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Abstract: Neuroblastoma (NB) is the most common pediatric tumor malignancy that originates
from the neural crest and accounts for more than 15% of all the childhood deaths from cancer.
The neuroblastoma cancer research has long been focused on the role of MYCN oncogene amplification
and the contribution of other genetic alterations in the progression of this malignancy. However, it is
now widely accepted that, not only tumor cells, but the components of tumor microenvironment
(TME), including extracellular matrix, stromal cells and immune cells, also contribute to tumor
progression in neuroblastoma. The complexity of different components of tumor stroma and their
resemblance with surrounding normal tissues pose huge challenges for therapies targeting tumor
microenvironment in NB. Hence, the detailed understanding of the composition of the TME of NB is
crucial to improve existing and future potential immunotherapeutic approaches against this childhood
cancer. In this review article, I will discuss different components of the TME of NB and the recent
advances in the strategies, which are used to target the tumor microenvironment in neuroblastoma.

Keywords: tumor microenvironment; neuroblastoma; immunosuppression; hypoxia; extracellular
matrix; metastasis

1. Introduction

Neuroblastoma is an extremely heterogeneous pediatric tumor that arises from neural crest and
patients with this malignancy account for more than 15% of all childhood cancer deaths [1,2]. The overall
incidence of neuroblastoma is 1 patient per 100,000 children and every year 600–700 new cases are
diagnosed in the United States of America [3]. NB patients are stratified into low-, intermediate- and
high-risk groups, based on different parameters, including tumor histology, clinical stage, tumor cell
ploidy, and MYCN oncogene amplification [4]. In approximately, 50% of children with this disease,
tumors lack amplification of MYCN oncogene and these patients show overall survival more than
90%. However, the other half of the patients constitutes a high-risk group and these patients either
harbor tumors with MYCN amplification, or are older than 18 months and display metastatic disease
regardless of MYCN amplification. Despite the most advanced and intensive therapeutic approaches
that combine surgery, myeloablative chemotherapy, radiation therapy, and anti-disialoganglioside
(GD2) mAb ch14.18 based immunotherapy, the chances of long term survival in the high-risk group
is even less than 40% [5,6]. Hence new and effective therapeutics are required to treat patients with
high-risk NB.

The development of effective anti-cancer therapies is highly challenging due to the complex
nature of tumor microenvironment [7,8]. Tumor microenvironment (TME) is a highly specialized
niche that develops during tumor progression and is comprised of not only tumor cells, but vascular
endothelial cells, cancer associated fibroblasts (CAFs), mesenchymal stromal cells (MSCs), Schwann
cells and infiltrating immune cells (T cells, B cells, tumor associated macrophages, myeloid derived
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suppressor cells, natural killer cells) are also major components of TME. The initiation and progression
of tumor growth rely on complex series of biological events in a normal cell that leads to uncontrolled
cell proliferation, resistance to apoptosis, alteration of tumor cell metabolism, and remodeling of
extracellular matrix [9–11]. These events are orchestrated by communication between stromal and
immune cells, which further promote inflammation, stiffness of extracellular matrix (ECM), maturation
of TME, vascular remodeling and metastasis [12]. TME plays a crucial role in tumor progression,
metastasis, immunosuppression and resistance of tumor cells to chemotherapy and checkpoint inhibitor
therapy. Hence, the remodeling of TME has recently emerged as a novel strategy in treating solid
cancers, including NB [7,13,14].

In this review article, I will discuss different components of TME of neuroblastoma, with a special
focus on targeting extracellular matrix, hypoxia, tumor vasculature, stromal cells and infiltrating
immune cells. I will also discuss the recent ongoing clinical trials in neuroblastoma patients that target
TME and will review future directions for targeting TME in NB.

2. Genetic Alterations and Tumor Microenvironment of Neuroblastoma

Studies undertaken to evaluate and understand the TME of NB is highly challenging due to the
limited availability of primary tumors with viable cell populations. Patients with high-risk disease are
treated with various cycles of chemotherapy followed by surgical removal and at this time most of the
tumors get necrotic and calcified, and these tumors cannot be used for studies requiring viable cells.
However, recently, molecular techniques have allowed the gene expression profiling of NB tumors in
depth and these studies have provided information on the improved treatment stratification of NB
and TME of neuroblastoma [15–17]. These studies have shown that nearly 20% of NB patients show
amplification of MYCN oncogene while non-MYCN amplified NB cases display other chromosomal
rearrangements such as 3p, 4p, 11q loss or 1q, 2p, and 17q gains. Pugh et al., has studied the spectrum
of somatic mutations in high risk neuroblastoma and reported low exonic mutation frequency and
very few recurrently mutated genes in these tumors [18]. Genes with significant somatic mutation
frequencies reported according to this study included ALK, PTPN11, ATRX, MYCN, and NRAS.

