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Abstract: Neglected parasitic diseases remain a major public health issue worldwide, especially in
tropical and subtropical areas. Human parasite diversity is very large, ranging from protozoa to
worms. In most cases, more effective and new drugs are urgently needed. Previous studies indicated
that the gold(I) drug auranofin (Ridaura®) is effective against several parasites. Among new gold(I)
complexes, the phosphole-containing gold(I) complex {1-phenyl-2,5-di(2-pyridyl)phosphole}AuCl
(abbreviated as GoPI) is an irreversible inhibitor of both purified human glutathione and thioredoxin
reductases. GoPI-sugar is a novel 1-thio-β-d-glucopyranose 2,3,4,6-tetraacetato-S-derivative that is a
chimera of the structures of GoPI and auranofin, designed to improve stability and bioavailability
of GoPI. These metal-ligand complexes are of particular interest because of their combined abilities
to irreversibly target the essential dithiol/selenol catalytic pair of selenium-dependent thioredoxin
reductase activity, and to kill cells from breast and brain tumors. In this work, screening of various
parasites—protozoans, trematodes, and nematodes—was undertaken to determine the in vitro
killing activity of GoPI-sugar compared to auranofin. GoPI-sugar was found to efficiently kill
intramacrophagic Leishmania donovani amastigotes and adult filarial and trematode worms.
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1. Introduction

After alchemists discovered they could dissolve gold using aqua regia in the middle ages,
gold compounds started to be used in medicinal treatments [1]. Robert Koch first observed the
bacteriostatic activity of potassium gold cyanide K[Au(CN)2] in the 1890′s, introducing gold therapies
into modern medicine [2]. Jacques Forestier treated patients affected by rheumatoid arthritis (RA) with
inorganic gold salts [3,4]. In the 1940′s, the Au(I)-phosphine auranofin (AuI(PEt3)thioglucose, Figure 1)
used by oral administration was considered safer than the injectable inorganic gold salts, and was
approved in 1985 by the USA Food and Drug Administration for RA therapy [5–7]. Recently, auranofin
has been rediscovered as potential alternative treatments for other diseases, such as some cancers,
inflammation, bacterial infections, HIV, neurodegenerative disorders and parasitic infections [8–10].
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The inhibition of reduction/oxidation enzymes containing sulfur or selenium within the active 
site, such as GR [12] and selenoCys-containing TrxRs [11,16–18], is one of the mechanisms of action 
of auranofin and most of the gold(I) complexes. Inhibition of these key NADPH-dependent disulfide 
reductases can affect the intracellular redox balance, leading to elevated intracellular oxidative stress 
levels and cellular apoptosis. Other mechanisms are likely to be involved in vivo, such as DNA 
binding, which at least partially may mediate anti-tumor properties by inducing antiproliferative 
effects [13,15,19]. This dual mode of action is expected to increase cytotoxicity towards rapidly 
dividing cells over-expressing disulfide reductases, such as cancer cells, memory T cells that harbor 
proviral HIV DNA, and a broad panel of parasites. Due to its central role in cell metabolism, the Trx 
system is involved in many pathological conditions and provides potential targets for novel 
therapeutic approaches. We have already identified several TrxR inhibitors that show growth-
inhibitory properties against tumor cells [20–22] and parasites [23–25]. 

 
Figure 1. Structure of gold(I)-based complexes as inhibitors of human glutathione reductase, 
thioredoxin reductase and Schistosoma mansoni thioredoxin-glutathione reductase. 
Figure 1. Structure of gold(I)-based complexes as inhibitors of human glutathione reductase, thioredoxin
reductase and Schistosoma mansoni thioredoxin-glutathione reductase.

Due to its central role in cell metabolism, the thioredoxin (Trx) system is involved in many
pathological conditions and provides potential therapeutic targets. Auranofin and aurothioglucose
specifically inhibit human thioredoxin reductase (TrxR) with a Ki of 4 nM [11]. Phospholes are
phosphacyclopentadienes that have very limited aromatic character (for an example, see Figure 1),
and a nucleophilic phosphorus atom. Our previous studies have found that novel gold phosphole
complexes, 1-thio-β-d-glucopyranose 2,3,4,6-tetraacetato-S-Au{1-phenyl-2,5-di(2-pyridyl)phosphole}
(GoPI-sugar) and its precursor GoPI {1-phenyl-2,5-di(2-pyridyl)phosphole}AuCl (GoPI), were potent
inhibitors of human glutathione reductase (GR) [12,13] and TrxR [13–15]. GoPI-sugar was designed to
improve the solubility, stability and bioavailability of GoPI.

The inhibition of reduction/oxidation enzymes containing sulfur or selenium within the active
site, such as GR [12] and selenoCys-containing TrxRs [11,16–18], is one of the mechanisms of action of
auranofin and most of the gold(I) complexes. Inhibition of these key NADPH-dependent disulfide
reductases can affect the intracellular redox balance, leading to elevated intracellular oxidative stress
levels and cellular apoptosis. Other mechanisms are likely to be involved in vivo, such as DNA
binding, which at least partially may mediate anti-tumor properties by inducing antiproliferative
effects [13,15,19]. This dual mode of action is expected to increase cytotoxicity towards rapidly dividing
cells over-expressing disulfide reductases, such as cancer cells, memory T cells that harbor proviral
HIV DNA, and a broad panel of parasites. Due to its central role in cell metabolism, the Trx system
is involved in many pathological conditions and provides potential targets for novel therapeutic
approaches. We have already identified several TrxR inhibitors that show growth-inhibitory properties
against tumor cells [20–22] and parasites [23–25].
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The mechanism of action of the anti-arthritic drug auranofin and GoPI-sugar may be similar:
they likely lose both the thioglucose and the trialkylphosphine ligands, leading to final gold(I) protein
thiol adducts similar to those arising from inorganic gold salts. This hypothesis, first proposed for
auranofin [26], was later confirmed following the resolution of the 3D structure of human GR alkylated
by GoPI [13] and Schistosoma mansoni thioredoxin glutathione reductase (TGR) with auranofin [27].
Both gold(I) chloro(triligand) phosphine were shown to be bioactivated by a process involving the
transient displacement of the thiosugar moiety or the chlorine atom (in GoPI) by (redox) protein(s) or
low molecular weight thiols before irreversibly binding to the disulfide reductase. Both leaving groups,
the chlorine atom and the thiosugar part, are known to be displaced by cysteine and histidine residues
of albumin or cyclophilin-3, respectively [28,29]. Following different reversible exchanges with thiol
groups or proteins in the blood, these gold(I) complexes are known to bind (redox) protein(s) or low
molecular weight thiols before irreversibly binding to the common final DNA target. The inhibition of
human GR and TrxR, after stepwise ligand displacement resulted in a covalently bound gold atom
between the two active site cysteines of hGR (S–Au–S coordination) [13].

