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Visual Abstract

Frontal eye field (FEF) in macague monkeys contributes to visual attention, visual-motor transformations and
production of eye movements. Traditionally, neurons in FEF have been classified by the magnitude of increased
discharge rates following visual stimulus presentation, during a waiting period, and associated with eye move-
ment production. However, considerable heterogeneity remains within the traditional visual, visuomovement, and
movement categories. Cluster analysis is a data-driven method of identifying self-segregating groups within a
dataset. Because many cluster analysis techniques exist and outcomes vary with analysis assumptions, con-
sensus clustering aggregates over multiple analyses, identifying robust groups. To describe more comprehen-
sively the neuronal composition of FEF, we applied a consensus clustering technique for unsupervised
categorization of patterns of spike rate modulation measured during a memory-guided saccade task. We report

/Significance Statement \

The contribution of a brain region cannot be understood without knowing the diversity, arrangement, and
circuitry of constituent neurons. Traditional descriptions of frontal eye field include visual, visuosaccadic,
and saccadic categories. Here, we use a novel consensus clustering method to identify more reliably
functional categories in neural data. While confirming the traditional categories, consensus clustering
distinguishes additional, previously unappreciated diversity in neural activity patterns. Such information is
necessary to formulate correct microcircuit models of cortical function.
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10 functional categories, expanding on the traditional 3 categories. Categories were distinguished by latency,
magnitude, and sign of visual response; the presence of sustained activity; and the dynamics, magnitude and sign
of saccade-related modulation. Consensus clustering can include other metrics and can be applied to datasets
from other brain regions to provide better information guiding microcircuit models of cortical function.

Introduction

Like all cortical areas, frontal eye field (FEF) is composed
of neurons distinguished by morphology, neurochemistry,
biophysics, layer, and connectivity. Biophysical distinctions
can be made via action potential waveforms (McCormick
et al., 1985; Mitchell et al., 2007; Cohen et al., 2009a; Ding
and Gold, 2012; Thiele et al., 2016), calcium binding
proteins (Pouget et al., 2009), and neuromodulatory re-
ceptors (Noudoost and Moore, 2011; Soltani et al., 2013).
Neurons with distinct biophysical characteristics must
play different roles in the cortical microcircuit (Lewis and
Lund, 1993; DeFelipe, 1997; Pouget et al., 2009; Zaitsev
et al., 2012). Connectivity studies find FEF connected with
at least 80 cortical areas (Huerta et al., 1986, 1987; Schall
et al.,, 1993, 1995a; Stanton et al., 1993, 1995; Markov
et al., 2014), and most pyramidal neurons do not project
to more than one cortical area (Markov et al., 2014; Ni-
nomiya et al., 2012; Pouget et al., 2009). Numerous func-
tional distinctions among FEF neurons have been
reported, beginning with the traditional sorting into visual,
visuomovement, and movement plus fixation and post-
saccadic categories (Bruce and Goldberg, 1985; Schall,
1991). Subsequently, FEF neurons have been implicated
in numerous functions including visual search (Schall
et al., 1995b; Thompson et al., 1996; Lee and Keller, 2008;
Zhou and Desimone, 2011; Purcell et al., 2012a; Fer-
nandes et al., 2014; Costello et al., 2016), saccade prep-
aration and inhibition (Hanes et al., 1998; Boucher et al.,
2007; Ray et al., 2009), perceptual choice (Ding and Gold,
2012), visual attention (Bichot et al., 1996; Bichot and
Schall, 2002; Gregoriou et al., 2009; Khayat et al., 2009;
Zhou and Desimone, 2011; Schafer and Moore 2011;
Noudoost et al., 2014; Thiele et al., 2016), visual working
memory (Clark et al., 2012; Reinhart et al., 2012), trans-
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saccadic stability (Crapse and Sommer, 2008, 2012; Shin
and Sommer, 2012; Joiner et al., 2013; Chen et al., 2018),
planning saccade sequences (Phillips and Segraves,
2010), eye—head coordination (Elsley et al., 2007; Knight
2012; Sajad et al., 2015; Izawa and Suzuki, 2018), and
anticipating reward (Roesch and Olson, 2003; Glaser
et al., 2016). Can so many functions be accomplished by
so few neuron categories?

The problem of classification is neither new to science
nor unique to neurophysiology. Cluster analysis is a pow-
erful statistical tool, which was developed to find self-
segregating categories in gene expression (Sharp et al.,
1986), psychiatric diagnostics (Lochner et al., 2005), lin-
guistics (Gries and Stefanowitsch, 2010), and Scotch
whisky (Lapointe and Legendre, 1994). It has also been
used to describe the biophysical diversity of cortical neu-
rons (Nowak et al., 2003; Druckmann et al., 2013; Ardid
et al., 2015), expanding the in vivo description of putative
excitatory and inhibitory cells. Cluster analysis should be
similarly powerful for assessing the functional diversity
that must parallel anatomic diversity and should repro-
duce the functional categories known to exist in FEF.

Cluster analysis requires strategic decisions about the
method of grouping observations and how to calculate
pairwise distance, which lacks rigorous specification for
clustering the functional characteristics of neurons.
Therefore, we applied multiple preprocessing pipelines to
a large sample of FEF neurons then applied an agglom-
erative clustering algorithm to discover functional catego-
ries. Because a priori endorsement of any particular
preprocessing pipeline is impossible, and each result is
unique, the results of an individual clustering procedure
are difficult to interpret. However, second-order clustering
procedures known as consensus clustering combine out-
comes from different pipelines (Strehl and Ghosh, 2002).
Distinct consensus clustering procedures use different
theoretical motivations and computational efficiencies
(Goder and Filkov, 2008). We applied a procedure that
operates on the median pairwise similarity across all pre-
processing pipelines because it is tractable and efficient.
This consensus clustering procedure identified 10 robust
functional categories of FEF neurons, which elaborate
conventional functional classifications.

Materials and Methods

Subjects and behavioral task

Three male macaque monkeys (Macaca radiata) partic-
ipated in this study. All procedures were performed in
accordance with the National Institutes of Health Guide
for the Care and Use of Laboratory Animals and were
approved by the Vanderbilt Institutional Animal Care and
Use Committee. Monkeys were trained to perform a
memory-guided saccade task (Bruce and Goldberg,
1985). Trials began when a central fixation point ap-
peared. After fixating this point for 500 ms, a peripheral
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target was presented for one screen refresh (16.7 ms at
60 Hz refresh rate) at 8° eccentricity at one of eight
locations separated by 45°. After a variable delay between
300 and 800 ms the fixation point was extinguished, and
the monkey was required to shift gaze to and maintain
fixation on the location of the peripheral stimulus. The
peripheral stimulus was reilluminated after the saccade to
provide a fixation stimulus. Fluid reward was delivered if
the monkey maintained fixation on the peripheral, now
reilluminated, stimulus for 500 ms. If the monkey broke
fixation, made a saccade to an incorrect location, or made
a saccade before the fixation point was extinguished, a
5000 ms time-out delay occurred.

Recording techniques

MRI-compatible headposts and recording chambers
were placed over the arcuate sulcus. Surgery was con-
ducted under aseptic conditions with animals under
isoflurane anesthesia. Antibiotics and analgesics were
administered postoperatively. Details have been de-
scribed previously (Schall et al., 1995b; Sato et al., 2001;
Cohen et al., 2009b). Data were streamed to a data ac-
quisition system: Multi-Neuron Acquisition Processor (40
kHz; monkeys Da, Ga, and He, Plexon) or TDT System 3
(25 kHz; monkey Da, Tucker-Davis Technologies; Fig. 1a).
Eye position was collected using EyeLink 1000 (SR Re-
search). Eye position was calibrated daily, streamed to the
data acquisition system, and stored at 1 kHz. Electro-
physiological data were obtained from linear electrode
arrays, either a 24-channel Plexon Uprobe (monkeys Ga
and He) or a 32-channel NeuroNexus Vector Array (mon-
key Da). Both probes had a 150 um recording contact
spacing. Single units were identified on-line using a win-
dow discriminator (Plexon) or principle component anal-
ysis (Tucker-Davis Technologies). Units recorded from the
TDT system were sorted off-line using Kilosort (Pachitariu
et al., 2016).

