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1. Introduction
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The current glioma classification could be optimized to cover such a separate and individualized prognosis ranging from a few
months to over ten years. Considering its highly conserved role and potential in therapies, autophagy might be a promising
element to be incorporated as a refinement for improved survival prognostication. The expression and RNA-seq data of 881
glioma patients from the Gene Expression Omnibus and The Cancer Genome Atlas were included, mapped with autophagy-
related genes. Weighted gene coexpression network analysis and Cox regression analysis were used for the autophagy signature
establishment, which composed of MULI, NPCI, and TRIMI3. Validations were represented by Kaplan-Meier plots and
receiver operating curves (ROC). Cluster analysis suggested the IDHI mutant involved in the favorable prognosis of the
signature clusters. The signature was also immune-related shown by the Gene Ontology analysis and the Gene Set Enrichment
Analysis. The high signature risk group held a higher ESTIMATE score (p = 2.6e — 11) and stromal score (p = 1.8e — 10). CD276
significantly correlated with the signature (r =0.51, p < 0.05). The final nomogram integrated with the autophagy signature,
IDHI mutation, and pathological grade was built with accuracy and discrimination (1-year survival AUC=0.812, 5-year
survival AUC =0.822, and 10-year survival AUC =0.834). Its prognostic value and clinical utility were well-defined by the
superiority in the comparisons with the current World Health Organization glioma classification in ROC (p < 0.05) and decision
curve analysis. The autophagy signature-based IDHI mutation and grade nomogram refined glioma classification for a more
individualized and clinically applicable survival estimation and inspired potential autophagy-related therapies.

Isocitrate dehydrogenase (IDH) mutations, codeletion of
chromosomal arms of 1p and 19q, O6-methylguanine-DNA

Glioma, accounting for the majority of malignant primary
brain tumors in adults, earns the prestige due to its “bipolar”
prognosis. Typically, its median survival spans from nearly
one-year survival of glioblastoma multiforme (WHO IV) to
over ten years with a 90% chance if diagnosed with pilocytic
astrocytoma (WHO I) [1]. Less competence of microscopic
morphology grading in covering such a separate prognosis
permits the molecular testing era to arrive. With progress
in genomics, a detailed stratification of gliomas for precise
prognosis prediction and therapy decision-making is refined
by the integration of conventional histopathological observa-
tions with genotypic alterations [2].

methyltransferase (MGMT) promoter gene methylation, and
histone protein H3.3 or H3.1lys27Met mutations (H3K27M)
represent prevalent subtypes in the population with glioma
[2]. It is widely accepted that patients with IDHImutaions
would likely enjoy more extended overall survival (OS) than
their wildtype counterparts almost in each subtype of glioma
[3]. IDHI mutation earns its reputation also based on the
hypothesis that it is the mutation that might drive the lower
grade glioma (LGG) trending towards malignancy [4]. Muta-
tions like IDHI1 mutation, 1p/19q codeletion, or methylation
of MGMT promotor might favor prolonged survival and
improved response to therapies, but they probably risk
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malignancy and even relapse for the protracted time. Given
that not every single glioma patient showed mutations, let
alone some rare mutations, further endeavors to incorporate
not only mutations but also molecular signatures are war-
ranted for more predictive, individualized, and therapy-
guiding glioma classification.

Autophagy evolutionarily maintains cellular energy
homeostasis by self-digesting labeled proteins and organelles
through lysosomes. Reports considering autophagy in therapy
resistance and crippling antitumor immune response have
piled up [5, 6]. The fact that glioblastoma exploits autophagy
as an adaption to temozolomide renders autophagy an intrigu-
ing target [7]. Minor tweaks with drug perturbation would
convert autophagy from cytoprotective to cytotoxic role [8].
Autophagy impairs antitumor response by hindering mono-
cyte differentiation into proinflammatory M1 macrophages,
as well as T cells requiring autophagy to function and differ-
entiate [9]. Additionally, macrophages in the peritumor
microenvironment promote antitumor immunity when
LC3-associated phagocytosis component genes are deleted
[10]. Stands as a nexus in glioma, autophagy hereby lays a
foundation for this study.

In this study, we attempted to build an autophagy signa-
ture with high-throughput data for better glioma survival
prediction and underlying target gene screening. Initially,
we assembled ATGs and searched for coexpression gene
modules using weighted gene coexpression network analysis
(WGCNA). The coexpression gene module most-related to
OS would be selected and regarded as candidates for the risk
gene signature construction. After validations, we also man-
aged to interpret the signature by linking the model to the
mutation stratification and by performing functional enrich-
ment analysis. The final integrative nomogram model was
not fully completed until the validations were accomplished.
It was concluded that the autophagy signature-based IDH1
mutation and tumor grade (AIM-g) nomogram fitted almost
all of the glioma patients for more precise and personalized
survival prognostication.

2. Materials and Methods

2.1. Microarray and Transcriptome Data with Autophagy-
Related Gene Sets. The gene expression microarray dataset
GSE16011 of glioma patients and its clinical traits were gath-
ered from the Gene Expression Omnibus (GEO) database.
The dataset recruited 284 glioma patients with histological
stages including 117 cases of lower-grade glioma (LGG),
156 cases of glioblastoma multiforme (GBM), and normal
controls [11]. Patients with clear mutation status were kept.