Previous studies showed that auranofin can inhibit the growth and viability of various
parasites: S. mansoni [24], Trypanosoma cruzi [30], Leishmania infantum [31], Plasmodium falciparum [32],
Giardia lamblia [33], larval Echinococcus granulosus [34], Entamoeba histolytica [35], and adult filarial
worms [36]. These interesting data prompted us to screen GoPI-sugar against various parasites
to identify those most sensitive to killing. In this work, in vitro activities of auranofin and GoPI-
sugar were studied on a large panel of parasites, including S. mansoni, Brugia pahangi, Loa loa,
Onchocerca ochengi, Trypanosoma brucei, T. cruzi, Leishmania infantum, and L. donovani, Theileria annulata,
and Acanthamoeba castellanii.

2. Results

2.1. Synthesis of GoPI-Sugar

A multigram batch of GoPI-sugar was re-synthesized according to a reported five-step-long
sequence (Scheme 1). The synthesis of the bis(2-pyridyl)phosphole ligand 4 started by a Sonogashira
coupling reaction under classical conditions [37] from commercial octa-1,7-diyne 1 and 2-bromopyridine
2 leading to the diyne 3 in excellent yield. Then, diyne 3 was first oxidatively cyclized with zirconocene to
give corresponding zirconacyclopentadiene, followed by the electrophilic [ZrCp2]/PPhCl2 substitution
reaction [38]. This Fagan-Nugent-based route, which afforded a classical and efficient method
for heterocycle synthesis, provided phosphole ligand 4 in moderate yields [39,40]. Furthermore,
the resulting phosphole ligand 4 was extremely air- and moisture-sensitive, requiring utilization of the
crude product directly in the next step of reaction without purification. Subsequently, the phosphole
ligand was coordinated to the central metal gold with freshly prepared AuCl(tetrahydrothiophene)
to yield GoPI (5) [12]. Finally, a classical nucleophilic substitution reaction was performed
by deprotonated acetylthioglucose, leading to the air-stable GoPi-sugar (6) with high purity
(>98%, see Supplementary Materials) and in moderate yield [15]. Several batches of 300 mg scale were
produced for biological studies.

2.2. Inhibitory Activities of Gold(I) Complexes against Members of the NADPH-Dependent Disulfide
Reductase Family

We have already reported that gold(I) complexes, such as GoPI and GoPI-sugar, act as potent
irreversible inhibitors of human TrxR (Table 1) [13–15]. This study focused on comparing the inhibitory
activity of GoPI-sugar versus auranofin against S. mansoni TGR and B. pahangi TrxR. GoPI-sugar was
found to have low nM activity against these two enzymes, about 10 times that found with auranofin
(Table 1).
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Schistosomiasis, also called bilharziasis, is a parasitic disease affecting over 200 million people 
and causing 280,000 deaths per year in many tropical areas [41]. Praziquantel has been used to cure 
schistosomiasis since the 1980s, but this drug is not effective against immature worms and is currently 
the only available medication. The anti-malarial drug artemether has been investigated as a new drug 
for schistosomiasis; however, in order to protect artemisinin-based drugs from development of drug 
resistance in the malaria parasite, artemether is not widely used to treat schistosomiasis [42]. 

Flatworms (platyhelminth parasites) were found to have a condensed redox network, with the 
activities of TrxR and GR found in a single protein thioredoxin glutathione reductase (TGR) and with 
authentic GR and TrxR proteins being absent [34,43–45]. TGR has been found to be an essential and 
druggable protein [24,46]. The catalytic mechanism of TGR proteins has been examined by both 
biochemical and structural approaches [47,48]. Gold compounds have been found to inhibit TGR 
from numerous helminths and to have in vitro worm-killing activity [24,49–51], and the mechanism 
of inhibition by auranofin has been examined in detail [27]. It was found that auranofin reduced 
worm burdens in S. mansoni infected mice, likely through inhibition of TGR [24]. This reduction was 
partial (~60%) and resulted only after multiple doses, factors reducing the prospects for repositioning 
auranofin for schistosomiasis treatment. This inspired us to seek alternative compounds, which 
might display more potent anti-Schistosoma activity.

Scheme 1. Synthetic route to prepare 1-thio-β-d-glucopyranose 2,3,4,6-tetraacetato-S-Au{1-phenyl-
2,5-di(2-pyridyl)phosphole} (GoPI-sugar).

2.3. Anthelmintic Activity of Gold(I) Complexes

2.3.1. Schistosoma mansoni

Schistosomiasis, also called bilharziasis, is a parasitic disease affecting over 200 million people
and causing 280,000 deaths per year in many tropical areas [41]. Praziquantel has been used to cure
schistosomiasis since the 1980s, but this drug is not effective against immature worms and is currently
the only available medication. The anti-malarial drug artemether has been investigated as a new drug
for schistosomiasis; however, in order to protect artemisinin-based drugs from development of drug
resistance in the malaria parasite, artemether is not widely used to treat schistosomiasis [42].

Flatworms (platyhelminth parasites) were found to have a condensed redox network, with the
activities of TrxR and GR found in a single protein thioredoxin glutathione reductase (TGR) and with
authentic GR and TrxR proteins being absent [34,43–45]. TGR has been found to be an essential and
druggable protein [24,46]. The catalytic mechanism of TGR proteins has been examined by both
biochemical and structural approaches [47,48]. Gold compounds have been found to inhibit TGR
from numerous helminths and to have in vitro worm-killing activity [24,49–51], and the mechanism
of inhibition by auranofin has been examined in detail [27]. It was found that auranofin reduced
worm burdens in S. mansoni infected mice, likely through inhibition of TGR [24]. This reduction was
partial (~60%) and resulted only after multiple doses, factors reducing the prospects for repositioning
auranofin for schistosomiasis treatment. This inspired us to seek alternative compounds, which might
display more potent anti-Schistosoma activity.
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Table 1. Inhibition of human and parasitic NADPH-dependent disulfide reductases: data from the literature and original data (blue background).