Unit isolation was assessed by measuring waveform
signal-to-noise ratio (SNR), interspike interval distribu-
tions, and baseline firing rate. SNR was calculated by
dividing the voltage difference between the peak and
trough of the mean action potential waveform by the
Standard Deviation (SD) of concatenated waveform resid-
uals (Joshua et al., 2007). A minimum SNR criterion was
set for each recording system. Units with >10% of inter-
spike intervals <2 ms were excluded. Units with a mean
baseline discharge rate of <5 spikes/s were excluded. Of
1864 potential single units, 963 were excluded based on
SNR, 22 were excluded based on interspike interval dis-
tribution, and 439 were excluded based on baseline firing
rate. All together, these criteria excluded 1383 potential
units, leaving 481 for analysis. An additional 15 units were
excluded for lacking nonzero values in either the visual or
perisaccadic epochs of their spike density function (SDF).
These very conservative criteria resulted in only 25% of
potential units being included in the categorization, which
indicates that they were well isolated single units (Fig. 1b).

Neuron classification
SDFs were calculated by convolving the spike trains
with a function that resembles the postsynaptic influence
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of each spike (Thompson et al., 1996). SDFs were calcu-
lated only for correct trials on which the visual stimulus
was presented in the visual receptive field, and the sac-
cade was made into the movement field. The number of
trials contributing to characterizing each neuron ranged
from as few as 4 to as many as 317 (median, 34 trials),
with trials with fewer than five spikes excluded. If the spike
density function was not a stable estimate, we did not
include the neuron. A sequence of classification proce-
dures was used. The first was based on the traditional
criteria of Bruce and Goldberg (1985). A unit was consid-
ered to have visual activity if the firing rate between 50
and 150 ms after stimulus presentation was elevated >6
SDs above the baseline mean. A unit was considered to
have movement activity if the firing rate in the 100 ms
preceding the saccade was >6 SDs above the baseline
mean and the SDF showed a positive correlation over
time in the 20 ms preceding saccade. This prevents ele-
vated delay activity with no presaccadic ramping from
being considered movement-related activity. Visual units
had visual responses with no movement activity, move-
ment units had movement activity with no visual re-
sponses, and visuomovement units had both. Other units
were considered uncategorized; we did not test for fixa-
tion or postsaccadic activity in this categorization.

Units were categorized via agglomerative hierarchical
cluster analyses (Sokal and Michener, 1958; Everitt et al.,
2011). These analyses iteratively combine units, or groups
of units, based on the weighted average similarity of units.
In each case, the analysis algorithm was identical, al-
though the method for determining similarity differed due
to the scaling of discharge rates across units (Fig. 1c),
measurement of the response of the units (Fig. 1d), or the
similarity metric (Fig. 1e). The agglomerative cluster anal-
ysis was performed as follows: first, the sample was
considered as n groups, each with one member. Then, the
two groups with the smallest pairwise distance were com-
bined into one group, leaving (n — 1) groups, one of which
had two members. The distances of this group to the
other groups were determined by the weighted mean of
the distances of the individuals in each group, as follows

Egn. 1:
E ED(x,y)+ E ED(x,y)
D’(I J) . xel  yed yed xe€l 1
) - 2*(n/ + nJ) ) ( )

where [ is the first group in consideration and J is the
second, x are the members of group /, y are the members
of group J, and n, and n, are the number of members in
groups / and J, respectively. The value of 2 in the denom-
inator is required because the distances are symmetrical
and thus represented twice in the numerator of the equa-
tion. More simply, this averages the pairwise distances of
the members of / and J such that the similarity of two
groups will not be skewed by uneven group sizes.

This procedure was repeated until all observations were
agglomerated into a single group. Then, category identi-
fications were made for a range of number of categories,
k, by finding the most recent step in the algorithm at which
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Figure 1. Analysis pipeline. a, Potential neurons were recorded from FEF using multicontact electrode arrays. These recordings were
performed either in the Plexon MNAP or the Tucker-Davis Technologies System 3. Potential units from the Plexon MNAP were sorted
on-line with a window discriminator, whereas potential units from TDT Sys3 were sorted off-line using KiloSort (Pachitariu et al., 2016).
A total of 1884 potential units were recorded. b, The 1884 potential units were subjected to several criteria to ensure that only single
units were analyzed further. These criteria include interspike interval distributions, a minimum baseline firing rate, and a signal-to-
noise ratio of sorted action potential waveforms. The quality of isolation is illustrated, where the PCA space of off-line sorting is shown
for the units with the best, median, and worst signal-to-noise ratio that still meet the criterion. ¢, Six methods of scaling spike density
functions were applied for normalization. Four units were selected to illustrate the effects of these different scaling methods. The
colors of each unit were assigned arbitrarily. The equations for each scaling method are shown on the ordinates. Zero points in scaling
and time are shown in light gray. d, After each scaling method, features for inclusion in the clustering algorithm are measured. Four
ways of measurement were used and are demonstrated on one of the example units from above: the full SDF (blue), the mean of the
SDF during epochs of interest (orange), the slope of the SDF during epochs of interest (purple), and the combination of mean and
slope. Each of these four measurements, for each of the six scaling methods, were clustered individually. e, Clustering on the feature
vectors generated from the scaling and measurement techniques can be performed using either Euclidean or correlation distance.
Euclidean distance measures whether pairs of units have similar values of the measurements, regardless of the patterns of modulation,
whereas correlation distance measures the similarity of modulation patterns regardless of absolute similarity. An example clustering
dendrogram and distance matrix for each distance metric is shown as applied to the four example units, and it can be seen that these two
clustering methods produce different categorizations. f, Because there is no a priori way to select which scaling method, measurement, or
distance metric is most appropriate, and each may produce different categorizations, the final categorization was selected by applying
consensus clustering. The distance matrices for each scaling method, measurement, and distance metric (48 total combinations) were
normalized and combined to create a consensus distance matrix. The same clustering algorithm was applied to this consensus distance
matrix. The consensus distance matrix and corresponding final dendrogram for the four example units is shown. Final categories were
determined by applying additional criteria (minimum category membership and maximum number of uncategorized neurons).

k categories with a minimum of x members were present.
For example, for a k value of five, the most recent set with
five categories of at least x members was assigned as the
final classification. Category membership for k was as-
sessed between 1 and 20. The value of x was set to 10;
only categories with =10 members were considered to
assure robust results.

September/October 2018, 5(5) e0131-18.2018

Category membership was assessed for six scaling
procedures, four measurements of the response, and two
similarity metrics (Fig. 1c—e). The mean skewness across
time points was used to assess the quality of scaling for
cross-unit comparisons. We refer to each combination of
scaling procedure, SDF measurement, and similarity met-
ric as a preprocessing pipeline. We evaluated categories
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derived from each pipeline but will show outcomes for
only three.

Modulation of discharge rates was measured according
to the following approaches. Three (mean, slope, and
mean and slope) account for the firing rates during ep-
ochs: —200 to —100 ms before stimulus onset; 50-100
ms poststimulus; 100-150 ms poststimulus, —100 to —50
ms before saccade; —50 to 0 ms before saccade; and
50-100 ms postsaccade. The “mean” measurement was
based on the mean firing rates in these epochs, the
“slope” measurement was based on the slope of the firing
rate changes in these epochs (i.e., the difference in mean
firing rate at the beginning and end of the epoch), and
“mean and slopes” were based on the concatenation of
mean firing rate and slope. The “SDF” measurement did
not parse the responses into epochs, and was instead
based on the values of the SDF aligned on stimulus onset
(—200 to 300 ms) or saccade (—300 to 200 ms) at each
time point to millisecond resolution. To emphasize equally
all epochs, means, and slopes, each measurement value
was individually converted to a z score across the sample.

Pairwise distance was measured in the following two
ways: Euclidean distance and correlation. Euclidean dis-
tance can be conceptualized as the physical distance
between two points in multidimensional space while dis-
regarding which dimensions contribute to this distance.
Correlation assesses the relationships between the di-
mensions while disregarding the particular values of those
dimensions. The different emphases of these two dis-
tance metrics can and often do assign two units to the
same category via one metric but not the other.

Euclidean distance

Based on the firing rate each unit was placed in a
multidimensional space. This multidimensional space had
6 (for mean measurement and slope measurement), 12
(for mean and slope measurement), or 1002 (for SDF
measurement) dimensions. The Euclidean distance be-
tween the units in this space defines a pairwise distance
matrix, as follows Eqn. 2:

DX, y) =

where e is the number of epochs (or milliseconds).

Correlation

Based on the firing rate, each unit was defined as a 6-,
12-, or 1002-element vector, depending on the measure-
ment method, and the correlation between two vectors
Eqgn. 3:

D&x,y) =1 — px,y), 3)

measures the similarity of the modulation patterns of two
units while disregarding absolute differences in firing
rates.