Of the glioma cohorts in The Cancer Genome Atlas
(TCGA) database, 505 LGG and 155 GBM RNA-seq counts
data with detailed clinical information were obtained with the
R package “TCGAbiolinks” [12]. The corresponding mutation
data was acquired by the R package “TCGAmutations” [13].

Several autophagy-related genes (n =505) were selected
in the Molecular Signatures Database v7.1 (MSigDB) [14].
After deduplicating with the whole gene set comprised of
232 genes in the (HADD) [15], a gene set of 598 genes
was completed.
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2.2. Construction of WGCNA in Autophagy-Related Gene Set.
Weighted gene coexpression network analysis was con-
structed based on ATGs using the WGCNA package [16].
It helped calculate and transform a weighted adjacency
matrix into a topological overlap matrix by employing the
power (f3) value as a threshold. Genes would be clustered
with the others showing similar expression patterns and
formed modules. The dynamic tree-cutting algorithm deter-
mined the ultimate modules.

Module eigengene (ME) was the first principal compo-
nent set by the principal component analysis of each module.
Module membership (MM) was thereafter determined by
correlation analysis among genes in the module and the
MEs. With correlation analysis implemented, genes coex-
pressed in modules might show their links to the clinical
traits in GSE16011, including age, gender, histology, IDHI
mutation status, and overall survival (OS). Overall survival
was a period measured either from the day of glioma diagno-
sis or treatment to the end of one’s time.

2.3. Prognostic Autophagy Signature Development and
Validation. The correlation-promising and statistically sig-
nificant modules were selected and regarded as resources
for further screening of risk candidates. Univariate and mul-
tivariate Cox regression were orderly performed to measure
the prognostic value of candidate genes building autophagy
risk signature for OS prediction. The regression coeflicients
for each gene in the signature were utilized to calculate the
autophagy signature risk score as follows, Risk score=
Y., B; x gene,, where f3 indicated the Cox regression coeffi-
cient for the gene expression.

The time-dependent receiver operating curve (ROC)
along with survival analysis was carried out for the model
evaluation [17]. The GEO developing cohort was split at a
ratio of 3:7 by the R package “caret” as the internal valida-
tion of the signature, in which the training set occupied
30% and the testing set took the rest [18]. The external vali-
dation also mainly relied on survival analysis and time-
dependent ROC in the TCGA cohort.

2.4. Cluster and Mutation Analysis. Hierarchical clustering
analysis was applied in both the GEO and the TCGA cohort.
The clusters were cut into four simply according to four main
branches of the clustering tree in the heat map. The mutation
profile of each cluster grouped by the expression of the
autophagy signatures was managed by the R package “Maf-
tools” in the TCGA cohort [19].

2.5. Functional Enrichment Analysis. To explain functional
gene sets underlying high- and low-risk groups, the Gene
Ontology (GO) analysis was performed with the differentially
expressed genes (DEGs) in the GEO cohort. DEGs were iden-
tified if adj-p less than 0.01 and [logFC| over cutoff value by
the R package “limma” [20]. The mean of |logFC| adding
two times standard deviation was deemed as the cutoff
value. Gene set enrichment analysis (GSEA) was also con-
ducted in the GSEA software (version 4.0.3) and visualized
with the cystoscope software (version 3.7.2) [21-23]. In
the GSEA results, it rendered statistical significance in
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functional enrichment when |[NES|>1, NOM p value <
0.05, and FDR g value < 0.25.

2.6. ESTIMATE Immune Status in the Autophagy Signature
Risk Groups. Estimation of STromal and Immune cells in
MAlignant Tumor tissues using Expression data (ESTI-
MATE) analysis was utilized to evaluate the tumor purity
in the tumor tissues [24]. It represented the immune score,
stromal score, ESTIMATE score, and tumor purity as results.
The detailed immune checkpoint gene correlation results
were visualized by the R package “circlize” [25].

2.7. Nomogram Development and Validation. Autophagy sig-
nature, IDHI1 mutation, and pathological grade were tested
and adjusted with multivariate Cox regression analysis. The
AIM-g nomogram was then established using Cox regres-
sion in the R package “rms” [26]. It went through time-
ROC analysis in the GEO and the TCGA cohort as assess-
ments and verifications. Calibration curves were also used.
Lastly, the comparisons between the AIM-g model and the
WHO model (IDHI mutation and grade), concerning
ROC at 1-, 3-, 5-, and 10-year time points, were con-
ducted. Decision curve analysis (DCA) was performed
for the clinical utility comparisons of the AIM-g nomo-
gram with the WHO model [27].

2.8. Survival and Statistical Analysis. All the statistical analy-
ses and graphs in this study were achieved in R 3.6.2 (R Core
Team, 2019) and RStudio (version 1.1.463). Cox regression
analysis, proportional hazards (PH) test, and Kaplan-Meier
survival analysis were performed with the R package “sur-
vival” [28]. Sankey diagram was depicted to illustrate data
structure via the package “ggalluvial” [29]. Wilcoxon test
and Kruskal-Wallis test were used for statistical comparisons.
Spearman tests were selected to test correlation. p value less
than 0.05 was deemed statistical significance.