Various signaling pathways, including PTEN/PI3K/AKT and RAF/MEK/ERK control stabilization
of MYCN and are major mediators of uncontrolled tumor growth, angiogenesis, invasion, apoptosis
and cellular metabolism in neuroblastoma [19–21]. PI3K/AKT signaling axis controls GSK3β dependent
regulation of MYCN and stabilization of HIF1α and hence the efficacy of inhibitors targeting these
signaling axes has been tested in NB models [22–24]. Seeger and his group have extensively
studied non-MYCN amplified tumors and have provided valuable information on the TME of these
tumors [25–27]. A recent study by this group revealed that metastatic tumors had higher infiltration of
tumor associated macrophages (TAMs), as compared to loco-regional tumors in non-MYCN amplified
NB tumors [28]. This study has also identified that neuroblastoma patients with an age of ≥18
months had higher expression of inflammation-related genes (IL10, IL6R, CD16, CD33, and FCGR3),
as compared to patients diagnosed at age ≤ 18 months. TAMs also contribute to the stimulation of
hypoxic microenvironment in NB by inducing transcription of hypoxia inducible factor (HIF 2α) [29].
Besides macrophages, the presence of cancer associated fibroblasts (CAFs), mesenchymal stromal
cells (MSCs), endothelial cells and inflammatory immune cells including regulatory T cells (Treg),
myeloid derived suppressor cells (MDSCs); also contributes to highly vascular, angiogenic, hypoxic
and immunosuppressive microenvironment of NB [7,30–32]. Immunosuppressive microenvironment
in NB is generated due to various reasons, which include (1) infiltrating immunosuppressive immune
cells including macrophages, regulatory T cells and myeloid derived suppressor cells, (2) soluble
factors secreted in neuroblastoma microenvironment which mediates immunosuppression like TGF
beta, IL10, and galectin-1, (3) defects in antigen-presenting machinery (APM) and low levels of MHC
class I molecule displayed by NB cells. The details on immunosuppressive microenvironment have
been reviewed in detail before [30,31].
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3. Targeting the Tumor Microenvironment of NB

Cancer research has long been focused on targeting the tumor cells only and monoclonal
antibodies targeted against GD2, a ganglioside present selectively in human NB tumor cells has shown
great promise in NB patients, especially in the setting of minimal residual disease [33–35]. Several
clinical trials are ongoing with murine or chimeric anti-GD2 monoclonal antibodies either alone or in
combination with IL2, GMCSF and retinoic acid [5,36,37]. Clinical trial with ex-vivo expanded and
activated donor natural killer cells with Hu14.18-IL2 is also ongoing for patients with relapsed or
refractory neuroblastoma (NCT03209869). Recently genetic engineering of T lymphocytes to express
anti-GD2 chimeric antigen receptor (CAR) has also been developed and tested in clinical trials [38–40].
However, despite the clinical success of CAR T cells in hematological malignancies, the efficacy of this
therapy has not shown any significant benefit in solid tumors including NB due to immunosuppressive
TME in neuroblastoma [30,41]. Hence, understanding the TME of NB is crucial for the generation of
efficient therapeutic strategies to treat this childhood cancer. Here, we describe the current strategies
used to target the TME of NB, as shown in Figure 1.
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3.1. Targeting the Extracellular Matrix

The extracellular matrix is a three-dimensional network of extracellular molecules, composed
of collagen, elastin, fibronectin, reticulin fibers, hyaluronic acid, proteoglycans, and glycoproteins
that provides both structural and biochemical support to surrounding cells, and is responsible for
transmitting extracellular signals to cells [42]. The composition of ECM plays an important role in the
progression of the tumor by promoting angiogenesis, invasion, and metastasis [42]. The heterogeneity
of tumor cells, hypoxia and augmented inflammation in the TME promote alterations in the ECM
components which lead to increased collagen deposition and increased ECM density and stiffness [43].
In NB, the collagen fiber matrix augments the differentiation of human neural crest stem cells towards
Schwann cell lineage and increased collagen cross-linking contributes to tumor progression [44,45].
In addition to this, reticulin fibers, which are composed of collagen III fibers influence morphological
changes of the cell as well as affect biological functions in NB [46]. The rigidity or stiffness of ECM
also affects the cellular behavior of NB cells including stem cell differentiation, neurite extension,
proliferation, and malignant potential of these cells [47–49]. Several studies have shown that alterations
in the biochemical composition of ECM promote morphological differentiation of NB cells [50–52].
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Lam et al. have shown that rigidity of ECM increases neuroblastoma cell differentiation and N-Myc
expression [53]. In addition, various authors have shown that increasing stiffness of ECM can augment
neuritogenesis, inhibit proliferation of neuroblastoma cells, reduce the expression of N-Myc and
addition of retinoic acid can enhance these effects. The role of glycosaminoglycans in cell anchoring
and scaffolding properties has been studied in some malignancies including NB and they are recently
considered as novel therapeutic targets in these malignancies [54–56]. In a study by Irene Tadeo,
the authors used advanced morphometric approaches to evaluate blood vessels, elastic fibers, reticulin
fiber networks, collagen type I bundles and glycosaminoglycan in 102 high-risk NB samples [57].
Based on the organization of reticulin fibers and blood vessels, authors have found that 30 out of 102
patients belongs to ultra-high risk group within this high-risk group and these patients have a 5-year
survival rate of <15%. This ultra-high risk group is classified on the basis of death of patients from this
disease within 18 months after diagnosis. Neuroblastoma tumor cells also express several integrins to
communicate with the ECM [58]. Integrin α4β1 is reported to enhance metastasis and is associated
with poor prognosis in non MYCN amplified tumors [59]. Some studies have shown that integrin
αvβ3 is expressed on endothelium was increased in high metastatic, stage 4 NB as compared with
localized NB [60]. In another report, αvβ3 integrin is reported to be expressed on 68% of microvessels
in MYCN amplified stage 3 neuroblastoma and 34% in MYCN-non amplified tumors [22].