All of these preprocessing pipelines were tested, and all
produced unique results. Some pipelines produced cate-
gories that were subjectively easy to endorse, while oth-
ers produced subjectively poor categories. The results of
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three representative pipelines are presented, two that
produced poor categorizations, for different reasons, and
one that produced good categorizations. The first combi-
nation scales by z scoring relative to baseline and mean
measurement, and uses Euclidean distance. The second
combination does not scale the data before measure-
ment, uses mean measurement, and uses correlation dis-
tance. The third combination scales by z scoring relative
to the whole trial, and mean and slope measurement.

Consensus clustering

No a priori reason endorses the categories yielded by a
particular SDF scaling procedure, summary of response
modulation, or distance measurement. Therefore, we
used a novel strategy of combining the results of multiple
clustering pipelines. This algorithm considers the pairwise
distance between units for each individual preprocessing
pipeline tested by creating a composite distance matrix.
Each individual distance matrix was z scored internally to
correct for the absolute scale differences between differ-
ent scaling procedures and distance measurements.
Then, the median for each pair was selected to prevent
skewing by nonoptimal pipelines. Thus, if the pairwise
distance between two units was consistently small, then
this composite measure was also small, whereas if the
pairwise distance between two units was small in some
processing pipelines but was generally larger, then the
composite distance metric reflected the trend toward dif-
ferences but accounted for the isolated cases of similar-
ity. After creating this composite distance matrix, the
same agglomerative algorithm used for each individual
pipeline was applied to identify categories (Fig. 1f). Intui-
tively, this method was intended to distinguish units that
were clustered together regardless of preprocessing
pipeline from units that were members of different clus-
ters regardless of preprocessing pipeline.

In essence, this procedure performs a clustering that
operates on a distance matrix whose entries represent
robustness of categorization across a number of individ-
ual procedures, or a “consensus clustering” problem
(Goder and Filkov, 2008). Indeed, consensus clustering
has been used to identify biophysical classes of neurons
(Ardid et al., 2015). However, while conceptually similar,
the previous “meta-clustering” and the present consen-
sus clustering differ operationally in both the algorithm
used for performing clustering and the preprocessing of
input data. Ardid et al. (2015) performed K-means clus-
tering, which does not provide a unique clustering solu-
tion and is highly sensitive to starting points (Bradley and
Fayyad, 1998; Pena et al., 1999; Celebi and Kingravi,
2012), so their meta-clustering involved multiple iterations
of the K-means procedure using the same input data and
then assigning clusters via robust comembership across
each iteration. Unlike Ardid et al. (2015), we used agglom-
erative clustering, which delivers unique solutions be-
cause no optimization steps are involved. However, we
found that clustering outcomes were sensitive to the
preprocessing pipeline, varying with the discharge rate
scaling procedure, measurement, and distance metric.
Hence, our consensus clustering approach was con-

eNeuro.org



eMeuro

ceived to assess cluster assignment consistency over
preprocessing steps, not local solutions to clustering one
set of preprocessed data.

Assessing number of categories

The number of categories in individual clustering pro-
cedures was selected using a lenient version of the gap
procedure of Tibshirani et al. (2001), which assesses the
reduction in intracluster distance with respect to random-
ized null sets created with no intrinsic clustering. Valid
splitting of clusters should have a greater than chance
reduction in intracluster distance, assessed by the SDs of
the intracluster distance in the null sets, whereas exces-
sive splitting should have a reduction in intracluster dis-
tance within the SD of the null set. The strict version
selects k categories as the first number of categories
meeting this criterion. In the lenient version of this test,
each occasion on which the above criterion is met was
treated as potentially valid, and visual inspection was
used to determine whether categorizations were either
insufficient or excessive. In some cases, due to the diffi-
culty in creating a reasonable null-set from physiologic
data, categories were selected based on the properties of
the gap curve. When a reasonable null-set could not be
determined, an inflection in the gap curve was identified.
This inflection identified the number of categories at
which the reduction of intracluster distance was markedly
less than that of the previous sequence of clusters.

For consensus categories and the composite distance
matrix, the means for creating a null-set to use the gap
procedure of Tibshirani et al. (2001) is unclear. Therefore, in
such cases a pair of criteria for determining the maximum
number of categories was set: not >10% of units was
allowed to remain uncategorized, and each category re-
quired at least 10 members. The maximum number of cat-
egories that met both criteria was selected.

Comparing categorization schemes

The quality of alternative categorization schemes was
assessed by calculating an index of member variability
through the ratio of variances of the spike density
values. Specifically, for each time point in the spike
density functions, the within-category variance at that
time point was divided by the variance of the category
mean across time points. For each category, the aver-
age ratio was calculated, and then the grand average
was taken. Because this ratio will decrease by definition
as more categories are formed, a penalty for oversplit-
ting was imposed by multiplying the grand average ratio
by the square root of the number of categories. That is,
for a given category the modulation strength was cal-
culated as follows Eqn. 4:

MS, = ———, )

where ¢ indexes category and t, time. Then, for each time
point a ratio of variances (RoV) was calculated as follows
Eqgn. 5:
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These are then combined by averaging the values for each
category over time, then across categories, then by applying a
penalty for overclustering proportional to the square root of the
number of categories identified as follows Eqgn. 6:

> Rov,,
t
P v

RoV = \/WCCT )

c

Small RoV values can be obtained either through large
groupwise modulations over time or a lack of variability
among the constituent members of the categories,
whereas large RoV values are obtained through weak
categorywise modulations or large variability. That is,
smaller RoV values indicate better categorization, and
vice versa. No benchmarks have been established for this
index, so we interpret relative values in comparing the
quality of two categorization schemes.

The similarity of two categorization schemes was as-
sessed as follows by the Adjusted Rand Index (AR/; Hu-
bert and Arabie, 1985) Eqn. 7:

where a; and b; are the counts of category i or j in
categorization procedure a or b, respectively, and n;; is
the number of observations in both category i in catego-
rization scheme a and in category j in categorization
scheme b. This quantity measures the similarity of two
data categorizations and is adjusted by chance cocatego-
rization produced through the two schemes. To assess
significance, each categorization was randomly shuffled
separately, destroying internal structure between the two
schemes, and AR/ was recalculated. This was repeated
1000 times and p was the proportion of shuffled AR/ that
exceeded the nonshuffled ARI.

;To visualize the overlap, for each pairwise categorization
combination a signed »? was calculated as follows Eqn. 8:

)
o o=l
ignedy?; = PP @)
n(_,*_,)
n n

That is, the difference between the observed pairwise
count and the count expected by the marginal probabili-
ties of each individual categorization scheme was calcu-
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lated, then normalized by that expected value. Each
category assignment was shuffled separately 1000 times,
and the signed »® was recomputed for each combination
and iteration. A bootstrapped z score was then calculated
for each category combination.

Biophysical characteristics

Several biophysical characteristics were calculated for
each neuron to assess the identification of consensus
categories with measurements that were not included in
the clustering process. The spike width of the average
waveform of each neuron was calculated as the time
between the initial trough of the action potential and the
following peak, or the time between the initial peak and
the following trough for spikes with positive deflections.
Coefficient of variation (CV), which measures firing rate
variability, and local coefficient of variation (CV2), which
measures CV across smaller time periods, were calcu-
lated as described previously (Holt et al., 1996). Local
variation (LV), which is another metric of local firing rate
variability, and revised LV (LVR), which accounts for a 5
ms refractory period, were also calculated as described
previously (Shinomoto et al., 2003, 2009). The Fano factor
was calculated by computing spike counts in 100 ms
bins, then dividing the spike count variance by the mean
spike count (Purcell et al., 2012b). Response field char-
acteristics (maximum response, preferred location, and
tuning width) were calculated by fitting a unimodal Gauss-
ian function to the mean responses to the eight target
locations. Response field characteristics were calculated
separately for visual epochs (50-150 ms after target pre-
sentation) and movement epochs (50 ms preceding sac-
cade initiation). Response field values were excluded from
analysis if the Gaussian tuning function was unable to fit
well (? < 0.5).

Cross-validation

To verify the accuracy of the consensus clustering al-
gorithm, a leave-one-out classification procedure was
used. A singular value decomposition classifier (SVD)
classifier with a linear kernel was trained. To preserve the
consensus metrics, the basis for the classifier training set
was the composite pairwise distance matrix. However,
this matrix was underspecified, so principle components
of the pairwise distance matrix were calculated. The clas-
sifier was trained, for example, for the first principle com-
ponent, the first and second components, and the first
through third components for the first 100 principle com-
ponents. The cumulative variance explained ranged from
43.4% 1o 93.4%. Due to the possible presence of groups
with few members, this classifier was trained on all units
but one, and the remaining unit was tested. No explicit
regularization was performed when training the classifier.
Only units that were assigned a category by the consen-
sus clustering algorithm were included (n = 422 of 466,
90.6%).