3. Results

In an attempt to optimize the current glioma classification
for prognosis, this research was mainly survival-oriented
(Figure 1). A total of 881 glioma patients were included in
this research (Table 1).

3.1. Construction of WGCNA with ATGs. There were 598
ATGs assembled for this study from the MSigDB and the
HADD (Table S1). It remained 548 genes for WGCNA after
mapping with genes in the processed 221 glioma samples
from the GEO cohort. The soft threshold power (8) was set
as four to build an approximate scale-free topology
(R*=0.87) (Figures 2(a) and 2(b)). As topological overlap
matrix (TOM) was calculated, similarly expressed ATGs
were hierarchically classified to build 14 modules using a
dynamic tree-cutting algorithm (Figure 2(c)). No merged
modules were observed under the merging threshold of
0.20. The 14 modules were thus identified for clinical traits
correlation analysis.

3.2. Development of the Autophagy Signature. Module eigen-
genes (MEs) representing their modules were bridged to clin-

ical data. It revealed from the module-trait relationship heat
map that the blue module, consisted of 119 genes, was of
interest regarding significantly close relations with patients’
OS (r=-0.5, p=3e—15) (Figure 2(d)). The correlation
between module membership (MM) and gene significance
(GS) was also checked in the blue module (cor=0.76, p =
1.2e - 23) (Figure 2(e)). The whole gene set of the blue
module was thus selected and screened by univariate Cox
regression analysis.

Only three genes, MULI, NPC1, and TRIM13, of all 67
univariate screened were able to build the multivariate Cox
regression model under the proportional hazards (PH)
assumption (MULI HR, 3.9615, 95% CI=2.4642 - 6.369,
p <0.001; NPCI HR, 1.4957, 95% CI=1.1389 - 1.964, p =
0.00379; TRIM13 HR, 0.6292, 95% CI = 0.4888 — 0.810, p <
0.001) (Figure 2(f), Figure S1(a), Table S2). The autophagy
signature was adjusted to be an independent risk indicator
(Figure S1(b)). Hereby, autophagy risk signature was
acquired and the signature risk score was calculated as follows:

Riskscore = 1.3766 x MULI + 0.4026 x NPC1
—0.4633 x TRIM13.

3.3. Validation of the Autophagy Signature. Internal and exter-
nal validation of the autophagy risk signature mainly relied on
survival analysis and ROC. To start with, the expression level
of the three-ATG signature was investigated (Figure 3(a)).
The growing expression of MULI and NPCI was observed
with risk score increasing, whereas TRIM13 behaved oppo-
sitely. It showed that the high-risk group had less optimistic
OS than the low-risk one when the GEO cohort of glioma
was subdivided with the median of the risk score (p < 0.0001)
(Figure 3(b)). The fact that low-risk group held better survival
estimation was further detailed by the survival curves in LGG
(p=0.003) and GBM (p = 0.0021) subgroups from the GEO
cohort (Figures 3(c) and 3(d)).

Considering the potential grouping value of the autoph-
agy risk signature, the GEO cohort was clustered into four
groups based on the expression profile of the signature
ATGs (Figure 3(e)). As depicted in the survival curves, four
GEO cluster groups exhibited different OS status, which
characterized by the poorest OS of the GEO clusters 3 and
4 (median OS at around 8 months) contrasted to the clusters
1 and 2 (median OS at around 34 months) (p <0.0001)
(Figure 3(f)). It indicated that more in-depth researches
were required.

The discrimination of the signature was quantified by the
area under the curve (AUC) of 0.747, 0.829, 0.826, and 0.847
for 1-, 3-, 5-, and 10-year OS, respectively, in the GEO cohort
(Figure 4(a)). Besides, the GEO cohort was randomly cut into
a training set and testing set at a ratio of 3:7 for the internal
validation. The 1- and 3-year OS AUC of the autophagy sig-
nature in the training set were measured to be 0.697 and
0.686, while 5-year OS AUC was 0.71 (Figure 4(b)). It
revealed that 1-, 3-, and 5-year OS AUC was 0.753, 0.877,
and 0.86 in the testing set, respectively (Figure 4(c)).

To make it more solid, the autophagy signature was
tested in the TCGA cohort of 660 gliomas as well. It was
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FIGURE 1: Framework of the study. ATG: autophagy-related gene; AIM-g: autophagy signature-based IDHI mutation and grade model; DCA:
decision curve analysis; DEG: differentially expressed gene; ESTIMATE: estimation of stromal and immune cells in malignant tumor tissues
using expression data; GO: gene ontology; GSEA: gene set enrichment analysis; ICG: immune checkpoint gene; ROC: receiver operating
curve; RS: risk score; WGCNA: weighted gene coexpression network analysis.

performed in the same way as in the GEO cohort with the
identical risk score algorithm. The low-risk group was
again proved to be favorable (p <0.0001) (Figure 4(d)).
Although the AUC for the 1-, 3-, 5-, and 10-year OS pre-
diction were 0.771, 0.762, 0.779, and 0.811, it manifested
autophagy signature efficacy as an indispensable facet for
OS prediction (Figure 4(e)).