To target ECM, angiotensin receptor antagonist, Losartan, has shown great effects in reducing
secretion of collagen I and in improving the delivery of chemotherapeutic drugs [61]. Ronespartat
(SST001), an heparanase inhibitor has shown great efficacy in inhibiting tumor growth of human
pediatric sarcoma models either alone and in combination with anti-angiogenic agents [62]. The role of
matrix metalloproteinase (MMPs) in the modulation of ECM in TME and its association with poor
prognosis in NB is also well-documented [63–65]. MMPs promote the degradation of ECM barriers and
release active growth factors and promote cancer cell invasion and tumor angiogenesis [66]. Several
MMP inhibitors, such as Marimastat, Incyclinide (CMT3, COL 3), and Minocycline, are developed
that went into clinical trials for advanced carcinomas [67,68]. One pre-clinical study has shown that
Marimastat reduced the in vitro invasion of neuroblastoma cells [69]. Other MMP targeting strategy
includes highly selective MMP9 inhibitor JNJ0966 that allosterically inhibit zymogen activation [68].
In another report, MMP14 targeting antibody Fab 3369 blocks immunosuppression and metastasis in
triple-negative cancer [70]. However, most MMP targeting inhibitors did not show promising results
in clinical trials with respect to other cancers [71], and hence their application in early cancer stages
can provide some benefit in clinical trials. These inhibitors have rarely been tested for targeting MMP
in pediatric neuroblastoma and hence should be explored in the future.

3.2. Targeting Hypoxia

The rapid proliferation of tumor cells leads to an increase in the requirement of oxygen supply
which cannot be fulfilled by surrounding blood vessels, resulting in limited oxygen supply to the cells
and hypoxia [72]. Hypoxia initiates a series of cellular responses in reaction to a low oxygen supply,
mainly coordinated by transcription factors, hypoxia inducible factor 1 and 2 [73]. These transcription
factors are known to regulate genes involved in glucose metabolism, cell proliferation, angiogenesis
and polarization of tumor associated macrophages [10,73]. The expression level of both HIF 1 and 2 are
known to correlate with patient outcome in various solid cancers, including neuroblastoma [29,74,75].
In NB, the expression of HIF 1 and HIF 2 α has revealed interesting differences with disease stage
and clinical outcome [76]. A study by Pietras et al. has shown that fast growing tumors show high
immunostaining of HIF factors in high-risk neuroblastoma. Studies by Jogi et al. and Fredlund et al.
have shown that hypoxia promotes aggressive neuroblastoma features [77,78]. These studies have
shown positive correlation between hypoxia and immature neuroblastoma phenotype [77] and its
association with poor clinical outcome [78]. HIF1α expression is associated with the low tumor grade
and favorable prognosis while expression of HIF2α correlated with high tumor grade and unfavorable
prognosis [76,79,80]. These studies illustrate that tumor cells that stained positive for HIF2α are more
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aggressive and are linked to high-risk disease. In another study by Dungwa et al., the authors have
reported that HIF1α levels correlate positively with MYCN amplification and various other adverse
prognostic factors like 1p deletion and 17q gain [81]. In this study, authors have found significant
decrease in event free survival and overall survival when immunoexpression of HIF-1α is considered
positive for ≥ 10% of tumour cells. The main finding of this study is that expression of HIF-1α is
high in aggressively growing NB tumors. In another study by Applebaum et al., authors have found
a set of genes regulated by hypoxia and the expression of these genes correlate well with adverse
outcome in neuroblastoma patients [82]. Pietras et al. have shown that HIF 2α maintains human NB
cells in an undifferentiated state and hence targeting HIF2α is an effective strategy to treat NB [83].
VEGF is a downstream target of both HIF1α and HIF2α and the expression level of both isoforms
correlate positively with VEGF expression in NB [76]. Various reports have demonstrated HIF2α is an
attractive therapeutic target in neuroblastoma [79,83]. PT2385 a novel inhibitor of HIF2α transcriptional
activity has been tested in a preclinical model of clear cell renal cell carcinoma [84,85]. PT2385 and
its analog PT2399 have shown great efficacy in preclinical models of clear cell renal cell carcinoma
(ccRCC) [84,86], which leads to phase 1 clinical trial of this molecule in patients of advanced ccRCC
(NCT02293980). The effect of PT2385 has been evaluated in only one study in neuroblastoma and the
study has shown that PT2385 did not affect the cellular response to chemotherapy in neuroblastoma
PDX model [87]. However, recently no clinical trial of this drug is in place for neuroblastoma patients,
but this drug can be evaluated in NB clinical trials, based on the efficacy of this drug in ccRCC and
recurrent glioblastoma.