Results

This analysis is based on 466 units sampled in FEF from
three macaque monkeys performing memory-guided sac-
cades in pursuit of other research aims.
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Traditional response categorization

First, units were categorized based on traditional crite-
ria (Bruce and Goldberg, 1985; Schall, 1991), and the
canonical visual, movement, and visuomovement units
were identified (Fig. 2). Of 466 neurons sampled, 210
(45.1% of sampled neurons, 70.2% of presaccadic mod-
ulated neurons) were identified as visual, 16 (5.4%, 5.4%)
were movement related and 73 (15.7%, 24.4%) were
visuomovement related. The remainder exhibited other
patterns of modulation. Earlier studies using different
tasks than we used here reported more diversity among
the three major groups. We will consider this in the Dis-
cussion. For now, this simpler categorization facilitates
the motivation of this approach.

While the average discharge rates of these categories
were as expected, the SDF of the individual units catego-
rized into each type exhibited considerable variation. For
reference with subsequent analyses, the RoV value was
50.89. Thus, while the traditional categorization methods
captured general trends in the modulation patterns of FEF
neurons, additional variation was present but unac-
counted for.

Cluster pipeline 1: z score relative to baseline, mean
measurement, Euclidean distance

To begin accounting for this excessive variability, a
cluster analysis was performed on the SDFs that were z
scored based on the mean and SD of the baseline firing
rate. This captured the definition of visual and movement
activity used above. However, the data-driven clustering
procedure revealed functional categories that are similar
in their firing rate modulations in more than just two
epochs. Based on the mean firing rate in the six specific
task epochs described in Materials and Methods, each
unit was represented as a six-element vector. Based on
Euclidean distance measures of pairwise distances, eight
categories of units, numbered 1, to 8, to distinguish this
set of results, were found (Fig. 3). Unlike the traditional
categorization scheme, two categories of visual units
were identified as categories 1, and 4, [17 of 466 (3.7%)
and 11 of 466 (2.4%), respectively]. Both categories had
modest visual responses and no perisaccadic activity.
They were differentiated by the presence or absence of
anticipatory activity before the target appeared and by
delay period activity. An additional category, category 5,
[387 of 466 (7.9%)], had a robust visual response with weak
presaccadic ramping. Four categories of units had both
visual and presaccadic responses. Two of these catego-
ries had robust visual responses and intermediate presac-
cadic ramping: categories 2, and 7, [40 of 466 (5.2%) and
112 of 466 (24.0%) respectively]. These categories were
differentiated by the return to baseline after the saccade:
category 7, had a typical slow return to baseline, whereas
category 2, returned to baseline almost immediately. The
other two categories, 6, and 8, [135 of 466 (29.0%) and
16 of 466 (3.4%) respectively], had only modest firing rate
modulation in both epochs and were distinguished by the
presence (8,) or absence (6,) of anticipatory activity. The
final category, 3, [24 of 466 (5.2%)], did not show firing
rate modulation during the trial. This demonstrates that
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Figure 2. Traditional classification. The current sample was classified according to traditional criteria. a, Group mean SDFs for visual,
visuomovement, movement, and unclassified neurons are depicted from top to bottom, with left panels aligned on stimulus onset and
right panels aligned on saccade. Here and in subsequent figures, the categories of neurons are arranged on a visual-to-motor axis,
and colors are assigned such that red indicates visual activity and no movement activity, green indicates both visual and movement
activity, and blue indicates movement activity without visual activity. Black indicates unclassified neurons. Scale bars for response
magnitude and time are shown at the bottom left. b, Individual spike density functions comprising each category. Scale bars for

response magnitude and time are shown at the bottom left.

additional diversity is present in FEF firing patterns that
has been unaccounted for in the traditional scheme. How-
ever, this clustering approach failed to identify purely
movement neurons or postsaccadic neurons.

The eight categories did not match the three traditional
categories in FEF that should have been recovered
through cluster analysis. However, similar to the tradi-
tional categorization scheme, these category means
captured some general trends of the individual units com-
prising the categories. Variation was reduced (RoV =
18.36 relative to 50.89 for the traditional classification),
but considerable variation was still evident. This was par-
ticularly pronounced in categories 4, and 8,, which were
also much larger categories than the other six. Thus,
these categories seem to be “catch-all” categories. Other
categories seem to be nearly identical, though are clearly
seen as different groups in the dendrogram (e.g., catego-
ries 2, and 5,). The dendrogram in Figure 3a also shows
that units did not exhibit clear clustering. Instead, it ap-
pears as though small groups or individual units are pro-
gressively grouped together such that, at the clustering
step when eight categories meet the membership crite-
rion, 74 of 466 (16%) units were still uncategorized. That
is, for the number of categories identified via the gap
procedure of Tibshirani et al. (2001), 16% of neurons were

September/October 2018, 5(5) e0131-18.2018

so dissimilar to each other and the eight categories that
they could not be placed in any of the eight categories or
form a ninth separately. This may be so because the
variation of the SDF of the identified units was high (mean
skewness = 1.35). Together, these considerations indi-
cate that this clustering procedure is insufficient.

Cluster pipeline 2: nonscaled SDF, mean
measurement, correlation distance

To account for more of the excessive variability, a
cluster analysis using a correlation distance measurement
was performed on the non-scaled data. This approach
captures relative rather than absolute changes in firing
rate. That is, if two units were similarly modulated but
have different firing rates, this procedure treated them as
members of the same category. In other words, this ap-
proach emphasized the pattern of modulation of FEF
neurons rather than the absolute discharge rate.

This procedure identified six categories, 1, to 6,, (Fig. 4).
These categories did not match the three traditional cat-
egories; movement neurons are missing. Instead, each of
the six identified categories demonstrated modulation fol-
lowing visual stimulation to different degrees. Two of
these categories, 1, (123 of 466) and 6, (122 of 466),
showed visual modulation only and were differentiated by
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Figure 3. Cluster pipeline 1. Neurons were categorized via cluster analysis scaling by the z score relative to the baseline, mean
measurement, and Euclidean distance. a, The dendrogram resulting from cluster pipeline 1 shows the eight identified categories.
Horizontal distance indicates pairwise similarity, with individual neurons on the right and full agglomeration on the left. Colors indicate
categories and are arbitrarily assigned on a visual-to-motor axis as in Figure 3. The break at the top left indicates that the final
agglomeration takes place at a point that prevents the visibility of categories. b, Category means are plotted aligned on stimulus onset
and saccade. Each category was given an arbitrary numerical identifier for convenience and are ordered according to their position
in the dendrogram. Scale bars are shown at the lower left. ¢, Individual neurons comprising each category aligned on stimulus and
saccade. Scale bars are shown at the lower left.
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Figure 4. Cluster pipeline 2. Neurons were categorized via cluster pipeline using no scaling procedure, mean measurement, and

correlation distance. Conventions for a through ¢ are as in Figure 3.
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Figure 5. Cluster pipeline 3. Neurons were categorized via cluster analysis scaling by the z score relative to the whole trial, mean and
slope measurement, and correlation distance. Conventions for a through ¢ as in Figure 3.

the baseline firing rate and degree of visual modulation.
Three categories had both visual and movement-related
activity: 2, (28 of 466), 4, (44 of 466), and 5, (24 of 466).
Category 2, had modest visual modulation and no delay
activity; category 4, had modest visual activity and some
delay activity; and category 5, had robust visual modula-
tion, prominent delay activity, and presaccadic ramping,
but its activity fell off dramatically at the time of the
saccade. The final category, 3, (121 of 466), had modest
visual modulation and a sharp postsaccadic transient.
Four of 466 neurons were placed in no category.

Considerable variability within categories remained and
in fact increased relative to cluster pipeline 1 (RoV =
29.70 as opposed to 18.36), though the category means
did capture category trends. This variability may be due to
the skewed firing rates (mean skewness, 2.09), which
allowed few units in one category to drive the modulations
apparent in the category means. For example, the inclu-
sion of some units with large visual responses and high
firing rates in category 2, was a driving factor in the
modest visual activity seen in the category mean. Thus,
both the z score relative to baseline and unscaled firing
rates may be ineffective for comparing across units, al-
though they are useful for assessing within-unit modula-
tion. However, the appearance of the dendrogram for this
clustering outcome should be noted (Fig. 4a). Unlike that
from pipeline 1, a more sensible structure is apparent
when this combination of clustering parameters was
used; fewer neurons are nonclassified, and the categories
visibly self-segregate.