3.4. IDHI Mutation Involved in the OS of Autophagy
Signature-Based Clusters. Intrigued by the autophagy
signature-based clusters’ disparate OS previously, the clusters
depending on the signature expression level also showed dis-
tinct survival in the TCGA cohort (p < 0.0001) (Figure 5(a),

Figure S1(c)). In this case, the cluster 4 displayed the worst
OS of all. Another point worth noticing was the survival
cures of the clusters 1 and 3 intertwined with each other.
Somatic mutation profile was used to seek possible answers
concerning its prevalence in glioma classification. It was
revealed by the oncoplots that the cluster 4 with the poorest
OS harbored drastically incompatible somatic mutation
patterns in the clusters, which represented by the mutations
of TP53 2%, PTEN 2%, and EGFR 2% (Figure 5(b)).
However, the clusters 1 and 3 were characterized by the
mutations of IDHI1, TP53, and TTN. IDHI and ATRX
mutants were chosen to be studied for their inclusion in the
current WHO glioma classification.
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TaBLE 1: The clinical baseline table of the GEO and TCGA cohort.

GEO cohort TCGA cohort
n=221 n =660
Median (50.34) Median (46.64)
Age (years) Age> 65 43 19.5% Age > 65 95 14.4%
Age <65 178 80.5% Age < 65 565 85.6%
Gender Male 153 69.2% Male 380 57.6%
Female 68 30.8% Female 280 42.4%
Grade LGG 93 42.1% LGG 505 76.5%
GBM 128 57.9% GBM 155 23.5%
IDH1 mutation Wild type 140 63.4% Wild type 261 39.6%
Mutant 81 36.7% Mutant 399 60.5%
Chemotherapy Yes 84 38.0% Yes 459 69.6%
No 137 62.0% No 201 30.5%
Radiotherapy Yes 154 69.7% Yes 478 72.4%
No 67 30.3% No 182 27.6%
OS<12 100 45.3% OS<12 181 27.4%
12<0S< 36 57 25.8% 12<0S< 36 297 45.0%
Overall survival (months) 36 <0S <60 22 10.0% 36 <0OS< 60 105 15.9%
60<0S< 120 30 13.6% 60<0S <120 59 8.9%
0OS=>120 12 5.4% OS>120 18 2.7%

It turned out that the wild type was not beneficial for OS
in the TCGA cohort, whereas the IDHI mutant only or the
IDHI and ATRX double mutants held better chances to sur-
vive (p <0.0001) (Figure 5(c)). One could even conclude
that the IDHI mutant only might benefit patients most
under the present conditions. As confirmation, the IDH]I
mutant only “rescued” the both high- and low-risk group
(p <0.0001) (Figure 5(d)). It was concluded that the IDH1
mutant played a pivotal role in the OS of autophagy
signature-based clusters.

3.5. IDHI Mutation Links to the Signature Risk Score. The
clusters 1 and 3 in the TCGA cohort were merged because
of the similar IDHI mutation ratio and the entangled survival
curves. A success was manifested by the Kaplan-Meier curves
of the new three clusters stretching separately (p < 0.0001)
(Figure 6(a)). It was inspiring that the higher the IDHI
mutant ratio the longer OS one cluster would have in the
TCGA cohort (Figure 6(b)). The barely survived cluster 3
was also observed to harbor the least amount of IDHI muta-
tions (cluster 3 median OS at 27.6 months, IDHI mutant
11.11%; cluster 1 median OS at 44.9 months, IDHI mutant
51.91%; cluster 2 median OS at 88.7 months, IDHI mutant
93.62%). The hypothesis that the IDHI mutant might be pos-
itively tied to the signature-based clusters’ OS was further
evidenced by the GEO cohort (Figure S1(d) and (e)).
Additionally, the cluster 3 carried the significantly high-
est risk score with the clusters 1 and 2 following (clusters 1
and 2, p < 2.2e — 16; clusters 1 and 3 p = 1.5¢ — 07; clusters 2
and 3, p<2.2e—-16) (Figure 6(c)). And the IDHI mutant
only was slightly lower than both IDHI and ATRX mutation
regarding the risk score (p =2.3e — 12) (Figure 6(d)). As for

the pathological grade, LGG held a lower risk score than
GBM (p < 2.22e - 16) (Figure 6(e)). IDHI mutant was thus
identified to serve as an affiliated classifier for better perfor-
mance of the autophagy signature (Figure 6(f)).

3.6. Functional Enrichment Analysis of the Autophagy
Signature. It helped to interpret the function of the autophagy
risk signature by performing GO analysis in the risk groups
from the GEO cohort. The risk score was able to well-
bifurcate the GEO cohort into two risk groups (Figure 7(a)).
There were 513 up-genes and 348 downregulated genes found
as DEGs between the two risk groups (Figure 7(b)). DEGs were
then analyzed by GO analysis (Table S3). Interestingly, three of
the top nine GO biological process (BP) enrichment results
displayed neutrophil-related, such as “neutrophil activation
involved in immune response” with 2.51-fold enrichment,
“neutrophil degranulation” with 2.52-fold enrichment, and
“neutrophil activation” with 2.55-fold enrichment (Figure 7(c)).