3.3. Targeting Tumor Vasculature

The work from various labs indicate that vascularization of the tumor is highly coordinated
and regulated by a physiological response to hypoxia and inflammation [88,89]. The initiation
of angiogenesis also known as “angiogenesis switch” is induced by the release of pro-angiogenic
factors [90]. VEGF/VEGFA is the most common pro-angiogenic factor found in neuroblastoma
tumors, but many other factors like fibroblast growth factor (FGF), platelet-derived growth factor
(PDGF) are reported in NB [91–93]. In neuroblastoma, tumor vasculature is associated with an
aggressive phenotype [94–96]. The over-expression of VEGF has been demonstrated in neuroblastoma
and preclinical studies have shown that expression of VEGF correlates with the high-risk disease
in NB [97,98]. In a recent study, Jakovljevic et al. have determined VEGF expression in paraffin-
embedded primary tumor tissue from 56 neuroblastoma patients and reported that VEGF expression
correlated with disease stage in NB patients [99]. There is also evidence that PI3K up-regulates the
expression of VEGF via MYCN dependent mechanisms in NB and the use of PI3K/mTOR inhibitors
suppresses NB tumor progression by regulating MYCN degradation, and through paracrine blockade
of angiogenesis [20,100]. Various pre-clinical studies have shown that anti-angiogenic strategies
might be effective in NB [101–103]. Bevacizumab is an anti-human VEGF antibody and is used
to treat various cancers, including neuroblastoma [104,105]. Several clinical trials of bevacizumab
both alone or in combination with various other agents are completed or ongoing in neuroblastoma
and are shown in Table 1. In 2008, a phase I clinical trial was opened to explore the maximum
tolerated dose of bevacizumab in pediatric patients with refractory relapsed tumors [106]. This study
has shown that bevacizumab is well-tolerated in children, which leads to the opening of phase 2
clinical trials of bevacizumab in combination with other chemotherapeutic drugs. In a phase II
study bevacizumab, is paired with irinotecan, and temozolomide for refractory and relapsed NB
patients (NCT01114555) [107]. The combination of drugs was well tolerated but the addition of
bevacizumab did not improve response rates over a combination of irinotecan and temozolomide [107].
Bevacizumab has shown great results in the preclinical neuroblastoma model in combination with
cyclophosphamide [108]. Based on these pre-clinical studies, a phase II clinical trial of Bevacizumab
with cyclophosphamide and topotecan is completed in patients with relapsed/refractory Ewing
sarcoma and neuroblastoma (NCT01492673). In a separate Phase 1 clinical trial, cyclophosphamide
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and Bevacizumab are combined with zoledronic acid for treatment of patients with recurrent or
refractory high-risk neuroblastoma patients (NCT00885326). Bevacizumab has also been combined with
radioimmunoconjugate consisting of 3F8, a murine anti-GD2 antibody labeled with iodine 131 (I-131) in
phase I clinical trial for treating patients with relapsed or refractory neuroblastoma (NCT00450827) [109].
In another ongoing Phase 2 neuroblastoma randomized clinical trial (NCT02308527) also known as
BEACON neuroblastoma trial, bevacizumab, irinotecan, and temozolomide has been combined with
topotecan for treatment of patients with relapsed or refractory neuroblastoma [110]. A recent study
has shown that bevacizumab treatment can improve the anti-tumor efficacy of GD2-CAR cells in the
human neuroblastoma preclinical model [111]. Pazopanib (Votrient) is a multi-kinase inhibitor and
has shown anti-angiogenic activity in combination with topotecan in pediatric solid tumors [112,113].
A phase I study of Pazopanib was initiated to study the efficacy of this agent in refractory pediatric
neuroblastoma tumors (NCT01130623).

Table 1. Anti-angiogenic agents used alone or in combinatorial therapy in clinical trials in neuroblastoma.

Therapeutic
Agent Target Combination Therapy

or Drug Used
Clinical Trial

and Reference
Status of

Clinical Trial Phase

Bevacizumab VEGF Phase 1

Irinotecan plus
temozolomide NCT01114555 [107] Phase 2

Cyclophosphamide plus
topotecan NCT01492673 Phase 2

Cyclophosphamide and
zoledronic acid NCT00885326 Phase 1

Iodine 131 monoclonal
antibody 3F8 NCT00450827 [109] Phase 1

Temozolomide plus
irinotrecan plus
topotecan plus

dinutuximab (BEACON)

NCT02308527 [110] Phase 2

Pazopanib
(GW786013)