Cluster pipeline 3: z score relative to whole-trial,
mean and slope measurement, and correlation
distance

To account for more of the variability in modulation
patterns, a different scaling procedure was used: z scor-

September/October 2018, 5(5) e0131-18.2018

ing across the entire trial and measuring the SDF with
both the means of the SDF and the slopes during the
relevant epochs were considered. The agglomerative
clustering algorithm identified five categories, 1. to 5,
(Fig. 5). Three of these categories had visual activity only:
1. (110 of 466), 2. (124 of 466), and 4. (124 of 466).
Category 4. had pronounced delay activity. The other two
were distinguished by the time of peak visual response,
with the visual activity of category 1. peaking earlier, and
that of category 2., later. Category 3. (50 of 466) had
robust visual and presaccadic modulation but did not
have delay activity. The final category, 5. (58 of 466),
showed robust presaccadic ramping and only modest, if
any, visual activity. It should be noted that the presacca-
dic ramping activity in category 5. peaked after the sac-
cade and showed a slow reduction of firing rate back to
baseline, whereas the category with both visual and sac-
cadic responses had a peak perisaccadic activity at the
time of the saccade followed by a sharp return to base-
line, but this sharp return is not as pronounced as the
“clipped” movement neurons in category 5,. This indicates
that the additional diversity evident in visual inspection of
discharge rate modulation patterns is tangible and identifi-
able. Further, of the three cluster pipelines, pipeline 3 pro-
duced the classification most similar to the traditional. Visual
and visuomovement categories were identified as well as a
putative pure movement group (category 5.).

The range of values through this scaling was smaller
and is less skewed (mean skewness, 0.73), suggesting
that this scaling method provided a more equitable cross-
unit comparison. As with pipeline 2, these categories are
apparent in the dendrogram structure, though some ad-
ditional heterogeneity can be observed, particularly
among categories 1., and 2.. This may explain, in their
particular cases, the seeming similarity between the two;
it could be that splitting further would reveal additional
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Figure 6. Comparison of analysis pipelines. Left: Dendrograms from cluster pipelines 2 (right) and 3 (left). They are shown side-by-side
to highlight the similarities and differences in the respect categories. The dendrogram for cluster pipeline 3 is identical to the
dendrogram in this figure. The dendrogram for cluster pipeline 2 shows the same results as in Figure 5; however, the vertical
arrangement was reordered so that common units are horizontally aligned in both dendrograms. Where common colors are
horizontally aligned, units were assigned to the same category. Where different colors are horizontally aligned, units were assigned
to different categories. Although horizontal alignment of some dendrogram elements is evident, the disagreement between the two
dendrograms is more prominent. The extent and nature of this disagreement is illustrated in the expanded view of the dendrogram
on the right. SDFs of four representative units are shown. Through analysis of pipeline 3, all four units were placed in category 2c,
which characterized by a pronounced visual response and weak perisaccadic suppression (left dendrogram). Through analysis of
pipeline 2, three of the units were placed in category 6b, which is characterized by a pronounced visual response and weak
perisaccadic suppression (red, right dendrogram), whereas the unit shown at the upper right was placed in category 1b, which is
characterized by a weak visual response and no perisaccadic modulation (blue, right dendrogram). Thus, the two analysis pipelines

provide overlapping, but far from identical, categorizations. Which categorization is correct is uncertain.

heterogeneity, and, in the case of the category 3, further
splitting could reveal a second visuomovement group
without clipped activity as well as a pure movement cat-
egory. However, it should be noted that. unlike cluster
pipelines 1 and 2, the category means were much more
representative of the members (RoV = 5.19 as opposed
to 18.36 and 29.70 for cluster pipelines 1 and 2, respec-
tively).

Consensus clustering

We now address the problem of individual units being
members of different categories following different anal-
ysis paths (Fig. 6). This occurs because different prepro-
cessing pipelines resulted in different distance matrices
on which the agglomerative clustering algorithm operates.
Consequently, a given pair of units could be members of
the same category following one pipeline but members of
different categories following another pipeline. For exam-
ple, all four individual units shown in Figure 6 belong to
category 2, but only three belong to category 6,; the unit
on the top right belongs instead to category 1,. With no
cluster pipeline being more confidently motivated or more
certainly correct than another, should all four units be
considered members of the same category or not? Nev-
ertheless, assuming the existence of ground-truth cate-
gories, consistent with anatomic constraints, units that
are actually members of the same ground-truth category
should have small pairwise distances regardless of a
scaling or clustering procedure. Likewise, units that are
members of different ground-truth categories would have

September/October 2018, 5(5) e0131-18.2018

small pairwise distances only as an artifact of particular
measurement parameters and clustering algorithm.

To address this fundamental problem, we used a
second-order clustering procedure known as consensus
clustering (Strehl and Ghosh, 2002; Goder and Filkov,
2008). We created a composite distance matrix by z
scoring individual distance matrices from all of the pre-
processing pipelines (Fig. 1f) and then calculated the
median distance across all preprocessing pipelines. This
composite distance metric was used to identify units that
were consistently similar to one another across prepro-
cessing pipelines and clustering algorithms. The agglom-
erative clustering algorithm was applied to this distance
matrix to identify robust categories of units superordinate
to any individual cluster analysis. Clusters were continu-
ally split until either of two membership criteria were no
longer satisfied: (1) minimum number of units per cluster;
and (2) maximum proportion of unclustered units.

Consensus clustering identified 10 categories, clearly
distinguished in the dendrogram and evident in the dis-
tance matrix (Fig. 7). Of 466 neurons, 43 (9.2%) were not
placed in any category. These categories were robust and
consistent (RoV, 3.91). Even with the penalty for overclus-
tering in the RoV metric, consensus clusters account for
more of the variability in the neural data than the classifi-
cation produced by the best individual classification.

Categories with visual responses only
We identified two categories of neurons that had visual,
but not saccade-related, activity. These categories, 1.,
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Figure 7. Consensus clusters. Consensus clusters were identified by creating a composite distance matrix and applying the
agglomerative clustering procedure to this matrix. a, The resulting dendrogram is shown abutting the composite distance matrix.
Colors in the dendrogram are assigned as in Figures 3-6. Color in the distance matrix is indicative of composite similarity. Warm colors
(low composite z score) indicate consistently similar units, whereas cool colors indicate consistently different units (high composite
z score). b, The category mean SDFs (columns 1 and 3) and the individual SDFs (columns 2 and 4) comprising them are shown aligned
on stimulus onset (left) and saccade (right). Scale bars are shown at the lower left of each column. Arbitrary category labels were

assigned for convenience.

(74 of 466) and 2., (105 of 466), showed flat baseline
activity and a sharp visual transient. The time of peak
firing rate differentiated these two categories, with mean
peak latencies of 74 ms (1., and 136 ms (2..,). Also,
category 2., had persistent delay activity until the sac-
cade.

Categories with visual and saccade-related facilitation
We identified five categories of neurons with both visual

and presaccadic increases in firing rate. Two of these

categories, 3., (21 of 466) and 4., (25 of 466), showed

September/October 2018, 5(5) e0131-18.2018

marked increases in firing rates following visual stimula-
tion and were distinguished by the time of peak visual
activity (mean values of 70 and 161 ms, respectively).
They were also distinguished by the time and character of
the presaccadic ramping. The firing rate of category 3.,
neurons peaked at the time of the saccade and quickly
returned to baseline, whereas the firing rate of category
4., peaked after the saccade and returned to baseline
more slowly. Two of the three remaining categories, 6.,
(85/466) and 7., (64/466), also had clipped movement
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activity with late, weak visual responses. These two cat-
egories are differentiated by the absence (6., or pres-
ence (7., of delay period activity. The final category,
having both visual and movement activity, 8., (33 of 466),
showed only modest visual activity and may be more
accurately described as a pure movement category. In
either case, the movement-related activity peaked just
after the saccade but returned slowly to baseline. An
additional category, 5., (23 of 466), was not movement
related per se, but exhibited a strong postsaccadic tran-
sient with a modest, early visual response.