Enzymes Human
TrxR [13,15]

Human TrxR
[11,13–15,52] Human TrxR [11] Human GR

[11–13,15] S. mansoni TGR [24] L. infantum TR
[31]

S. mansoni
TGR

B. pahangi
TrxR

Substrates hTrxC72S DTNB E. coli TrxS2 GSSG DTNB GSSG HED +
GSSG TS2 DTNB DTNB

Gold(I) Complexes IC50 (nM)
(enzyme concentration, substrate concentration)

Auranofin 20 (2 nM,
3 mM)2

Ki = 2.0 and 3.0
nM (1.7 nM, at 50

and 75 TrxS2,
respectively) 2

40,000 (1.5
nM, 1 mM) 2

7 (20 nM,
3 mM) 3

9 (20 nM,
100 µM) 3

6 (20 nM,
8 mM) 3

Ki = 155 ± 35 nM
(40 nM,

50–400 µM) 2

1.1
(20 nM,
3 mM) 3

0.5
(20 nM,
3 mM) 3

GoPI

6.9 (24 nM,
20 µM) 1

7 (30 nM,
20 µM) 1

0.8 (4.8 nM,
3 mM) 1

1 (3.7 nM,
3 mM) 1

1 (1.4 nM,
100 µM) 1

2 (1.4-2.8 nM,
100 µM) 1

GoPI-sugar
4.3 ± 1.6
(30 nM,

20 µM) 1

0.49 ± 0.04
(3.7 nM,
3 mM) 1

88.5 ± 28
(1.4-2.8 nM,
100 µM) 1

12.5
(40 nM,
3 mM) 1

5.5
(100 nM,
3 mM) 1

Aurothioglucose 65 (2 nM,
3 mM) 2

>100,000
(1.5 nM,
1 mM) 2

70
(20 nM,
3 mM) 3

3000
(20 nM,

100 µM) 3

400
(20 nM,
8 mM) 3

Aurothiomalate 280 (2 nM,
3 mM) 2,4

90
(20 nM,
3 mM) 3

50
(20 nM,

100 µM) 3

50
(20 nM,
8 mM) 3

Condition of enzyme inhibition: 1 after 10 min. of enzyme-NADPH-gold complex preincubation [12]; 2 in steady state kinetic studies [11]; 3 after 15 min. of enzyme-NADPH-gold complex
preincubation [24]; 4 mitochondrial TrxR2 was used instead of the cytosolic TrxR1 [52]. Substrate abbreviations stand for: 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB); glutathione disulfide
(GSSG); 2-hydroxyethyl disulfide (HED); oxidized E. coli thioredoxin (TrxS2); oxidized human thioredoxin mutated at C72S (hTrxC72S); trypanothione disulphide (TS2).
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Both auranofin and GoPI-sugar had similar enzymatic inhibitory activities against TGR enzyme
activity with IC50 values in the low nM range (Table 1). GoPI-sugar killed ex vivo S. mansoni worms
with similar activity to auranofin with 2.5 µM resulting in 100% death in 2 days for auranofin and
5 days for GoPI-sugar (Table 2). These effective concentrations might be reached in the plasma after
oral administration if we rely on the mean gold maximum concentration in plasma (Cmax) at day 7
of 0.312 µg/mL (ca. 0.46 µM) known for auranofin [53].

Table 2. Comparison of the worm killing activity of auranofin and GoPI-sugar against S. mansoni using
a phenotypic assay [54] in adult ex vivo S. mansoni worms.

Compound Conc. (µM) Dead (%)
Day 1

Dead (%)
Day 2

Dead (%)
Day 3

Dead (%)
Day 4

Dead (%)
Day 5

Auranofin 10 100
GoPI-sugar 10 100

Auranofin 5 100
GoPI-sugar 5 100

Auranofin 2.5 50 100
GoPI-sugar 2.5 0 0 0 50 100

Auranofin 1 0 0 0 0 0
GoPI-sugar 1 0 0 0 0 0

2.3.2. Filarial Parasites

Onchocerciasis, or river blindness, caused by Onchocerca spp., lymphatic filariasis or elephantiasis,
caused by Brugia pahangi and other species, and Loiasis also known as the eye worm, caused by
Loa loa, are neglected tropical diseases that affect millions of people. These result from infection
with filarial nematodes. There are no drugs available against adult filarial worms suitable for mass
drug administration and existing drugs mainly kill the first-stage larvae (microfilariae). These drugs
can reduce the transmission of infection but the adult worms continue to produce microfilariae and
perpetuate infection. Finding a drug that could kill the adult worms would be an important tool in
eliminating filarial infections. Recently, it was found that auranofin kills adult filarial worms and
reduces the worm burden in B. pahangi infected gerbils, likely through inhibition of filarial TrxR
activity [36]. Both auranofin and GoPI-sugar have similar enzymatic inhibitory activities against TrxR
enzyme activity with IC50 values in the low nM range (Table 1). The in vitro anti-B. pahangi activity
against adult worms of auranofin and GoPI-sugar were similar at 3 and 10 µM, with auranofin being
more active at 1 µM (Table 3). The compounds had LD50 in the low micromolar range for GoPI-sugar
and the submicromolar range for auranofin for activity against female B. pahangi (Table 4).

Table 3. Comparison of the worm killing activity of auranofin and GoPI-sugar with female B. pahangi
worms in an in vitro motility assay [55]. Percent inhibitions are the average of n = 4 worms per
concentration compared to vehicle treated worms.

Compound Conc. (µM)
Inhibition of Motility

(%) Day 1 (%) Day 2 (%) Day 3 (%) Day 6

Auranofin 10 99 100 99 98
GoPI-sugar 10 91 98 100 99

Auranofin 3 98 100 99 98
GoPI-sugar 3 24 41 40 96

Auranofin 1 25 45 48 98
GoPI-sugar 1 20 16 22 48
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Table 4. IC50 data of auranofin and GoPI-sugar for adult female Brugia pahangi worms using the
worminator in vitro motility assay. Each compound was tested using a six-point serial dilution, n = four
worms per concentration; R2

≥ 0.7 for all IC50s.