For further confirmation, the whole gene sets of high- and
low-risk groups were used to run through GSEA with the GO
biological process gene set (Table S3). It shared with the GO
results that a large portion of the GSEA enrichment map
automatically annotated was pertinent to immunity, like
“molecular immune regulation,” “monocyte chemotaxis
regulation,” and “migration chemotaxis lymphocyte”
(Figure 7(d)). The functional enrichment analyses were thus
leading a path to immune response, which might contribute
to differentiating the autophagy risk levels.

3.7. ESTIMATE the Immune Status of the Autophagy
Signature-Based Risk Groups. The immune-focused inquiry
to autophagy signature-based risk groups was conducted by
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Cox regression.

the ESTIMATE analysis in the GEO cohort. Consistent with
the previous findings, it exhibited higher stromal score
(presence of stroma, p=1.8e—10), more immune score
(immune infiltration, p=1.4e—10), and increased ESTI-
MATE score (integral score, p =2.6e—11) in the high-risk
group (Figure 7(e), Figure SI1(f)). And the known 47
immune checkpoint genes (ICGs) were used to match with
the genes in this cohort and tested with the risk score for
possible relations. It remained 16 ICGs of significance
(p<0.05) with relatively strong relations (r>0.2) to the
risk score, of which CD200 (r =-0.56), LAIRI (r=10.535),
CD44 (r=0.53), and CD276 (r=0.51) were ranked at the
top (Figure 7(f)).

3.8. Development and Validation of AIM-g Nomogram. The
autophagy risk signature, IDHI mutation, and tumor grade
factors were adjusted and checked to be independent indices
for prognosis prediction (Figure S2(a)). Since IDHI mutation
could perfect the autophagy signature, it would improve the
performance of the autophagy signature if IDHI mutation
was included. It integrated the autophagy signature, IDH1
mutation, and grade to build the final AIM-g nomogram in
the GEO cohort (Figure 8(a)). The AIM-g model satisfied
the PH assumption (Figure S2(b)). The time-ROC curves
were again employed for validation, and 1-, 3-, 5-, and
10-year OS AUC was 0.775 (95% CI=0.713-0.836),
0.879 (95% CI=0.832-0.926), 0.854 (95% CI=0.800 -
0.907), and 0.838 (95% CI=0.735-0.941), respectively
(Figure 8(b)). The 1-, 3-, 5-, and 10-year calibration
curves were aligned with the standard line (Figure 8(c)).
It was further verified in the TCGA cohort (1-year AUC =
0.812, 95% CI=0.763 —0.861; 3-year AUC=10.819, 95%

CI=0.771-0.868; 5-year AUC=0.822, 95% CI=0.766 -
0.878; 10-year AUC=0.834, 95% CI=0.760—0.908)
(Figure 8(d)).

In the end, the AIM-g nomogram was evaluated by
challenging the current WHO glioma classification in the
GEO cohort. It displayed a significantly higher AUC of
the AIM-g at 1 year than the AUC of the WHO model
being 0.74 (p=0.033) (Figure 8(e)). The AIM-g AUC at
3 years was 0.879, significantly more discriminative than
the WHO AUC at 3 years being 0.847 (p =0.006). More-
over, the 5-year AIM-g AUC was 0.854 contrasted to
0.81 of the WHO AUC (p <0.001). It also displayed the
contrasting discrimination capability of the two 10-year
ROC curves (10-year AIM-g AUC =0.838; 10-year WHO
AUC=0.777, p<0.001).

To clarify the net benefits for patients using this AIM-g
nomogram, DCA was reasonably applied. The patients with
1-year survival probability between 0.2 and 0.5 would reap
more net benefits if they selected the AIM-g model rather
than the WHO model (Figure 8(f)). It showed that the
AIM-g nomogram would be more advisable if a patient’s 3-
year survival probability was in the range of 0.2 to 0.65. The
AIM-g model would also be favorably chosen when one’s
5-year survival probability was within the range of 0.1 to
0.55. For the 10-year prognostication, the AIM-g model
was still more beneficial.

4. Discussion

Autophagy was a highly conserved catabolic process
throughout mammalian cells for rapid adaption to hush
environment alterations. Extensive literature reported that
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FIGURE 4: The internal and external validation of the autophagy signature with ROC and survival analysis. (a) Time-dependent ROC of the
autophagy signature model trained by the whole GEO cohort at 1-, 3-, 5-, and 10-year time points. (b) Time-dependent ROC of the autophagy
signature trained by the training set at 1-, 3-, and 5-year time points. (c) Time-dependent ROC of the training set-trained autophagy signature
model tested by the testing set. (d) Kaplan-Meier survival curve of the risk groups divided by the signature risk score median in the TCGA
cohort. (e) Time-dependent ROC of the autophagy signature model in the TCGA cohort as validation.

inhibition of autophagy might sensitize glioma patients to
chemotherapy [30]. However, it remained controversial that
whether to inhibit protective autophagy or indulge overactive
autophagy towards autophagic cell death would improve
clinical outcomes [31, 32]. Even though the impairment of
autophagy probably boosted the cytotoxicity of antitumor
drugs, it would perturb antitumor immune responses sup-
ported by the evidence [33]. The systemic analysis of the
ATGs for glioma prognostic value might not only invigorate
the current glioma subtypes for prognosis from autophagic
perspective but also motivate investigations on autophagy-
related targets and biomarkers.