VEGFR1,
VEGFR2,
VEGFR3

NCT01130623 Phase I

SF1126 PI3K/mTOR NCT02337309 [22] Phase I

The pre-clinical studies carried out in our lab have shown that dual PI3K/BRD4 inhibitors SF1126
and SF2523 suppress neuroblastoma tumor growth, angiogenesis and metastasis [22,114]. Both SF1126
and SF2523, orthogonally hit PI3K and BRD4 signaling, which blocks MYCN expression, activation
and promotes MYCN degradation, ultimately leading to reduced tumor growth, angiogenesis and
tumor metastasis [22,114,115]. BRD4 inhibitors are known to inhibit transcription of MYCN, induce
apoptosis and impair tumor growth of neuroblastoma [116]. PI3K inhibitors are also reported to kill
neuroblastoma cells by inducing degradation of MYCN [117]. Hence the effect of SF2523 on tumor
angiogenesis and metastasis are secondary effect of this drug on TME. SF1126 also blocked tumor
angiogenesis, metastasis, and increased the M1 to M2 ratio in various preclinical mouse models,
including neuroblastoma [118–121], which lead to phase 1 clinical trial of this drug in various solid
tumors (NCT00907205) and pediatric neuroblastoma malignancies (NCT02337309). Some studies
have shown that fibronectin isoform, B-FN is a marker of angiogenesis [122,123] and targeting tumor
vasculature using L19 (scFv), a human recombinant specific antibody specific for B-FN, has provided
benefit in cancer patients and experimental mouse models [124,125]. In another study, Balza et al.,
has shown that targeting TNF α and IL2 to NB cells by L19 (scFv), can cure and vaccinate animals and
is strongly associated with the generation of adaptive immunity involving CD4+ and CD8+ T cells in
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neuroblastoma model [126]. L19-TNFα and L19-IL2 have been used in preclinical models of cancer
and are presently undergoing testing in phase I/II clinical trials for cancer treatment [127].

3.4. Targeting Stromal Cells

Solid tumors contain malignant cells, as well as different kinds of stromal cells, which includes
immune cells, endothelial cells, cancer associated fibroblasts (CAFs) and mesenchymal stromal cells
(MSCs). The interplay between tumor cells and stromal cells contributes to tumor progression and
metastasis. In this section, I will discuss about CAFs and MSCs and immune cells will be discussed in
next section.

3.4.1. Targeting Cancer Associated Fibroblasts

As cancer progresses, fibroblasts get converted to CAFs and these activated fibroblasts share
similarities with fibroblasts activated during wound healing [128]. CAFs acquire features of myofibroblasts,
including the increased production of α-smooth muscle actin (α SMA) and promote tumor growth and
progression. CAF infiltration has been associated with poor clinical outcomes in various cancers including
neuroblastoma [129–131]. CAFs secrete TGFβ and SDF-1/CXCL12 that regulate EMT transition and
recruit endothelial progenitor cells to the tumor site to facilitate angiogenesis, and tumor growth,
respectively [132,133]. TGFβ is a cytokine which also mediates immunosuppression in the TME [134].
In addition, CAFs secrete cytokines such as CCL2 and SDF to recruit TAMs in the TME [133]. The role
of CAFs in the progression of neuroblastoma has been studied in 60 NB tumors and this study has
found a high number of CAFs correlate with microvessel density [131]. This study has also shown
that CAF inversely correlates with Schwannian stroma in neuroblastoma tumors and authors have
suggested that Schwann cells might prevent the activation of CAFs. A recent study by Hashimoto et al.
has shown that TAMs and CAFs closely interact in the TME and this interaction provides a favorable
environment for neuroblastoma progression [135]. This study has also shown that both, the number of
TAMs and the area of CAFs were significantly correlated with clinical stage and MYCN amplification.
Recent studies have shown that CAFs also contribute to immunosuppressive TME by secreting TGFβ,
and hence, CAFs are excellent therapeutic targets for immunotherapy approaches for cancer [136].
In pre-clinical studies, the TGFβ2 antisense modified allogeneic tumor cell vaccine showed increased
efficacy in an intracranial glioma mouse model [137]. However in neuroblastoma, in pre-clinical
studies, co-targeting of retinoid and TGFβ signaling pathways through combination of retionoic acid
and Kartogenin (TGFβ signaling activating molecule) has decreased the viability of MYCN amplified
neuroblastoma cells. CAFs also express different molecules including MMPs and fibroblast activated
protein (FAPs), which can be targeted for immunotherapy [136,138,139]. The over-expression of FAP
has been associated with tumor incidence and microvessel density in various experimental mouse
models [140]. RO6874281 is a bispecific IL2 immunocytokine which targets cancer associated fibroblasts
via binding to FAP and has shown potent anti-tumor activity in melanoma, neuroblastoma and colon
carcinoma models [141]. Two clinical studies utilizing FAP specific monoclonal antibodies viz. Iodine
131-labeled FAP specific monoclonal antibody (I131 F19 MAb) and humanized F19 monoclonal antibody
(sibrotuzumab) have been conducted [142]. FAP targeted vaccines have also been explored by several
groups, and studies have shown that DNA vaccine targeted against FAP suppresses tumor growth in
different cancer models [143–145]. FAP targeted vaccines or FAP specific monoclonal antibodies have
not been evaluated in neuroblastoma yet but can be used in future clinical trials.