Compound IC50 (µM) Day 2 IC50 (µM) Day 3 IC50 (µM) Day 6

Auranofin 0.6 0.7 0.4
GoPI-sugar 2.8 3.9 1.7

GoPI-sugar was tested against O. ochengi, the Onchocerca species infecting cattle, and L. loa
microfilariae. O. ochengi is an excellent surrogate for O. volvulus since this latter species only infects humans
and non-human primates. Loa loa microfilariae are particularly important to use in counter-screens
because microfilaricidal drugs (e.g., ivermectin) have been known to cause severe adverse effects in
individuals co-infected with a high numbers of L. loa [56,57]. Thus, a macrofilaricidal drug that kills
only adult filarial worms and not L. loa microfilariae would be ideal in co-endemic areas. Such behavior
was found in the activity profile of GoPI-sugar (Table 5). GoPI-sugar was equally active as auranofin
against adult male and microfilariae of O. ochengi. GoPI-sugar was, however, less active than auranofin
against female O. ochengi and against L. loa microfilariae.

Table 5. Comparison of the motility inhibition of auranofin and GoPI-sugar against O. ochengi adults
and microfilariae (mf) and L. loa microfilariae.

Compound Conc. (µM)

% Inhibition of Motility

O. ochengi
Adult Female

Day 7

O. ochengi
Adult Male

Day 5

O. ochengi
mf

Day 5

L. loa mf
w/MK2 Cells

Day 5

Auranofin 10 100 100 100 63

GoPI-sugar 10 51 100 100 38

2.4. Anti-Kinetoplastid Activity of Gold(I) Complexes

2.4.1. Trypanothione Reductase from Kinetoplastidae

African sleeping sickness (Trypanosoma brucei gambiense, T. b. rhodesiense), South American Chagas’
disease (T. cruzi), Nagana cattle disease (T. congolense, T. b. brucei), and the different forms of leishmaniasis
due to Leishmania spp. are parasitic diseases due to kinetoplastidae parasites. These protozoan parasites
maintain a reducing intracellular milieu and thus protection from oxidative stress thanks to a unique
system based on trypanothione reductase (TR). In kinetoplastids, GSH is replaced by trypanothione,
a bis(glutathionyl)spermidine conjugate, and GR by TR [58]. The trypanothione system not only
replaces the glutathione system but also the thioredoxin system in these organisms. TR is a validated
drug target for anti-trypanosomal and anti-leishmanial drugs. Different genetic approaches have
unequivocally shown that TR is essential. Bloodstream African trypanosomes with less than 10% of
wild-type activity were unable to grow, although the levels of reduced trypanothione and total thiols
remained constant. The parasites were highly sensitive to H2O2 and were incapable of establishing
infection in mice [59]. The de novo synthesis of trypanothione and residual levels of TR are adequate
to maintain resting thiol levels, but insufficient to cope with oxidative stress situations.

A number of TR inhibitors have been developed and some of them are fairly effective,
in particular the compounds that possess two reactive sites—bis(Michael acceptors and thiophilic metal
complexes—towards enzyme dithiols or trypanothione itself (for a review, ref. [60]). These inhibitors
include unsaturated Mannich bases [61], curcuminoid derivatives [62,63], arsenicals [64] and
antimonials [65]; the latter two have been used for the treatment of sleeping sickness and leishmaniasis,
respectively, for more than a decade. More recently, auranofin was found to be a very effective
L. infantum TR inhibitor and a moderate anti-leishmanial agent. The X-ray crystal structure of the
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auranofin-TR-NADPH complex was solved at 3.5 Å resolution, showing gold bound to the two active
site cysteine residues of TR, i.e., Cys52 and Cys57, while the thiosugar moiety was bound to the
trypanothione binding site [31]. This finding has stimulated our interest to test GoPI-sugar against
kinetoplastid parasites.

2.4.2. Trypanosoma b. gambiense and T. b. brucei

Gold(I) complexes were found to be potent inhibitors of TR with very low IC50 values [31].
However, no study on their anti-trypanosomal action has yet been reported. Based on previous
oral pharmacokinetic studies of auranofin [7], 15–25% of the drug remains in the plasma 1–2 h after
administration and the plasma concentration was found to be 10 µg/mL, well above the concentrations
resulting in in vitro parasite death.

Here, we compared the anti-T. b. gambiense and anti-T. b. brucei activity of auranofin and GoPI-
sugar (Table 6): both gold(I) complexes exhibited high anti-trypanosomal activities with IC50 at 1.11 ±
0.12 µM for GoPI- sugar and 0.21 ± 0.01 µM for auranofin. Similar activities were obtained against T. b.
brucei (Table 6).

Table 6. In vitro activities of gold(I) complexes in T. b. gambiense and T. b. brucei trypomastigotes.

Compounds T. b. gambiense
IC50 (µM) ± SD

T. b. brucei
IC50 (µM)

Auranofin 0.21 ± 0.01 0.50

GoPI-sugar 1.11 ± 0.12 1.83

Miltefosine 1 ND 11.35

Pentamidine 1 0.0011 ± 0.0001 ND

Suramin 1 ND 0.03
1 Miltefosine, Pentamidine, and Suramin were used as drug controls.

2.4.3. Trypanosoma cruzi and Leishmania infantum

Auranofin has been shown to possess in vitro and in vivo activity against T. cruzi [30], as well as
stimulating apoptosis in L. major and L. amazonensis with promising in vitro and in vivo anti-leishmanial
activities [66]. Moreover, studies showed that this drug is an effective inhibitor of TR in L. infantum [31].
GoPI-sugar displayed low IC50 values against both T. cruzi and L. infantum (Table 7).

Against L. infantum amastigotes, auranofin displayed equal IC50 and CC50 values in the assays
with mouse macrophages, illustrative for a non-specific activity.

Table 7. In vitro activities of gold(I) complexes in T. cruzi and L. infantum amastigotes.