Categories with response attenuation

Two categories of units showed distinct decreases in
firing rate. The first of these, 9., (11 of 466), was unique
in having an “off” response to visual stimulation, but it also
showed clipped presaccadic ramping that peaked just
before the saccade. This provides a fruitful contrast with
the final visuomovement category, category 8., which
showed only a modest increase in firing rate but robust,
unclipped perisaccadic ramping. This distinction may be
a useful criterion in future studies examining the differ-
ences in stimulus-driven or goal-directed saccades. The
second category with an off response, 10, (31 of 466),
showed little or no visual modulation, but was sharply
inhibited around the time of the saccade, which is char-
acteristic of fixation neurons.

Relation to other functional characteristics

To preclude that these categories are accidental and
arbitrary, we quantified several other characteristics of
each neuron. These included typical measures such as
response field size and center location, baseline dis-
charge rate, and maximal response for both the visual and
motor periods of modulation. These were supplemented
by the following discharge variability metrics: Fano factor,
CV, CV,, LV, and LVR accounting for a 5 ms refractory
period. Finally, spike width was also measured.

First, omnibus Kruskal-Wallis tests were performed for
each of these factors. Factors with significant differences
include visual response field width (X2(9274) = 18.300; p =
0.032), maximum visual response (x°ops7 = 20.881;
p = 0.013), and baseline firing rate (x2(9401) = 28.600; p =
0.001).

Second, to take a more targeted approach, categories
1eon @nd 2., were considered visual; categories 3.,
4. on» Bcons @nd 7., were considered visuomovement; and
categories 8., and 9., were considered movement re-
lated. The analyses were repeated separately for these
sets of consensus categories. Among the visual catego-
ries, receptive field width was significantly larger for cat-
egory 2.., (60.6 = 31°) than for category 1., (62.4 =
34.8%; X2(1136) = 4.568; p = 0.033). For movement-related
categories, category 8.,, had significantly wider spikes
(266.0 = 122.5 us) than category 9., (173.6 us = 67.2
uS; )(2(1,42) = 5.625; p = 0.018). No significant differences
or trends were identified among the visuomotor catego-
ries. Thus, these consensus clusters identify differences
in neuron types, even when the factors for which differ-
ences were identified were not included as parameters for
clustering.
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Cross-validation analysis

Clustering analyses can be problematic because the
algorithms involved will yield as many categories as are
requested from any data sample, regardless of the under-
lying category structure. The use of a minimum member-
ship criterion and a maximum uncategorized percentage
criterion aim to mitigate this, but the contribution of these
criteria to eliminating the problem of oversplitting the
categories cannot be directly quantified. Instead, to quan-
titatively assess the quality of the categorization, a clas-
sification analysis was used. This analysis uses a leave-
one-out cross-validation approach in which a classifier is
trained on the consensus category membership of all
recorded units except one, then assigns that remaining
unit to one of the consensus categories. To prevent un-
derspecifying the classifier, principle components of the
composite consensus matrix were used (see Materials
and Methods). Classification accuracy is assessed by the
percentage of units that, when left out of the training set,
are assigned to the same category as that specified by the
full consensus clustering algorithm.

Peak accuracy was 86.7%, which was achieved when
the classifier was trained with eight principle components,
after which cumulative variance explained remained on a
plateau (Fig. 8a). The units misclassified by the classifier
were identified. The percentage of units from each con-
sensus category misclassified in each classifier category
is depicted as a matrix of consensus category rows and
classifier prediction columns (Fig. 8c). Generally, misclas-
sified units were found in adjacent categories, with mis-
classifications becoming less frequent as the categories
become further apart (Fig. 8c). Given the purposeful or-
dering of these units on a visual-motor spectrum, this is
not surprising. The highest percentage of misclassified
units (9.1%) was in category 9..,, Which also has the
fewest members according to the consensus clustering
algorithm.

Category pairs with frequent misclassifications are
superimposed in Figure 8b. Categories 6.,, and 7.,
both show robust movement activity and similar visual
activity. Categories 4., and 8., have nearly identical
late-peaking movement activity. Categories 7.,, and
9.on also have highly similar movement related activity.
Categories 2., and 10_,,, both have suppressed activ-
ity at the time of saccade. Categories 8., and 9.,,, are
the two categories of nearly pure movement activity.
Finally, categories 7., and 8., both have weak visual
activity as well as robust movement activity, although
with different timing. Overall, though there are differ-
ences among these pairs of categories, there are fea-
tures that explain why misclassifications could be made
between these pairs.

To confirm that the peak classification accuracy was
indeed greater than the nominal chance value of 10%, the
above procedure was used with the category assign-
ments randomly shuffled. For these shuffled assignments,
the first eight principle components were used to train the
classifier because this corresponds to the peak in classi-
fier accuracy. Including additional components decreases
accuracy, most likely due to overfitting. Shuffling was
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Figure 8. Cross-validation analysis. Leave-one-out cross-validation was performed separately for 1 through 100 principle components of
the composite distance matrix. A singular value decomposition classifier (SVD) classifier with a linear kernel was trained on the principle
components of all but one neuron, and that remaining neuron was categorized. a, Classifier accuracy as a function of cumulative principle
components, plotted up to 100 principle components (main plot) and for first 10 (inset). Peak accuracy (86.7%; chance accuracy was 10%)
was achieved using eight principle components, which corresponds to a plateau of variance explained by additional components. b,
Superimposed mean SDFs for pairs of categories that were most frequently misclassified, labeled as (classifier category, consensus
category). Although the category SDFs clearly differ, the source of misclassification is apparent through particular common features
between pairs. ¢, Matrix showing the incidence and nature of misclassifications. Matrix rows distinguish the consensus algorithm
categories; numbers correspond to consensus cluster spike density functions. Matrix columns distinguish the classifier categories. If the
classifier were perfectly accurate, then the matrix would be entirely black, indicating no misclassification. The black cells along the unity
diagonal (classifier column C = consensus category row R, indicated by dashed line) are the 86.7% of neurons for which the classifier
correctly identified the consensus algorithm category; they are not misclassified. Black cells off of the unity diagonal (C # R) indicate that
the classifier did not misclassify neurons in row R as belonging to column C. Colored cells off of the unity diagonal indicate that the classifier
misclassified neurons in row R as belonging to column C. The color map shows percentages of misclassified neurons relative to the count
of consensus category R. Misclassified neurons can be identified, for example, as an adjacent category (C = R + 1) or two categories away
(C = R + 2). The percentage of total misclassifications that were assigned to C = R + n are shown to the lower right. Misclassifications
are most common for adjacent categories (C = R = 1) and are generally progressively less common with greater category separation.

performed 1000 times. No randomized classification ac-
curacy exceeded the empirical classification accuracy
(mean = 8.2%; SD = 3.7%; range = 1.0-21.6%). This
indicates that the consensus clustering algorithm catego-
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rizes neurons in a highly internally consistent manner. The
robust reclassification of the original set also allows for
new data to be categorized according to the present
consensus categories.
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Figure 9. Relation to traditional classification. The consensus cluster assignments were compared with traditional classifications. The
consensus clusters are depicted on the vertical axis, and traditional classification is depicted on the horizontal axis. The color in the
heat map indicates the prevalence of neurons being classified in a given combination. For a given cell in the matrix, a warm color
indicates that more neurons were assigned to both that consensus cluster and that traditional classification than expected by chance,
green indicates that the expected number of neurons were assigned to both categories, and a cool color indicates that fewer than
expected neurons were assigned to both categories. Cluster 1., and 2 .., neurons were more often identified as visual cells and were
rarely uncategorized. Cluster 3 ., 4 .on, and 7 ., neurons were often identified as visuomovement cells. Cluster 8 ., neurons were
more often identified as movement cells and not visual cells. Cluster 9 .., and 10 ., neurons were generally not categorized, but

when they were they were not classified as visual cells.

Discussion

We applied a consensus clustering technique and iden-
tified 10 robust functional categories in FEF based on
modulation of discharge rates alone. This categorization
includes but exceeds the traditional categories. We will
discuss the relationship of the new functional categories
to the traditional categorization and possible functional
and anatomic implications of these consensus clusters.
We will conclude by considering the limitations and ex-
tensions of these consensus clustering techniques.

Correspondence with traditional functional
categories

To compare the traditional and this new categorization,
we assessed their overlap by calculating the proportion of
consensus clusters identified as visual, movement, visuo-
movement, or unclassified. The traditional scheme and
our new consensus clustering procedure show significant
overlap (Fig. 9; ARl = 0.0931, p < 0.001). Thus, our
procedure complements the traditional categorization. In
fact, although not sought specifically, both postsaccadic
and fixation neurons were identified via consensus clus-
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tering. This unsupervised discovery increases confidence
that consensus clustering identifies natural neural catego-
ries.