3.4.2. Targeting Mesenchymal Stromal Cells

Mesenchymal stromal cells (MSCs) are also an important component of TME of NB [146]. These are
multipotent cells that can be differentiated into different lineages including bone, skeletal muscles,
tendon and cartilage [147]. The role of MSCs in neuroblastoma tumor progression and metastasis is
well documented [32,148,149]. These cells interact with the tumor cells and other stromal cells to mediate
tumor progression. Several reports suggested that these cells can modulate TME by affecting immune
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cell responses [32,146]. A study by Ma et al. has shown that neuroblastoma cells express both receptors
for stromal cell derived factor 1 (SDF 1), i.e., CXCR4 and CXCR7. Furthermore, authors have shown
that MSCs can enhance tumor metastasis by secreting SDF1 and this effect can be blocked by AMD3100,
an antagonist of SDF-1 [149]. In a separate study, authors have shown that MSCs can upregulate CXCR4
expression and can induce invasiveness in neuroblastoma cell lines [150]. The expression of CXCR4 and
CXCR7 has been demonstrated in most of the cell lines derived from patients harboring MYCN amplified
or non-MYCN non-amplified tumors [151,152]. The expression of CXCR4 correlated with the bone
marrow metastasis in primary neuroblastoma tumors [153]. Pelizzo et al. isolated and characterized
MSC from tumor tissues of seven pediatric neuroblastoma patients [32]. The gene expression profiling
and the functional properties revealed that these stromal cells contribute to tumor immune escape
and metastatic traits of neuroblastoma. DeClerk and his group has done extensive studies on MSC
in NB [154–157]. A recent study by his group has shown that MSCs share characteristics with CAFs
and preliminary mouse experiments have suggested that MSCs are recruited into the tumors and are
converted into CAFs [155,158]. Several studies have shown that targeting MSCs can be an effective
strategy to control tumor growth as these cells can be easily modified to secrete immunomodulatory
molecules [159,160]. A recent study by Relation et al. has shown that intra-tumoral delivery of
interferon γ-secreting MSCs can polarize macrophages into the M1 phenotype and can suppress
neuroblastoma proliferation [161]. To target MSCs, CXCR4 antagonist, Plerixafor has been used for
hematopoietic stem cell mobilization in patients with metastatic neuroblastoma [162,163]. A phase 2
clinical trial of Plerixafor in combination with the standard regimen for stem cell mobilization was
initiated in patients with refractory neuroblastoma (NCT01288573).

3.5. Targeting Infiltrating Immune Cells

The speed of tumor growth depends on the interplay between cancerous cells and the host
immune system. The concept of “cancer immunoediting” given by Schreiber et al. consists of three
sequential phases: Elimination, equilibrium, and escape [164]. During the initial “elimination phase”,
both innate and adaptive immune system work together to eradicate the tumor before it is clinically
visible. The immune cells involved in this phase are effector CD8+ T cells, NK cells, macrophages,
dendritic cells, and natural killer T cells. Most tumor cells are destroyed in the equilibrium phase,
however, some rare mutant cells are not destroyed in this phase and they enter into next “equilibrium
phase.” In the “equilibrium phase” tumor cells are maintained in a state of immune-mediated dormancy
and this stage may last for the life-time of an individual [165]. The length of the equilibrium phase
depends on the stability between the immune tolerance of tumor cells and the strength of endogenous
anti-tumor immunity. This process of continuous immune pressure on genetically unstable tumor cells
leads to the generation of variant tumor cells, which are no longer been recognized by the immune
system and enter into the “escape phase”, in which tumors begin to grow progressively without any
immunological constraints and establish immunosuppressive microenvironment [166]. The role of
tumor infiltrating leukocytes in mediating anti-tumor immunity and in the modulation of TME has
been demonstrated in various studies, including neuroblastoma [167,168]. During early neoplastic
lesion, the infiltration of cytotoxic CD8+ T cells dominates, however as the tumor progresses, these cells
are outnumbered by tumor associated macrophages, myeloid derived suppressor cells and regulatory
T cells which mediate immunosuppression in TME [167,168]. Overall, the presence of cytotoxic CD8+

T, CD4+ Th1 cells and NK cells serve as a prognostic factor of favorable outcomes in various solid
cancers including NB [169]. On the contrary, the presence of immunosuppressive cells like TAMs,
MDSCs, and Treg hinder effective anti-tumor immune responses and thus may be associated with poor
clinical outcome in NB [28,170].

3.5.1. Myeloid Derived Suppressor Cells

Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that fail to differentiate
into macrophages, granulocytes and dendritic cells, but expand in pathophysiological conditions like
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inflammation and cancer [171,172]. MDSCs play an important role in mediating immunosuppression
in TME as these cells suppress the activity of T cells, NK cells, and dendritic cells [171,173]. In addition
to depleting L-arginine, a factor important for T cell proliferation, MDSCs also produce nitric oxide and
reactive oxygen species which affect T cell function [174]. MDSCs also produce cytokines, including
IL-10 and TGF-β, to induce Treg cells, and inhibit NK cell activation and cytotoxicity [171,174].
The strategies that are aimed to block its accumulation, recruitment, and reversal of MDSC-mediated
immunosuppression are in clinical trials for various solid tumors [175,176]. There is a limited availability
of the literature on the clinical significance of MDSCs in NB. Gowda et al. have shown that MDSCs
suppress adaptive immune responses in low-risk NB patients [177]. The accumulation of MDSCs was
also reported during tumor progression in the TH-MYCN driven mouse model, and the treatment
of low dose of aspirin is reported to reduce tumor volume and decreased infiltration of MDSCs in
this mouse model [167,178]. This study has shown that treatment of low dose of aspirin reduced
tumor burden, decreased the presence of cells of innate immune system, M2 macrophage polarization
and intratumoral expression of TGFβ, thromboxane A2 and prostaglandin A2 in the TH-MYCN
driven mouse model. In another study, Santilli et al. have shown that polyphenol E, a clinical grade
mixture of green tea catechins inactivates MDSCs and promotes anti-tumor immune responses in both,
transgenic TH-MYCN mouse model and A/J mouse implanted with Neuro2a cells [179]. In a recent
study, using the TH-MYCN mouse model, Mao et al. has shown that targeting immunosuppressive
myeloid cells can potentiate checkpoint blockade in NB [170]. In another study, gene modified NK
cells (NKG2D.ζ) was generated by fusing NKG2D to the cytotoxic ζ-chain of the T-cell receptor.
This study has shown that NKG2D.ζ-NK cells are cytotoxic against MDSCs and work effectively in
eliminating immunosuppressive tumors [180]. Various ongoing studies in in vivo mouse models have
shown that targeting MDSCs enhances anti-tumor immune responses in NB [179,181], suggesting
that MDSCs may play roles in cancer related inflammation to enhance NB progression. Various
strategies to either block accumulation of MDSCs or recruitment of MDSCs or polarization of MDSCs
into immunosuppressive phenotype are in use and molecules targeting these strategies, including
all-trans retinoic acid (ATRA), bevacizumab, CCX9588, tadalafil are in clinical trials for various cancers
and has been reviewed before [175]. Various Phase II clinical trials of ATRA in combination with
GMCSF and 3F8 mAb are in clinical trials for NB patients (NCT01183429, NCT01183884, NCT01183416,
NCT01183897, and NCT00969722). Also the reduction of MDSCs by ATRA improves the efficacy of
CAR therapy for NB [182]. Bevacizumab has also been evaluated in various phase I and II clinical
trials for NB and has been discussed before in this review article.