Compounds Trypanosoma cruzi
IC50 (µM) ± SD

Leishmania infantum
IC50 (µM) ± SD

Auranofin <0.25 2.03 ± 0.76

GoPI-sugar 0.56 ± 0.11 2.38

Miltefosine 1 ND 11.35 ± 2.88

Benznidazole 1 2.89 ± 0.94 ND
1 Miltefosine and Benznidazole were used as drug controls.

2.4.4. Leishmania donovani

Trypanothione synthetase and TR are essential proteins for Leishmania parasite survival.
As auranofin was shown to be a potent TR inhibitor with anti-Leishmania activity, we tested both
compounds against axenic and intramacrophage amastigotes of L. donovani LV9. The IC50 values
determined confirmed the potent anti-Leishmania activity of auranofin within the expected plasma
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concentration of auranofin after oral administration (Table 8). Substantially higher anti-Leishmania
activities were reported against L. major and L. amazonensis with IC50s of 0.07 µM and 0.27 µM,
respectively [66]. We found that GoPI-sugar was very effective at inhibiting the growth of
intramacrophage amastigotes with an IC50 of 0.42 ± 0.15 µM versus 0.70 ± 0.24 µM for auranofin
(Table 8). Regarding the cytoxicity of GoPI-sugar at 4 µM on murine RAW 264.7 macrophages,
its selectivity index of ~10 is moderate, but improvable (Table 9).

Table 8. In vitro activities of gold(I) complexes in L. donovani LV9 axenic amastigotes and
intramacrophage amastigotes.

Compounds
Leishmania donovani LV9

Axenic Amastigotes
IC50 (µM) ± SD

Leishmania Donovani LV9
Intramacrophage Amastigotes

IC50 (µm) ± SD

Auranofin 0.56 ± 0.03 0.70 ± 0.24

GoPI-sugar 1.45 ± 0.07 0.42 ± 0.15

Miltefosine 1 1.28 ± 0.12 4.49 ± 1.08
1 Miltefosine was used as drug control.

Table 9. In vitro activities of gold(I) complexes against A. castellanii and RAW 264.7 macrophages.

Compounds Acanthamoeba castellanii ATCC 30010
IC50 (µM) ± SD

Cytotoxicity on RAW 264.7 Macrophages
CC50 (µM) ± SD

Auranofin 5.79 ± 1.02 4.43 ± 0.08

GoPI-sugar 13.04 ± 1.53 4.35 ± 0.04

Miltefosine 9.21 ± 2.04 >25

Pentamidine 1.39 ± 0.37 >25

2.5. Anti-Amoeba Activity of Gold(I) Complexes

Acanthamoeba castellanii

Entamoeba histolytica, the causative agent of human amebiasis, lacks both GR activity and
glutathione synthetic enzymes. Its TrxR is involved in prevention, intervention and repair of damage
caused by oxidative stress. The discovery of the amebicidal activity of auranofin has repositioned
this drug for the treatment of amebiasis [35]. Transcriptional profiling and direct assays indicated
that auranofin likely targets the E. histolytica TrxR in vivo [53]. Acanthamoeba spp. are free living
amoeba, which possess mitochondria and live in an aerobic environment. As such, Acanthamoeba spp.
can synthesize glutathione and have authentic GR in addition to TrxR [67,68]. A. castellanii acts as an
opportunistic parasite and may cause ulcerative keratitis or granulomatous encephalitis.

Our evaluation of the activity against A. castellanii [69] showed that auranofin and GoPI-sugar
displayed anti-acanthamoebal activity with IC50 at 13.04 ± 1.53 µM and 5.79 ± 1.02 µM, respectively
(Table 9). However, both displayed a cytotoxicity at around 4 µM on macrophages leading to a low
selectivity index.

2.6. Activity of GoPI-Sugar against Theileria-Transformed Leukocytes

Tropical theileriosis caused by T. annulata severely affects cattle production in the Middle East
and Asia. This apicomplexan parasite causes a lymphoproliferative disease, with similarities to
human lymphomas and myeloid leukemias. Theileria annulata infects bovine B cells and macrophages/
monocytes [70,71] resulting in a perpetual host cell proliferation. Live vaccines exist only for tropical
theileriosis [72] and are generated in vitro by attenuation of live parasites by several passages
of infected monocytes/macrophages. These attenuated cells are characterized by the loss of their
hyper-disseminating virulence trait [73,74]. Known as the only eukaryote pathogen to transform a
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eukaryote host cell, Theileria is able to manipulate host cell signaling pathways (for a review, ref. [75])
such as TGFβ [76–78] and c-Jun N-terminal (JNK) kinase leading to activation of host transcription
factors such c-Myc [79,80], NF-kB [81] and AP-1 [73,82–84]. One other characteristic is the induction of
oxidative stress, resulting in an increase of ROS including H2O2 [85].

Buparvaquone is currently the most effective treatment. It is a hydroxylnaphthoquinone that acts
by inhibiting the parasite’s electron transport chain [75]. It is important to find new medicines not only
to fight against possible resistance but also to achieve more efficacious treatment. As the GoPI-sugar
has a role in oxidative stress [15,84] and antiproliferative properties on cancer cells [15], we sought
to determine the effect of the GoPI-sugar on T. annulate-infected cells. B cells derived from a bovine
lymphosarcoma (BL3) were treated at different concentrations of GoPI-sugar ranging from 0.25 µM to
3 µM to determine a non-toxic concentration (Figure 2).
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Figure 2. Viability of non-infected bovine lymphosarcoma cells (BL3) after treatment with different
concentrations of GoPI-sugar complex.