We now compare the proportions of different catego-
ries to previous surveys. Bruce and Goldberg (1985) iden-
tified 40% of their sample as visually related, 40%
visuomovement, and 20% movement only, not including
postsaccadic and fixation neurons. Postsaccadic and fix-
ation neurons account for 17% and 7% of their total
sample, respectively. Schall (1991) identified 17% of the
sample as visual, 41% as visuomovement, 22% move-
ment, and 13% postsaccadic. When using the traditional
categorization, 45% of the current sample was visual,
16% was visuomovement, and only 3% was movement.
This proportion of visual neurons with respect to the
whole sample is consistent with the findings of Bruce and
Goldberg (1985), but not with Schall (1991). The propor-
tions of neurons are more similar to earlier descriptions
when consensus categories are considered with 38%
visual, 31% visuomovement, 9% movement, 7% fixation,
and 5% postsaccadic. Still, visuomovement, movement,
and postsaccadic neurons are still underrepresented in
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the current studies relative to previous studies. This
under-representation of movement-related neurons seems
curious, for these are thought to be large pyramidal neu-
rons in layer 5 (Fries, 1984; Segraves and Goldberg, 1987;
Sommer and Wurtz, 2001), which should be easier to
isolate. Similarly, fixation neurons are also layer 5 pyrami-
dal cells (Izawa and Suzuki, 2014), but are instead found
in the same proportion as in the study by Bruce and
Goldberg (1985). Perhaps the linear electrode array failed
to sample layer 5 neurons. Future reconstructions of the
recording sites will determine whether laminar differences
can explain the differences in proportions of neurons.

Another possible explanation for differences in category
proportions concerns the nature of the electrodes. The
neural spiking analyzed for this study was obtained with
linear electrode arrays (Plexon U-probe and Neuronexus
vector probe). The studies cited above sampled neurons
with a variety of sharp electrodes including glass-coated,
platinum-iridium, and tungsten. The differential sampling
characteristics of various electrodes in FEF require further
investigation.

A third possibility involves the eccentricity represented
by the neuron samples across studies. The central visual
field is represented laterally and peripheral field medially
in FEF and rostrally adjacent cortex (Suzuki and Azuma,
1983), and RF size increases with eccentricity (Mayo
et al., 2015). Lateral and medial FEF have qualitatively and
quantitatively different patterns of connectivity (Schall
et al.,, 1995a; Babapoor-Farrokhran et al., 2013; Markov
et al., 2014). Convergence from the dorsal and ventral
processing streams occurs in lateral but not in medial
FEF. Lateral FEF, which is responsible for generating
short saccades, receives visual afferents from the foveal
representation in retinotopically organized areas, from ar-
eas that represent central vision in inferotemporal cortex
and from other areas having no retinotopic order. In con-
trast, medial FEF, which is responsible for generating
longer saccades, is innervated by the peripheral represen-
tation of retinotopically organized areas, from areas that
emphasize peripheral vision or are multimodal and from
other areas that have no retinotopic order or are auditory.
Hence, neural spiking samples from lateral and medial
FEF are likely to differ in a variety of as yet uncertain ways.
Here, all stimuli were placed at 8° eccentricity, whereas
tested locations in the study by Bruce and Goldberg
(1985) ranged from 5° and 45°, and the study by Schall
(1991) used 15° horizontal and 8° vertical. Systematic
mapping across eccentricities is needed to resolve this
question.

A fourth possibility involves the nature of tasks and
reward contingencies. As noted above, the particular
memory-guided saccade task used here is not identical to
tasks used in previous studies. Factors like stimulus lu-
minance, chromaticity, and contrast will need to be ex-
plored systematically (Krock and Moore, 2016). Moreover,
FEF neurons are sensitive to reward contingency (Roesch
and Olson, 2003) and other cognitive processes (Ferrera
et al., 2009; Middlebrooks and Sommer, 2012; Teichert
et al., 2014).
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Functional differences can arise from structural differ-
ences in connectivity (Schall et al., 1995a; Markov et al.,
2014), in morphology (Lewis and Lund, 1993), and in
biophysical properties (McCormick et al., 1985; Connors
and Gutnick, 1990; Krimer et al., 2005 Vigneswaran et
al.,2011; Casale et al., 2015; Rocco et al., 2016), although
the relative contributions of these factors are unknown in
FEF. Indeed, using a related consensus clustering ap-
proach on physiologic measures from monkey prefrontal
cortex, Ardid et al. (2015) reported four broad spiking,
putative pyramidal cell classes and three narrow spiking,
putative inhibitory cell classes, which were distinguished
by sparse, bursting, or regular spike trains. Using a related
agglomerative clustering approach, Zaitsev et al. (2012)
also reported four classes of neurons visually identified as
pyramidal cells in vitro that were also distinguished by
sparse, bursting, or regular spike trains. These authors
also identified three classes of inhibitory interneurons
identified morphologically in vitro that were distinguished
by firing rate variability measures, and these classes were
each associated with calcium binding proteins parvalbu-
min, calbindin, or calretinin.

In this sample, we found no significant differences in
measures of firing rate variability across the consensus
categories. However, spike width differed between the
two movement-related categories, indicating some differ-
ences in biophysical characteristics. Curiously, spike
width did not differ between consensus clusters identified
as visual, movement related, and visuomovement, which
is at odds with findings from previous studies (Cohen
et al., 2009a; Ding and Gold, 2012, Thiele et al., 2016).
Further investigation is necessary to determine the reason
for this difference. To that end, the consensus clustering
method can be extended to incorporate biophysical char-
acteristics such as spike polarity and phase (Gold et al.,
2009), spike width (Cohen et al., 2009a; Vigneswaran
et al., 2011), spike timing patterns (Holt et al., 1996;
Nawrot et al., 2008; Cohen et al., 2009a; Shinomoto et al.,
2009), and Fano factor (Purcell et al., 2012b).

Possible functional implications

Most of the consensus categories were characterized
by pronounced perisaccadic activity. Many such neurons
also had pronounced visual responses (3.on, 4cons Dcons
6.on: and 7..,) and will be discussed below. Categories
8.on and 9., were distinguished by (1) weaker modulation
of opposite signs after the target appeared, (2) time of
peak saccade-related activity, (3) duration of activity after
the saccade, and (4) spike width. Both patterns of mod-
ulation have been reported previously in FEF (Bruce and
Goldberg, 1985; Hanes and Schall, 1996; Everling and
Munoz, 2000; Sommer and Wurtz, 2001; Lawrence et al.,
2005). The peak activity of category 9.., neurons coin-
cides with saccade initiation, and discharge rate is reset
by saccade termination. Such clipped neurons have been
reported in FEF by one study (Hanes et al., 1995) but not
another (Segraves and Park, 1993). Clipped movement
neurons have been associated with saccade dynamics in
superior colliculus (Waitzman et al., 1991). Confirming the
presence of clipped movement neurons in FEF would
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substantiate the hypothesis that FEF contributes to the
dynamics of saccade production (Schiller et al., 1987;
Dias and Segraves, 1999; Peel et al., 2014). The activity of
category 8., has a more sluggish relationship to saccade
timing, peaking after the saccade and resetting well after
saccade termination. These properties are inconsistent
with a direct role in saccade production. Further investi-
gation with other task conditions is necessary. For exam-
ple, another approach to determining whether individual
neurons are involved in controlling saccade initiation in-
volves testing with the saccade-countermanding task
(Hanes et al., 1998; Murthy et al., 2009). Alternatively,
distinct functions may be revealed when planning sac-
cade sequences (Phillips and Segraves, 2010).

Relative to category 8., category 9., neurons had
significantly narrower spike widths. This does not entail,
necessarily, that 9.,,, neurons are inhibitory interneurons.
In primary motor cortex, some identified corticospinal
pyramidal neurons have narrow spike widths (Vi-
gneswaran et al., 2011) presumably because these neu-
rons have a fast potassium channel K,3.1b subunit
(Ichinohe et al., 2004). If corticotectal and corticopontine
neurons are analogous to corticospinal neurons, then
spike width may be misleading in the identification of
projection neurons. However, whether layer 5 neurons in
FEF stain positively for fast potassium channels is un-
known.

The analysis also identified a consensus cluster with
characteristics of fixation neurons (10..,). These neurons
seem involved in the active maintenance of fixation and
may release inhibition on presaccadic movement neurons
to produce saccades (Segraves and Goldberg, 1987;
Hanes et al., 1998). The cluster exhibited a modest visual
response. If these neurons do indeed inhibit presaccadic
movement neurons, then this could be the origin of the
brief reduction of discharge rate characteristic of the
movement neuron consensus cluster 9..,,. Greater diver-
sity of this category may be found if tested with pursuit
eye movements (Izawa and Suzuki, 2014).