The autophagy signature constituted by MULI, NPCI,
and TRIM13 was built at the start of this study. It was encour-
aging that the IDHI mutant involved in the autophagy
signature-based survival prediction making another element
for an integrative prognosis model. Considering the multifac-

eted possibility of the current glioma classification for
improved practical application, the AIM-g nomogram was
managed to attain the idea. A medical nomogram was a
visual tool for individualized prognostic model [34]. After
validations and evaluations, the AIM-g nomogram could be
viewed as a promising and applicable model fitting such sep-
arate and “bipolar” glioma prognosis.

It was reasonable to apply WGCNA to the establishment
of the ATG risk signature. WGCNA was capable of attending
to coexpression genes and connecting the gene modules to
clinical traits in the meantime so that the study could handle
candidate genes more comprehensively than genes simply
screened out by regression models. Though less perfectly
associated with the OS (r=-0.5), it executed dimension
reduction successfully and smoothed the process of the sig-
nature building with biological and statistical significance
(Figures 2(d) and 2(e)). And the established three-gene



BioMed Research International

1.00 4 -
0.75 1 -
kY
;é
=
2050 -
=
2
2
=
w
0.25 A
0.00 -
Time in months
Number at risk: 7 (%) tme
L [239-a00) - 1H(5) - 21) - - - 040) -
= 187(99) 9(5) - 2(1) - S141) -
& = (179-(100) - - 5(3) 00) - - - 040) -
— | 54 (100) - - 1(2) 0(0) -0(0) -
T T T T
0 100 200 300
Time in months
Strata
—+ Clusterl ~+ Cluster3
— Cluster2 —+ Cluster4
()
12108 Cluster 1 440 Cluster 2
] 0 122 ] J_ 0 176
0 . 0 bk . ] —
1753 WA o DN DM A —
IDH1 13% [ TP53 9% [N
ATRX O | ] crc IIIIIIIIIIIIIIIIII lls W I
TN | | [} | ATRX T 7% |
EGFR | F 5% [ FUBP1 [l 3% ||
PTEN | I Ml s W NorcH || !I [l 1l EC ||
MUCI16 | L [ T | PIK3CA |I | ] | |I |29 N
PIK3CA F | F |\ LA I3 W sMARCA4 || I | | I |
FIG | MR I 2 [l TTN ’I 11 I JITIRRTACI 2> N
NF1 [l [ 29 T mucts ||| ] I I | |
1606 Cluster 3 989 Cluster 4
]L 0 99 I 0 2
odb . 0 — 1
IDH1 ue I 7P imn mm 2 | A
TP53 | so% [ 0 PTEN n 2% 5
ATRX | 6% Wl EGFR 2%
il | I ([ o [l TN II 1
cic 0w I il Mucis v
TN | LTI 51 5
EGFR | 1] i~ W serat (I |l 1N 11 1o [
NF1 R e m 2% I ATRX h %
mucts | il [ U N 2 Ml IDH1 IIII% |
piksca ||| I » W we w Il
W Missense_mutation Splice_site
Nonsense_mutation W In_frame_del
Frame_shift_ins B Multi_hit
Frame_shift_del
(b)

FiGure 5: Continued.

13



14 BioMed Research International

1.00
B
0.75 4 : -
T s O A T et
E
<
=]
=]
a. 0.50 o
=
2
3
w
0.25 - : AN S . b . - . S . -
I
I
0.00
T T T T
0 100 200 300
Time in months
Number at risk: n (%)
14(93)- - - - B S 0(0) . . . S 0(0) . . . - 0+(0)
£ — 213 (100) - - - Sl S 9 . S < 3(D) . R - 1(0)
g
3 186 (100) - - - . . - 13(7) . . . S . . . -+ 00)
—— |246 (100) - - - s 4 : : : - 0(0) : : : - 0(0)
T T T T
0 100 200 300
Time in months
Strata
ATRXmut+ IDHImut+ATRXmut+
—+ IDHImut+ — Wild type
©
1.00 4
t
.
,,,,,,,,,,,,,,,,,,,,,,,,,,, )
0.75
Z
;'_S‘
<
5
S .
£, 0.50 . .
= I
2 [ | ] l
Z S 1 1 s T T
3 I I !
1 1 1
0.25 - <l I 3 - .-
p<0.001 ! e I S |
. S 1 f . L.
1 1 1 ]
1 ! T !
0.00 B ! ( . .
T T T T
0 100 200 300

Time in months
Number at risk: 7 (%)

330 (100) - - - N S 8(2) - - - 1) - - - 0(0)

£ = | 39:(i00) - - - BRI S 0(0) - ORI - 0{0) - BRI - 0:0)
& 329 (100) - - - : : - 1815) : : : S3() . . . < 140)
— | 173(99) - - - R - 8(5) - - - S - - C1)
0 100 200 300