As CC50 for Go-PI-sugar is approximately 0.5 µM (Figure 2), we decided to treat the cells at 0.25 µM
and 0.5 µM to evaluate the antiproliferation effect. We noted that the proliferation of BL3 treated with
GoPI-sugar was dampened compared to untreated BL3 cells. This delay is observed as early as 24 h
and is even more marked at 0.5 µM. For TBL3 cells (BL3 infected with an Indian strain of T. annulata)
treated with 0.5 µM, we first noted a dampened proliferation in the first 24 h (Figure 3B). In fact,
the cells remained at 200,000 cells per well compared to the number of untreated TBL3 cells, which almost
doubled in 24 h. At 0.5 µM, the antiproliferative effect occurred much earlier (24 h) while this effect was
observed later (72 h) at 0.25 µM. After 72 h, the number of cells decreased, due to cell death.
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Figure 3. Effects of GoPI-sugar complex on the proliferation of non-infected bovine lymphosarcoma
cells (BL3) and Theileria annulata-infected cells (TBL3) treated with GoPI-sugar complex at 0.25 µM (A)
and 0.5 µM (B) for 96 h.
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These results show that GoPI-sugar had an antiproliferative effect on another type of cancer, the BL3
lymphosarcoma. This result is in agreement with previously published data on breast cancers [14]
and glioblastoma cells [15]. However, a delay of the proliferation of Theileria-infected cells (TBL3) at
24 h and after 72 h of GoPI-sugar treatment was observed, suggesting that the cells started to die.
Interestingly, the cytotoxic effect of GoPI-sugar observed in TBL3 cells was absent in BL3 cells after 72 h,
the time at which only a slowdown of growth was seen. This suggests that the drug had some specific
theilericidal effect. This result appeared to be similar to that observed with buparvaquone after 24 h of
treatment; B cells stop proliferating with arrest in the G0-G1 phase of the cell cycle. Their transformed
phenotype is reversed and the cells become dependent on exogenous factors to proliferate. This effect
shows that the presence of the parasite is essential for the transformed phenotype. From 48 h of
treatment the cells died by apoptosis or returned to a state of quiescence. The effect of the GoPI-sugar
complex thus seems to resemble that of buparvaquone and may warrant more detailed future studies.

2.7. Cytotoxicity Activity of Gold(I) Complexes

Toxicity in human fetal lung fibroblast (MRC-5) cell line and primary mouse macrophages (PMM)
was assessed using a previously reported assay in 96-well microtiter plates [10]. Tamoxifen and
miltefosine were included as reference drugs (Table 10).

Table 10. In vitro cytotoxicity (CC50 µM) of gold(I) complexes in human fetal lung fibroblast (MRC-5)
and primary mouse macrophages (from the L. infantum assay).

Compounds Cytotoxicity on hMRC-5,
CC50 (µM)

Cytotoxicity on PMM 1

CC50 (µM)

Auranofin 0.52 2.00

GoPI-sugar 0.59 8.00

Tamoxifen 10.63 ND

Miltefosine ND 20.00
1 PMM: primary mouse macrophages (from the L. infantum assay).

3. Discussion

Drug repositioning holds promise for the identification of affordable new treatments for neglected
tropical diseases, for which too few effective and nontoxic drugs are available. Repositioned entities
account for about 30% of the drugs and vaccines approved by the US Food and Drug Administration
in recent years. Among these, auranofin was selected from high-throughput screens to identify new
agents against E. histolytica and entered phase I clinical trials for amebiasis [53]. This demonstrated
acceptable safety of auranofin and provided relevant pharmacokinetic data to support the idea of its
use as a broad-spectrum antiparasitic drug.

Here we find that auranofin has low or sub-micromolar killing in vitro activity against all parasites
tested, from worm to single cell protozoa. Previous studies have found that auranofin has significant
activity against several of these parasites in animal models of infection. Given the promising results in
human clinical studies with auranofin for treating amebiasis, the results presented here indicate that
auranofin may have much broader clinical potential use.

A second aim of this study was to determine the activity of a new gold (I) compound, GoPI-sugar,
against a wide variety of parasites. We particularly focused on the development of GoPI-sugar, starting
from a hit-to-lead molecule, still requiring improvement in both pharmacokinetic and toxicological
properties. In comparison with auranofin, we find that GoPI-sugar has similar activities, with killing
at low micromolar or high nanomolar concentrations against all species tested. GoPI-sugar exerted
its most promising antiparasitic activities against L. donovani intramacrophage amastigotes and the
helminths S. mansoni and B. pahangi, responsible for two major neglected tropical diseases.
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It is relevant to note that both auranofin and GoPI-sugar showed non-negligible cytotoxic
effects against mammalian cells, indicating that further compound engineering, either directly or
via formulations based on nanotechnologies, is required. However, auranofin has been approved
for clinical use and has been used for RA treatment for many years, with acceptable toxicology and
efficacy. Treating infectious diseases will require different therapy regimens than RA. While RA requires
long-term treatment with auranofin to alleviate RA symptoms, but not curing the disease, treatment
of infectious disease will require one or a few administrations for elimination of the infectious agent
and effect a cure. Differences in the basic redox biochemistry found in different eukaryotic organisms,
with dependence on unusual redox cofactors and enzymes, like trypanothione and TR, and unique
dependences on different enzymes, such as TGR, can be exploited to selectively target pathogens over
host. With this is taken into consideration, auranofin and other gold(I) containing compounds show
great potential for use in a wide range of parasitic diseases, which is supported by results generated in
the present study.

On the other hand, liposomal amphotericin B (AmBisome®) illustrates the proof-of-concept
of anti-leishmanial application of first-generation nanotechnology that resulted in improved drug
efficacy and reduced toxicity allowing safer and shorter treatments [86]. Work from Sundar S. et al.
demonstrated the comparable efficacy of a single-application regimen of AmBisome® in comparison
with the multiple dose conventional treatment with amphotericin B deoxycholate in an open-label
clinical trial for visceral leishmaniasis [87]. In the field of anticancer drugs, chemo/photothermal
combination therapy based on dual drug co-delivery nanoplatform systems linking two anticancer
agents, not only raising the drug loading content, cellular uptake and pH-responsive release rate, but
also exhibiting high photothermal activity against tumor cells, considerably improved the therapeutic
index of the final nanoformulations [88]. Future work will aim at building nanoparticles of gold(I)
complexes with enhanced penetration for efficient antiparasitic chemotherapy allowing improved
delivery of the active gold(I) principles.

4. Materials and Methods

4.1. Reagents and Tested Gold(I) Complexes

Auranofin was purchased from ICN. A new batch of GoPI-sugar was synthesized according to
reported procedures [15]. For in vitro assays, compound stock solutions were prepared in 100% DMSO
at 20 mM. Compounds were 2-fold serially diluted in DMSO followed by a further (intermediate)
dilution in demineralized water to ensure a final in-test DMSO concentration of <1%.