Most of the consensus categories were characterized
by pronounced visual responses. This is consistent with
previous descriptions of FEF neural properties (Mohler
et al.,, 1973; Bruce and Goldberg, 1985; Schall, 1991).
Two consensus clusters were distinguished by strong
visual responses and no modulation associated with sac-
cades (1., and 2.,,). Category 1., had an earlier peak
response and no delay activity, whereas category 2.,
had a later peak response and clear activity during the
memory delay. The receptive fields of category 1., were
narrower than those of category 2.,,,. The diversity of FEF
visual responses along multiple dimensions is well known
in the early visual pathway. For example, the well known
distinction of transient and phasic visual responses (Cle-
land et al., 1971) is evident in FEF (Sato et al., 2001). The
diversity of visual responses likely arises principally from
the diversity of connectivity. As noted above, FEF is re-
ciprocally connected with an unusually large number of
extrastriate visual cortical areas, and pronounced differ-
ences in connectivity distinguish medial and lateral FEF
(Schall et al., 1995a; Babapoor-Farrokhran et al., 2013;
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Markov et al., 2014). Subcortical afferents can also influ-
ence visual responses; neurons in FEF that are activated
orthodromically by SC stimulation have visual and
saccade-related responses (Sommer and Wurtz, 1998).
The extent to which visual response properties vary with
cortical and subcortical connectivity is unresolved. The
diversity of visual responses in FEF also relates to the
variety of cortical areas in which FEF axons terminate. For
example, V4 is influenced by visual neurons in layer 2/3 of
FEF (Pouget et al., 2009; Noudoost and Moore, 2011;
Gregoriou et al., 2012). However, FEF neurons projecting
to V4 receive input from area 46, whereas the FEF neu-
rons projecting to MT receive input from area 46 plus
supplementary eye field. (Ninomiya et al., 2012). Thus,
intracortical projections from FEF convey different sig-
nals. How much such signals vary across cortical targets
of FEF efferents is unknown.

Most of the categories with visual responses were also
characterized by modulation associated with saccade
production. These are typically referred to as visuomove-
ment neurons. While these data support no conclusions
about the unique functional contributions of the four
visuomovement categories, several characteristics war-
rant discussion. First, categories 3., and 4., have no-
ticeably stronger visual responses than categories 6.,
and 7.,,. Perhaps categories 3.,, and 4.,, occupy an
earlier position in the visuomotor transformation. The
saccade-related activity of these two categories is similar,
so they may contribute equally to the production of sac-
cades. However, the timing of the peak visual responses
differs in a manner similar to categories 1., and 2_,,,. The
earlier peak activity of category 3., is consistent with
receiving magnocellular pathway inputs, perhaps via cat-
egory 1.., Neurons. Meanwhile, the later peak activity of
category 4., is consistent with receiving parvocellular
pathway inputs directly or via category 2., neurons.

Categories 6., and 7., have similar visual responses
but are distinguished by the magnitude of delay activity
and the return to baseline following saccade. Category
6.on activity returns to baseline quickly after the saccade,
indicating that this category may be more intimately in-
volved in saccade dynamics than category 7.,. This is
consistent with the higher delay activity in category 7.,
which may indicate that category 7., is primarily involved
in maintaining the stimulus location in working memory
and therefore occupies an executive role as opposed to a
direct role in saccade production. Of course, the lack of
corroborating differences in other factors, including tun-
ing characteristics, spike timing, and spike widths, may
indicate that these categories are an excessive parsing of
one continuum or that the measures are insensitive, but
additional work is warranted to determine whether this is
the case. For example, during visual search tasks, all
visually responsive neurons respond equivalently to a
target or a distractor in the receptive field (Schall et al.,
1995b). Visual neurons with transient responses do not
contribute to the selection of the target from distractors,
but visually responsive neurons with prolonged activity do
select the target of a search array when saccades are
accurate (14% transient and 86% sustained; Thompson
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et al., 1996). When arbitrary stimulus-response mapping
is required after visual search, many visually responsive
neurons select the attended stimuli, while others select
only the endpoint of the saccade (Sato and Schall, 2003).
Further research is needed with this task and these cat-
egorization methods to determine how this previously
observed distinction maps onto these new functional cat-
egories. When monkeys perform visual search for a target
among distractors of fixed features, ~50% of visually
responsive neurons in FEF exhibit features selective from
the initial response (Bichot et al., 1996). The same distinc-
tion may also explain feature-based attention differences
identified in FEF neurons in other studies (Bichot and
Schall, 2002; Gregoriou et al., 2009; Zhou and Desimone,
2011). Other distinctions among FEF neuron categories
have been described in perceptual choice (Ding and Gold,
2012). Finally, the relationship of the dynamics of visuo-
movement and movement neurons to saccade initiation
can be distinguished using the saccade-countermanding
task (Ray et al., 2009).

Further insight may be gained by testing how the dif-
ferent categories contribute to eye-head coordination
and visual-motor reference frame updating (Sajad et al.,
2015, 2016). FEF neurons have also been implicated in
remapping and trans-saccadic stability (Umeno and Gold-
berg, 1997; Crapse and Sommer, 2008, 2012; Shin and
Sommer, 2012). These operations require information
about the just executed saccade. A single consensus
cluster of postsaccadic neurons was identified (5..,)-
These neurons also had visual responses. Previous re-
search has suggested that this type of neuron can sup-
port remapping and trans-saccadic stability by signaling
the vector of the saccade that was just executed (Gold-
berg and Bruce, 1990). To produce sequences of sac-
cades without visual guidance, the vector of the most
recent saccade would be subtracted from the vector from
the initial fixation point to the location of the second
stimulus to account for the location of the second stimu-
lus relative to the new fixation point rather than the point
from which the location was initially encoded.

Antidromic stimulation studies agree that movement
and fixation neurons project to the SC and brainstem, but
they disagree about the projection of visual and visuo-
movement neurons (Segraves and Goldberg, 1987; Som-
mer and Wurtz, 2001). Perhaps the disagreement may be
resolved by considering more refined categories of neu-
rons. For example, perhaps only visuomovement neurons
belonging to categories 6., or 7., With modest visual
response, relative to categories 3.,, and 4., project
from FEF to SC.

Limitations and extensions of clustering procedures
Each of the individual clustering procedures is limited
by the distance measure used to calculate pairwise sim-
ilarity, by the measurement of the responses, and by the
quality of the discharge rate samples. Different distance
measures emphasize different aspects of the variability
across units. Although Euclidean distance emphasizes
similarity in absolute discharge rates, correlation distance
emphasizes similarity in the pattern of modulation of dis-
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charge rates. Different measurements of the variation of
discharge rate emphasize different aspects of the variabil-
ity across units. Measuring the mean firing rate in different
epochs captures absolute discharge rates but ignores
dynamics. Measuring the slopes of the SDF in different
epochs ignores absolute discharge rates. However, mea-
suring both the means and slopes across many epochs
or, indeed, using the SDF from the entire trial can expose
the clustering algorithm to excessive incidental variation.

Different approaches to scaling the SDF across units
emphasize different aspects of the variability across units.
As shown in Figures 3-5, different methods of scaling the
SDF across units can result in category means that do not
accurately represent the individuals comprising those cat-
egories. Naturally, different scaling procedures empha-
size useful information about the units. For example, z
scoring the SDF based on the prestimulus baseline activ-
ity emphasizes the magnitude of modulation relative to
the variation in the baseline. On the other hand, z scoring
the SDF based on the entire trial reduces the skewed
variation of discharge rates. Analytical choices must be
made; hence, confidence in the outcome of every partic-
ular clustering pipeline can be questioned.

Consensus clustering increases confidence in distinc-
tions identified across measurements and clustering pro-
cedures by minimizing spurious classifications arising
from incidental analysis choices or unreliable data. More-
over, the consensus clustering approach affords the op-
portunity to include as many other measures and
clustering procedures as desired. In particular, biophysi-
cal spiking properties are certainly useful for categorizing
neurons. The eventual inclusion of such features will
surely add complexity but should certainly approach an
accurate account of the true diversity of functional neuron
categories in FEF. A correct account of such diversity is
necessary to support the next generation of microcircuit
models (Mitchell and Zipser, 2003; Brown et al., 2004;
Hamker, 2006; Heinzle et al., 2007).
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