3.5.2. Regulatory T cells (Treg)

Tregs are highly immunosuppressive fractions of CD4+ T-cells and are known to play a major role
in maintaining self-tolerance, immune homeostasis and preventing autoimmunity. Treg cells exhibit
their suppressive activity through several mechanisms, including inhibition of antigen presenting
cell (APC) maturation through the CTLA-4 pathway; secretion of inhibitory cytokines such as IL10,
TGF beta, IL35; and expression of granzyme and perforin which kills effector T-cells. Various reports
have shown that the accumulation of Treg infiltrated in tumor tissues is associated with worse prognosis
in various cancers. Several potential therapies target Treg cell suppression either directly or indirectly
including candidates targeting CD25, CTLA-4, OX-40, GITR, and CCR4 [175]. The role of Treg in the
progression of NB is highly controversial. Very limited studies have shown an association between
Treg frequency and clinical outcomes in NB patients. Some studies have shown an increased number
of circulating regulatory T cells in NB patients, as compared to healthy individuals, but did not
correspond to prognostic factors [183,184]. In another report lower frequency of Treg population has
been observed in the bone marrow and peripheral blood samples of NB patients [185]. Although there
are several inconsistencies in the data related to the presence of Treg and clinical outcome, preclinical
data generated in mouse models indicates that in vivo depletion of Treg increases the efficacy of
immunotherapy mediated by CD8+ T cells in vivo [186–188]. One study by Jing et al., has shown
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that the deletion of CD4+T cells enhances the immunotherapy of neuroblastoma [189]. In another
study, it was shown that low expression of CD4+/CD25+/CD127- T reg cells and high levels of IFNγ

are associated with improved survival of neuroblastoma patients which are treated with anti-GD2
antibody ch14.18/CHO in combination with interleukin 2 (IL2) [190]. Recent pieces of evidence have
suggested that indoleamine 2, 3-dioxygennase (IDO) activity is critical for the activity of FoxP3 Treg

cells and various IDO inhibitors, including epacadostat, indoximod, are used in pre-clinical and clinical
studies for various cancers other than neuroblastoma [191]. Although, it is important to mention here
that all the clinical trials related to IDO inhibitors have been halted as Epacadostat has shown negative
results in Phase 3 clinical trials in combination with nivolumab and pembrolizumab [192].

3.5.3. Macrophages

Macrophages are the most abundant and highly plastic immune cell infiltrate found in solid tumors.
The presence of macrophages is correlated with worse prognosis in various solid tumors including
neuroblastoma [28,193]. Macrophages can be classified into two main populations in the TME based
on their gene expression profiles [194–196]. In the presence of lipopolysaccharide (LPS) or IFN gamma,
macrophages are polarized into the M1 phenotype, which produces immunostimulatory cytokines
and exhibits tumor suppressive activities. On the contrary, M2 polarized macrophages are activated
by IL4 and are known to promote tumor growth, angiogenesis, and immunosuppression [197].
M2 polarized macrophages are commonly known as tumor associated macrophages and they
express M2 macrophage markers, i.e., CD163 or CD206, secrete vascular endothelial growth
factor (VEGF), matrix metalloproteinase (MMP) and produces immunosuppressive cytokines,
i.e., IL10, and transforming growth factor β (TGFβ) which dampens effective anti-tumor immune
responses and promote tumor progression and metastasis. In addition to IL-4 or IL-13, B cell derived
immunoglobulins have been shown to accumulate in pancreatic adenocarcinomas and squamous cell
carcinomas and to stimulate the activation of macrophages via engagement with FcγR receptor [198,199].