Time in months
Strata
Highrisk
—+ Highrisk IDHImut+

Lowrisk

—+ Lowrisk IDHImut+
(d)

F1GURE 5: Cluster analysis and mutation profile investigation in the TCGA cohort. (a) Kaplan-Meier survival curve of the clusters in the
TCGA cohort. (b) Oncoplots for mutation profiles of 901 samples acquired from the “TCGAmutations” package, categorized by the same
clusters as in survival curve plot, each cluster was labeled for illustration. (c) Kaplan-Meier survival curve of the ATRX mutant only, IDHI
mutant only, ATRX and IDHI double mutants, and wild type groups in the TCGA cohort. (d) Kaplan-Meier survival curve of the ATG
signature risk groups with or without IDHI mutant in the TCGA cohort.

signature justified the point of using WGCNA. It turned out  resented as hazard factors whereas TRIMI13 exhibited

to be robust that the ATG signature showed valid discrimina-
tion in both the internal and the external validations
(Figures 4(a), 4(c), and 4(e)).

The robustness of the autophagy signature should proba-
bly be attributed to its members. MULI and NPCI were rep-

protective (Figure 2(f)). MUL1 (Mitochondrial E3 Ubiquitin
protein Ligase) was also known as Mitochondrial-Anchored
Protein Ligase (MAPL) acting in the mitochondrial fission
regulation via mitofusins, the formation of mitochondrial-
derived vesicles to peroxisomes, and the proapoptosis via



BioMed Research International 15

1.00 4 -
z\0.75-r
;'._‘a
<
3
2 0504
g
I3
3
@ 0.254 -
0.00 + - .
T T T T
0 100 200 300
Time in months
Number at risk: n (%)
& T |418:(100) e B6 () e 2(0) e 04(0)
B [ 187(99) - - OBy e DAY (1)
w
—[54€100) o A(2) 00 000)
0 100 200 300

Time in months

Strata

—+— Clusterl
—— Cluster2
—+— Cluster3

(a)
100% ~ -
pc222-16
| —
o | N BN B 15607 " -
’ p<222 — 16
T
104 - :
50% - o
T T A
15)
8 .
% .
A I, S
25% - : Bl
0% 4 - : - ﬂ .
. . . 0 - - TP SRR
1 2 3 1 ) 3
Cluster Cluster
IDH1mut B 1
B Mutant B2
oW owt E 3
(b) (©

FiGure 6: Continued.



16

BioMed Research International

GBM|

LGG

1254 - p<222e—16: - p<222e- 16
e
10.0 4 - 94 ..
7.5+ - : . .
L . 5] .
:i ) . § 6 - i n':
4 ; % | :
2 504 .- -°i 2 - '......:..'.’f.u
_____
2.5+ - : - >
; ﬁ
£
Oo_h" 0+ B X
T T T T T T
Mutant LGG GBM
Mutant & LGG
=1 ATRXmut+ B GBM
1 IDHImut+
7 IDHI1mut + ATRXmut+
B owt

(d) (e)

Grade

Riskscore

Cluster IDH1mut

®

F1GURE 6: The merged clusters in the TCGA cohort and the links to risk score. (a) Kaplan-Meier survival curve of the merged clusters based on
similar survival and mutation status in the TCGA cohort. (b) Bar plot for illustration of the varying IDH1mutant/wild type ratio in the merged
TCGA clusters. (c) Boxplot of the merged TCGA cluster with different risk scores. (d) Box plot of the detailed ATRX/IDHI mutation groups’
relation with risk score. (e) Boxplot of pathological grade linking to risk score. (f) Sankey diagram as clarification for the autophagy signature
grouping value improvement by incorporating IDHI mutation in the final model.

Drpl SUMOylation at enhanced ER-mitochondrial contact
[35]. Consistently, MAPL was identified to suppress NLRP3
inflammasome activation as SUMO-E3 ligase [36]. NPCl
(Niemann-Pick C1), one of the components of cholesterol
exporting system from the lysosome, would result in the
accumulation of cholesterol and glycolipids, called
Niemann-Pick disease type C (NPC), if mutated [37]. It
was found that NPC1 inhibited mTORCI activation and
growth signaling by binding to lysosomal protein upon
cholesterol depletion [38]. TRIM13 (Tripartite Motif con-
taining 13) stabilized p53 after ionizing radiation by ubiqui-
tylating MDM2 and thus induce apoptosis due to its
ubiquitylation ligase property [39]. Its ubiquitylation unsur-
prisingly initiated the autophagic flux of the p62-TRIM13
[40]. Taken together, it would still take more effort to com-
prehensively understand the role of each signature member
in the context of glioma, which was restrained by the lim-
ited studies currently.

Based on the varying expression of the signature genes in
each patient, the cohort was grouped into clusters to explore
the stratification value of the signature (Figure 3(e),
Figure S1(c)). The cluster 3 identified by the high expression
of MULI and NPCI and the low expression of TRIM13 had
the poorest OS among the GEO clusters (Figures 3(e) and
3(f)). It could also be deluded that the prognosis of high

expression of MULIand TIRMI13 was similar to the
prognosis of high NPCI from the results (Figure 5(a),
Figure S1(c)). It would be more optimistic if one negatively
expressed MULI and NPCI but showed a high expression of
TRIM13. However, the entangled survival curves depicted in
the Figures suggested additional exploration.

