severnaya Zemlya Archipelago)
E. makarovae sp. n. Lip region wide, $>19 \mu \mathrm{~m}$, males absent ($q \mathrm{~L}=1.54-2.5 \mathrm{~mm}, \mathrm{a}=20.3-25.9$, $b=4.0-6.0, c=40-104, c^{\prime}=0.4-0.8, V=40-49 \%$, Odontostyle=43-51 $\mu \mathrm{m}$) (Greenland, Spain, Albania, Iran, Russia - Putorana Plateau).
E. groenlandicus (Ditlevsen, 1927)

Acknowledgements

This study was partly funded by FP7 Capacities project WETLANET, project "Development of scientific potential in the field of faunistic diversity and the protection of environment" funded by the Ministry of Education, Youth and Science and the European Social Fund, Operative Programme "Human Resources Development" and project ANIDIV, funded by the Bulgarian Academy of Sciences. We would like to thank Dr O. Makarova for collecting nematode materials and Mrs. V. Atanassova for technical assistance. The authors are thankful to Prof Derek JF Brown, Institute of Biodiversity and Ecosystem Research, BAS for critical reading of the manuscript and helpful suggestions.

References

Ahmad M, Jairajpuri MS (1980) A review of the genus Enchodelus Thorne, 1939 with descriptions of species from India. Records of the Zoological Survey of India, Miscellaneous Publication, Occasional Paper 15: 1-42.
Altherr E (1952) Les nématodes du Parc National Suisse. (Nématodes libres du sol.) 2. Ergebnisse der wissenschaftlichen Untersuchungen des Schweizerischen Nationalparks 3: 315-356.
Andrássy I (1998) Once more: the oesophageal gland nuclei in the dorylaimoid nematodes. Opuscula Zoologica Budapest 31: 165-170.
Andrássy I (2009a) Free-living nematodes of Hungary (Nematoda Errantia) III. Pedozoologica Hungarica, Budapest, 608 pp .
Andrássy I (2009b) Free-living nematodes from Albania, including of description of three new species. Nematologia Mediterranea 37: 73-88.
Andrássy I (2011) On the nematode genus Heterodorus Altherr, 1952 (Dorylaimida: Nordiidae) with descriptions of three new species. Opuscula Zoologica Budapest 42: 3-22.
Baqri QH, Jairajpuri MS (1974) Nematodes of high altitudes in India. V. Five new species of the genus Enchodelus Thorne, 1939 (Dorylaimida). Nematologica 20: 131-146. doi: 10.1163/187529274X00113

Ciobanu M, Popovici I, Guerrero P, Peña-Santiago R (2010) Nematodes of the order Dorylaimida from Romania. The genus Enchodelus Thorne, 1939. 3. Species with rounded tail and long odontostyle. Nematology 12: 609-618. doi: 10.1163/138855410X12628646275925
Dallwitz MJ (1974) A flexible computer program for generating identification keys. Systematic Zoology 23: 7-50. doi: 10.2307/2412239
de Man JG (1880) Die einheimischen, frei in der reinen Erde und im süssen Wasser lebenden Nematoden. Tijdschrift Nederlandsche Dierkundige Vereeniging 5: 1-104.
Ditlevsen H (1927) Free-living nematodes from Greenland. Meddel. om Gronland, Københ., 23: 157-198.
Eliava IY, Eliashvily TS (1990) Free-living nematodes from the family Nordiidae (Dorylaimida)]. Metsniereba, Tbilisi, 104 pp. [In Russian]

Guerrero P, Liébanas G, Peña-Santiago R (2007a) Nematodes of the order Dorylaimida from Andalucía Oriental, Spain. The genus Enchodelus Thorne, 1939. 1. Description of two new and two known species with conical tail. Nematology 9: 515-536. doi: 10.1163/156854107781487251

Guerrero P, Liébanas G, Peña-Santiago R (2008) Nematodes of the order Dorylaimida from Andalucía Oriental, Spain. The genus Enchodelus Thorne, 1939. 2. Description of three known species with rounded tail and long odontostyle. Nematology 10: 451-470. doi: 10.1163/156854108784513815

Guerrero P, Peňa-Santiago R (2007b) Redescription of Enchodelus species studied by Thorne in 1939 (Dorylaimida. Nordiidae). Nematology 9: 93-121. doi: 10.1163/156854107779969646

Loof PAA (1975) Dorylaimoidea from some subantarctic islands. Nematologica 21: 219-255. doi: 10.1163/187529275X00581
Loof PAA, Coomans A (1970) On the development and location of the oesophageal gland nuclei in the Dorylaimina. Proceedings IX International Nematology Symposium (Warsaw 1967) Zesz. probl. Postep. Nauk roln. 92: 79-161.

Pedram M, Niknam G,Guerrero P,Ye W, Robbins R (2009) Morphological and molecular characterisation of Enchodelus babakicus sp. n. and E. macrodorus Thorne, 1939 (Nematoda: Nordiidae) from Iran. Nematology 11: 895-907. doi: 10.1163/156854109X430563
Pedram M, Pourjam E, Robbins R, Ye W, Peña-Santiago R (2011) Description of one new, and new data on two known, species of Enchodelus Thorne, 1939 (Dorylaimida: Nordiidae) from Iran. Nematology 13: 729-740. doi: 10.1163/138855410X545786
Peña-Santiago R, Guerrero P, Liébanas G (2005) Notes on biogeography of the genus Enchodelus Thorne, 1939 (Dorylaimida: Nordiidae). Nematropica 35: 92. [Abstr.]
Peneva V, Lazarova S, Elshishka M, Makarova O, Penev L (2009) Nematode assemblages of hair-grass (Deschampsia spp.) microhabitats from polar and alpine deserts in Arctic and Antaractic. In: Golovatch SI, Makarova OL, Babenko AB, Penev, LD (Eds.) Species and communities in extreme environment. Pensoft Publishers \& KMK Scientific Press, SofiaMoscow, 419-438.
Popovici I (1995) New species of Tubixaba and Enchodelus (Nematoda: Dorylaimida) from Romania. Nematologica 41: 435-448. doi: 10.1163/003925995X00396
Seinhorst JW (1959) A rapid method for the transfer of nematodes from fixative to anhydrous glycerin. Nematologica 4: 67-69. doi: 10.1163/187529259X00381
Thorne G (1939) A monograph of the nematodes of the superfamily Dorylaimoidea. Capita Zoologica 8: 1-261.
Yeates GW, Bongers T, de Goede RG, Freckman DW, Georgieva S (1993) Feeding habits in soil nematode families and genera - an outline for soil ecologists. Journal of Nematology 25: 315-331.