Various shreds of evidence suggest that TAMs can facilitate the progression of neuroblastoma [28,200].
Seeger and group have focused most of their studies on non-MYCN amplified tumors and showed that
these tumors express high level of inflammatory genes related to macrophages [26,28,201]. These studies
have identified gene signature comprising of IL6, IL10, and TGF-β which was associated with a dismal
prognosis. This group also detected CD68 positive TAMs expressing IL6 in the metastatic bone marrow
samples. Asgharzadeh et al., has reported that metastatic tumors had higher infiltration of TAMs,
as compared to loco regional tumors and the presence of CD163+ TAMs was associated with worse
prognostic signature [28]. Moreover, they reported that patients with an age of ≥18 months have
higher expression of TAM related genes, including CD14, CD16, CD33, Il-10 and IL6R as compared to
patients diagnosed at the age of ≤18 months. A study by Ara et al. has shown that MSC and TAMs
are major sources of IL6 in neuroblastoma TME [202]. In another report, Hadjidaniel et al. suggested
that TAMs promote neuroblastoma tumor growth via the up-regulation of c-myc [203]. To overcome
the immunosuppressive or pro-tumoral functions of TAMs, current therapies are mainly focused on;
1) blockade of macrophage recruitment, 2) depletion of existing macrophages, or 3) reprogramming of
macrophages into anti-tumor phenotype [175].

The inhibition of CCL2 with various antibodies is known to block the recruitment of macrophages
in the TME [204–206]. Anti-CCL2 antibody carlumab was well tolerated and showed great efficacy in
various solid cancers [204,205], and has not yet been tested in neuroblastoma models. CSF-1 receptor
is expressed by most of the cells of the monocytic lineage and is a direct target to block monocytic
precursors directly and indirectly. Antagonists or antibodies to CSF1R have been developed and
tested in various preclinical models (e.g., cervical cancer, pancreatic cancer, and glioblastoma) in
combination with chemotherapy, radiation therapy, and checkpoint inhibitors, whereby they depleted
immunosuppressive macrophages and increased the CD8/CD4 ratio in the tumors [207]. A recent
report by Seeger suggested that blockade of the CSF1 receptor improves the efficacy of chemotherapy
in neuroblastoma in the absence of T lymphocytes [201]. In another study, Mao et al. has shown
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that infiltrating CSF1R positive myeloid cells predict poor outcomes in neuroblastoma and targeting
myeloid cells with CSF1R inhibitor BLZ-945 alone or in combination with anti-PD1 antibodies improves
survival in TH-MYCN mouse model [170]. Various CSF1R inhibitors, including BLZ-945, RG7155,
either alone or in combination with checkpoint inhibitors are in clinical trials for various solid cancers
or has been reviewed previously [175]. Repolarization of macrophages from the immunosuppressive
phenotype into the immunostimulatory phenotype has been emerged as an effective strategy to control
tumor growth. Various preclinical studies identified signaling pathways or key genes, such as the
jumonji domain, containing proteins (JMJD3), STAT3, STAT6, BRD4, Myc, Rac2, Syk, PI3Kγ, Btk, etc.
which play a crucial role in stimulating alternative activation of macrophages and promoting tumor
growth in solid tumors [115,120,208–211]. The role of Rac2 in blocking macrophage differentiation in
MYCN driven mouse model of neuroblastoma has been reported before [208].

The research publications from our group have demonstrated that SF1126 and SF2523 can
polarize immunosuppressive macrophages to immunostimulatory phenotype and these inhibitors can
simultaneously block tumor proliferation and can activate adaptive immune responses [114,115,120].
My recent work has shown that novel dual Syk-PI3Kγ inhibitor SRX3207 effectively relieves tumor
immunosuppression in solid tumors [211] and has shown great efficacy in targeting immunosuppressive
TME of NB (data unpublished). Sondel group has done intensive research on the repolarization of
macrophages by the use of monoclonal CD40 mAb and cytosine-phosphate-guanosine containing
oligodeoxynucleotide 1826 (CpG-ODN) (IT) in neuroblastoma models [212–214]. Their studies have
shown that the combination of IT with cytotoxic chemotherapy provides synergistic anti-tumor effects
in the neuroblastoma mouse model [215]. Recently Sondel group has shown that CD40 mAb along
with CpG and anti-CTLA4 antibody provides potent anti-tumor immune responses in immunologically
cold murine syngeneic neuroblastoma murine model [214].

4. Conclusions and Future Directions

In summary, basic research on the stromal and immune cells of NB TME is crucial to develop novel
therapeutics for this childhood cancer. The immunosuppressive microenvironment is predominant in
NB tumors and hence strategies to target immunosuppressive immune cells, like macrophages and
MDSCs should be carefully considered for development of therapeutics. The checkpoint inhibitor
therapy has shown great success in other solid cancers but in NB these inhibitors have not shown
any significant benefit. Hence, combining TME targeting strategies with checkpoint inhibitor therapy
might provide some benefit in this childhood malignancy. In this review, I have summarized different
components of NB TME which can be targeted for the development of therapeutics. I have also
highlighted on the dual PI3K/BRD4 inhibitory chemotypes SF1126 and SF2523 which can concomitantly
inhibit several tumor promoting signaling pathways and can activate anti-tumor immune response by
blocking myeloid cell mediated immunosuppression. These inhibitors in combination with checkpoint
inhibitor therapy need further investigation in neuroblastoma models.
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