IDHI mutation taking part in the enhanced OS of the sig-
nature clusters was unexpectedly exposed (Figures 6(a) and
6(b), Figures S1(d) and (e)). Though it was assertive to
conclude cause-effect relationships in a retrospective study,
the previous study supported that IDHI mutant induced
autophagy [41]. Specifically, it was the IDHI mutant stable
U87MG cells but not the mutant glioma tissue derived
from patients that exhibited increased light chain 3
phosphatidylethanolamine conjugate (LC3-II) conversion.
Additional evidence from Tateishi et al. suggested that
IDHI mutant reduced nicotinamide adenine dinucleotide
(NAD+) level, of which depletion would initiate autophagy
and ensuing cell vulnerability [42].

Immune responses might also be part of discerning the
autophagy signature-based risk groups except for the risk
score (Figures 7(c) and 7(d)). More immune cells were esti-
mated to infiltrate in the tissue of high-risk patients, which
was shared with a GBM research (Figure 7(e), Figure S1(f))
[43]. It could be explained as either the immune
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F1GURE 7: The functional enrichment analysis and immune statue estimation. (a) Heat map of the entire GEO microarray genes bifurcated by
the signature risk score median into high- and low-risk groups. (b) Volcano plot of the differentially expressed genes between the high- and
low-risk groups, the cutoff value was calculated as 0.85. (c) Bubble plot for the top 9 results of the GO analysis of the DEGs between the two
risk groups. (d) Enrichment map auto-annotated for the representation of the GSEA results with [NES | >1, NOM p value < 0.05, and FDR ¢
value < 0.25. (e) Boxplot for the estimation of the immune and stromal status of the two risk groups in the GEO cohort. (f) Circos plot for
representation of the correlations among risk score and immune checkpoint genes.

compensation for the “hazard” autophagy or the  interplay of autophagy and immunity inevitably impacted
overexpression of ATGs because of more active immune on treatment responses [32, 44]. CD276 (B7-H3) was
responses. It would also replenish the statement that the = demonstrated, as a member of the B7 family, to be
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FIGURE 8: The AIM-g nomogram validations and comparisons with the WHO model. (a) Nomogram for the AIM-g model. (b) Time-
dependent ROC of the AIM-g model at 1-, 3-, 5-, and 10-year time points in the GEO cohort. (c) Calibration curves of the AIM-g model

for the prognostication accuracy assessments at various time points.

(d) Time-dependent ROC of the AIM-g model in the TCGA cohort.

(e) Time-dependent ROC of the comparisons between the AIM-g model and the WHO model at 1-, 3-, 5-, and 10-year time points. (f)
DCA for the clinical utility evaluation, and comparisons between the AIM-g and the WHO model.

positively correlated with the ATG risk score (Figure 7(f)).
An article concluded similarly that B7-H3 regulating basal
autophagy resulted in poor responses to radiation in
gastric cancer [45]. In the light of immune checkpoint
inhibitors prevailing in glioma, B7-H3 inhibitors might
emerge as a synergistic therapeutic approach conjugated
with personalized manipulation of autophagy [46].

The final AIM-g nomogram would be preferentially con-
sidered in the future for its well-defined prognostic value. It
presented reliable discrimination with decent accuracy and
broader practical utility (Figures 8(b)-8(d) and 8(f)). To
emphasize feasibility and comparability, the current WHO
glioma classification was modelized and simplified as two
main elements, tumor grade and IDHI mutation, which
were also the exact first two steps of the actual workflow.
The superiority of the AIM-g, at least within the first two
steps, might fulfill the desire to refine the glioma classifica-
tion for more instructive prognosis estimation and potential
targets of individual autophagy and immune therapy
(Figures 8(e) and 8(f)).

Nonetheless, the AIM-g nomogram was yet to be tested
and applied universally. It might be too concise to include
overwhelmed indies for clarification and clinical application.
The earlier literature claimed a glioma prognostic signature
of two ATGs built on differentially expressed ATGs [47]. It
might help uncover autophagy target genes but failed to
assess discrimination, calibration, and clinical utility as a sig-
nature per se. The recent GBM-focused studies could be
enlightened. However, they might either underestimate
autophagy conserved entity in cells or overlook the ATG
coexpression network and PH assumption when developing
signatures [43, 48, 49].

5. Conclusions

This AIM-g model, based on presently available informa-
tion, was the first autophagy signature-based nomogram
model covering the entire gliomas. It systemically analyzed
coexpressed ATGs with prognostic value and developed
the autophagy signature. It also integrated the signature
cluster-related IDHI mutation. High autophagy risk could
mean more immune-active in the glioma as well. Lastly,
an attempt to improve the current WHO glioma categori-
zation for survival prediction was managed with theoreti-
cal triumph. To conclude, the AIM-g nomogram refined
glioma classification for a more individualized and clini-
cally applicable survival estimation and inspired potential
autophagy-related therapies.
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