4.2. Helminth TGR Enzyme Assays

Enzymes were prepared in E. coli as described [24,36]. Assays were performed at 25 ◦C in 0.1 M
potassium phosphate (pH 7.4), 10 mM EDTA using 100 µM NADPH and 3 mM dithiobis(2-nitrobenzoic
acid) (DTNB) [24]. IC50 values were determined using the indicated concentration of enzyme with a
10 min preincubation with enzyme, compounds, and NADPH followed by addition of substrate DTNB
and 100 µM NADPH. The increase in A412 during the first 3 min was recorded upon DTNB addition.
The reaction was done in triplicate.

4.3. In Vitro Activity on Schistosoma and Filarial Worms

Adult ex vivo Schistosoma assay: Mice (Swiss-Webster) were infected with S. mansoni by
percutaneous exposure for 1 h to cercariae (NMRI strain) obtained from infected Biomphalaria glabrata
snails. This study was approved by the Institutional Animal Care and Use Committee of Rush
University Medical Center (17-053; Department of Health and Human Services animal welfare
assurance number A-3120-01). Adult worms were isolated from infected mice as described [89] and
cultured in RPMI medium +10% fetal calf serum (FCS), 10 mM glutamine, 100 IU/mL penicillin and
100 µg/mL streptomycin for 24 h before compound addition. Compounds were dissolved in DMSO
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and added at the indicated concentrations. The culture media was replaced every day and fresh
compounds added. Control worms were treated with DMSO alone. Worms were cultured for 5 days.
Motility and viability was scored daily using published methods [54] in which a viability score of
3 = motile, no changes to morphology, transparency and intact tegument, active ventral and oral
sucker, paired, attached to surface; 2 = reduced motility and/or some damage to tegument, reduced
transparency and granularity, some unpairing and loss of surface adherence; 1 = severe reduction
of motility and/or damage to tegument observed, with high opacity and high granularity, few or no
paired worms, more loss of surface adherence; 0 = dead, the worms appear darkened and motility of
the ventral and oral sucker is absent, and they displayed no movement over several min. Assays were
done in triplicate with about 10 worms in each well. This study was approved by the Institutional
Animal Care and Use Committee of Rush University Medical Center (17-053; Department of Health
and Human Services animal welfare assurance number A-3120-01).

Adult in vitro Brugia pahangi assay: Adult female B. pahangi worms were kindly provided by
Dr. Brenda Beerntsen, University of Missouri, Columbia, MO. Individual female worms were assayed
in 500 µL of culture medium (RPMI-1640 with 25 mM HEPES, 2.0 g/L NaHCO3, 5% heat-inactivated
FBS and antibiotic/antimycotic solution) in 24-well plates [36]. Worms treated with 1% DMSO served
as negative control and there were four replicates per compound. Worms were maintained at 37 ◦C
in a 5% CO2 incubator for the duration of the assay. Individual worm movement was assessed from
day 1–6 using the Worminator [55], which reports worm motility as mean movement units (MMU),
a measure of pixels displaced. MMUs are then used to calculate percent inhibition of worm motility
compared to control worms. IC50 were determined using 6-pt serial dilutions (10, 3, 1, 0.3, 0.1, 0.03 µM)
and calculated the nonlinear regression curve fit using Prism 7 (Graphpad, La Jolla, CA, USA). All IC50

results had R2 values ≥0.7.
Onchocerca ochengi adult worm assays: For O. ochengi worm assays, subcutaneous nodules

containing adult O. ochengi worms were removed from the hides of infected cows collected at abattoirs
in Douala, Cameroon. Masses were incubated in 4 mL of complete culture medium (RPMI-1640, 5%
newborn calf serum, 200 units/mL penicillin, 200 µg/mL streptomycin and 2.5 µg/mL amphotericin
B) in standard 12-well culture plates and maintained in a 37 ◦C, 5% CO2 incubator overnight during
which time the adult males migrated out of the masses while the females remained in the nodules.
Compound and control wells (worms in 1% DMSO) were tested in quadruplicate and experiments
were repeated twice on different days. Cultures were terminated on day 7. Adult male worm viability
was visually scored on day 5 as percent reduction of motility ranging from 100% (complete inhibition
of motility), 75% (worm very sluggish), 50% (worm sluggish), 25% (little change in motility) to 0%
(no observable reduction in motility). Adult female worm viability was assessed on day 7 by the
standard MTT/formazan assay in which each nodular mass was placed in a well of a 48-well plate
containing 500 µL of 0.5 mg/mL MTT (Sigma-Aldrich) in culture medium. Viability was evaluated
visually by the extent to which the female worm mass was stained with MTT. Mean percent inhibition of
formazan formation was calculated relative to the negative control worm masses after 7 days in culture.

O. ochengi microfilariae assays: were collected from the hides of infected cattle and washed prior
to adding 10–15 microfilariae to 96-well culture plates containing confluent monkey kidney epithelial
cells in 100 µL of media. Microfilariae were run in duplicate and plates were maintained at 37 ◦C in a
5% CO2 incubator. Microfilariae viability was visually scored using percent reduction of motility using
the same scoring criteria used for adult males. Scores were recorded every 24 h after addition of drugs
for 5 days using an inverted microscope.

L. loa microfilariae assays: L. loa microfilariae were purified from the blood of infected individuals
using a step-wise Percoll gradient (46% and 43% Percoll) followed by centrifugation at 400 rcf for 20 min.
The microfilariae were recovered in the 43% layer then assayed using the same culture conditions and
method as the O. ochengi microfilariae.
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4.4. In Vitro Drug Activity against T. b. brucei, T. cruzi and L. infantum

Anti-leishmanial activity: L. infantum MHOM/MA (BE)/67 amastigotes were collected from the
spleen of an infected donor hamster and used to infect primary peritoneal mouse macrophages grown
in a 96-well plate. After 2 days outgrowth, 5 × 105 amastigotes were added to each well and incubated
for 2 h at 37 ◦C. The compounds were subsequently added and the plates were further incubated
for 5 days at 37 ◦C and 5% CO2. Parasite burdens (mean number of amastigotes/macrophage) were
microscopically assessed on 500 cells after Giemsa staining and expressed as a percentage of the blank
controls. Miltefosine was included as reference drug. The use of laboratory rodents was carried out in
accordance to all mandatory guidelines (EU directives, including the Revised Directive 2010/63/EU
on the Protection of Animals used for Scientific Purposes that came into force on 1 January 2013,
and the declaration of Helsinki in its latest version) and was approved by the Ethical Committee of the
University of Antwerp, Belgium [UA-ECD 2011–77 (17-02-2012 and UA-ECD 2015-90].

Anti-trypanosomal activity: T. b. brucei Squib-427 strain (suramin-sensitive) and T. b. gambiense
(ITMAP/1893) were cultured at 37 ◦C and 5% CO2 in HMI-9 medium supplemented with 10% FCS [90].
About 104 trypomastigotes/well were added to each well and parasite growth was assessed after 72 h
at 37 ◦C by adding resazurin and reading at ex 550 nm, em 590 nm [91]. Suramin was included as
reference drug for T. b. brucei and pentamidine for T. b. gambiense.

Anti-Chagas activity: T. cruzi Tulahuen CL2 (benznidazole-sensitive, LacZ-reporter strain) [92]
was maintained on MRC-5 cells in minimal essential medium (MEM) supplemented with 20 mM
L-glutamine, 16.5 mM sodium hydrogen carbonate and 5% FCS. In the assay, 4 × 103 MRC-5 cells
and 4 × 104 parasites were added to each well. After incubation at 37 ◦C for 7 days, parasite growth
was assessed by adding the substrate chlorophenol red -D-galactopyranoside. The color reaction was
read at 540 nm after 4 h and absorbance values were expressed as a percentage of the blank controls.
Benznidazole was included as reference drug.

4.5. In Vitro Drug Activity against L. donovani and A. castellanii

In vitro anti-leishmanial evaluation was perfomed on both axenic and intramacrophage L. donovani
amastigotes as previously described [63]. Auranofin and GoPI-sugar were also evaluated in vitro on
A. castellanii (ATCC© 30010TM, genotype T4) cultured at 27 ◦C in Peptone Yeast-extract Glucose medium
(PYG medium; ATCC© Medium 712) supplemented with 100 units/mL penicillin-streptomycin
(Gibco, Life Technologies, Courtaboeuf, France), according to a reported procedure [69]. Briefly,
compounds were distributed in 96-well plates using 2-fold dilutions in 100µL PYG medium. A. castellanii
trophozoites were added to each well at 5 × 104 amoeba/mL in 200 µL final volume. L. donovani axenic
amastigotes were added to each well at 106 parasites/mL in 200 µL final volume. After 72 h incubation
at 27 ◦C, 20 µL of 1 mM resazurin was added to each well and further incubated at 27 ◦C for 8 h
for A. castellanii and for 24 h for L. donovani axenic amastigotes. In living cells, resazurin is reduced
in resorufin. This conversion is monitored by measuring the absorbance at specific wavelengths of
resorufin (570 nm) and resazurin (600 nm) using a microplate reader (Labsystems Multiskan MS,
McLean, VA, USA). In this assay, the activity was expressed in IC50. Miltefosine and pentamidine were
used as reference drugs. All experiments were performed in three independent experiments.

4.6. In Vitro Drug Activity against Theileria-Transformed Leukocyte

Theileria annulata culture: The TBL3 cell line was derived by in vitro infection of the spontaneous
bovine B-lymphosarcoma cell line BL3 with the Hissar stock of T. annulata. B cell characteristics of the
lines have been described [93]. The cells are maintained at 37 ◦C under 5% CO2, in RPMI medium
supplemented with 10% FCS, 25 mM Hepes, 4 mM L-glutamine, 100 µg/mL of streptomycin, 100 IU/mL
of penicillin and 5% 2-mercapthoethanol.

Cells were cultured in 12-well plates at an initial density of 200,000 cells per well in duplicate
for each condition. In the toxicity test, the cells were treated GoPI-sugar ranging from 0.25 µM to
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3 µM and cell counting was performed at 24, 48 and 72 h using an automatic cell counter (BIO-RAD
TC20TM) and trypan blue to determine cell viability. In the proliferation test, the BL3 and TBL3 cells
were treated with GoPI-sugar at the concentration representing the IC50 determined during the toxicity
test. The cells were cultured in 12-well plates at an initial density of 200,000 cells per well and drug
was added every 24 h. To be able to compare the results, a drug-free control was also performed.
Cell counting was done at 24, 72 and 96 h using the trypan blue method.

4.7. Cytotoxicity on Mammalian Cells

Cytotoxicity was evaluated on RAW 264.7 macrophages that were maintained at 37 ◦C with 5%
CO2 in Dulbecco’s Modified Eagle’s Medium (DMEM, Invitrogen, Toulouse, France) supplemented
with 100 U/mL penicillin-streptomycin (Invitrogen) and 10% heat-inactivated fetal bovine serum,
as previously described [94]. Briefly, cells were plated in 96-well microplates at a density of 2 × 104 cells
per well. After incubation for 24 h at 37 ◦C in 5% CO2, the medium was removed from each well
and 100 µL of medium containing 2-fold serial dilutions of compounds was added to each well.
After 48 h incubation at 37 ◦C in 5% CO2, 10 µL of 450 µM resazurin was added to each well and further
incubated in the dark for 4 h. Cell viability was determined as described above. The cytotoxicity of the
compounds was expressed as CC50.

For MRC5SV2 or PMM cells, the assays were performed in 96-well microtiter plates, each well
containing 10 µL of compound dilution and 190 µL of cell inoculum (3 × 104 cells/mL) as reported [10].
Cell growth was compared to untreated controls (100% growth) and assay-media controls (0% growth).
After three-day incubation, cell viability was assessed fluorometrically by adding resazurin [50 µL/well
of a stock solution in phosphate buffer (50 µg/mL)], incubating for 4 h and measuring fluorescence
(ex 550 nm, em 590 nm). The results are expressed as percentage reduction in cell growth as compared to
untreated control wells. IC50 values were determined using an extended dose range (2-fold compound
dilutions, 8-point concentration curve) to a highest concentration of 64 µM. Tamoxifen was included as
the reference drug.

Supplementary Materials: The following are available online, on pages S1–S4: 1H, 13C and 31P NMR spectra of
compounds GoPI and GoPI-sugar.
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