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Abstract

Background: During the in vitro differentiation of human villous cytotrophoblast (CTB) cells to a syncytiotrophoblast (STB)
phenotype, mRNA levels for the nuclear hormone receptor NR2F2 (ARP-1, COUP-TFII) increase rapidly, reaching a peak at
day 1 of differentiation that is 8.8-fold greater than that in undifferentiated CTB cells. To examine whether NR2F2 is involved
in the regulation of villous CTB cell differentiation, studies were performed to determine whether NR2F2 regulates the
expression of TFAP2A (AP-2a), a transcription factor that is critical for the terminal differentiation of these cells to a STB
phenotype.

Methodology/Primary Findings: Overexpression of NR2F2 in primary cultures of human CTB cells and JEG-3 human
choriocarcinoma cells induced dose-dependent increases in TFAP2A promoter activity. Conversely, siRNA mediated
silencing of the NR2F2 gene in villous CTB undergoing spontaneous differentiation blocked the induction of the mRNAs for
TFAP2A and several STB cell specific marker genes, including human placental lactogen (hPL), pregnancy specific
glycoprotein 1 (PSG1) and corticotropin releasing hormone (CRH) by 51–59%. The induction of TFAP2A promoter activity by
NR2F2 was potentiated by the nuclear hormone receptors retinoic acid receptor alpha (RARA) and retinoid X receptor alpha
(RXRA).

Conclusions/Significance: Taken together, these results strongly suggest that NR2F2 is involved in villous CTB cell
differentiation and that NR2F2 acts, at least in part, by directly activating TFAP2A gene expression and by potentiating the
transactivation of TFAP2A by RARA and RXRA.
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Introduction

During human placental development, cytotrophoblast (CTB)

cells differentiate into syncytiotrophoblast (STB) cells that form the

outermost cell layer of the placental villus. These cells are

important in many of the cellular processes that are critical for

pregnancy maintenance and fetal survival, including ion, sub-

strate, and gas transport, and hormone production. Many factors

have been implicated in the regulation of villous CTB differen-

tiation, including EGF [1], hCG [2], LIF [3], CSF-1 [4], IGF-I

[5], leptin [6], cAMP [7], members of the TGFb superfamily

(including TGFb and TGIF) [8], the Wnt/b-catenin pathway

[9,10], and the transcription factors PPARc [11], Ikaros [12],

GATA-2/3 [13], RARA [14] and RXRA [15]. However,

relatively little is known about the cellular mechanisms by which

these factors regulate CTB differentiation.

Several lines of evidence suggest that the transcription factor

NR2F2 ((nuclear receptor subfamily 2, group F, member 2, also

known as ARP-1 (apolipoprotein repressor protein 1) and COUP-

TFII (chicken ovalbumin upstream protein TFII)), a member of the

nuclear hormone receptor gene family, may also be involved in the

regulation of villous CTB differentiation. NR2F2 is expressed in

many tissues, including skin, kidney, lung, stomach, intestine,

salivary gland, pancreas, testes, ovary, uterus, prostate and placenta

[16]. NR2F2 has been shown to have many actions in reproductive

tissues. For example, NR2F2 in the uterus is a downstream target of

the Indian Hedgehog signaling pathway that mediates communi-

cation between uterine epithelial and stromal compartments [17].

In addition, NR2F2 in the uterus may play a role in the preparation

of the uterus for implantation. Mutant females show enhanced

trophoblast giant cell differentiation, reduction of the spongiotro-

phoblast layer, and absence of labyrinth formation due to improper

vascularization of the placenta.

Studies from our laboratory strongly suggest that the retinoic

acid-inducible transcription factor TFAP2A (also known as

activator protein 2a or AP-2a) is also involved in the regulation

of human villous CTB differentiation. We observed that TFAP2A

induces the expression of the STB-specific proteins human

placental lactogen (hPL) [18], human chorionic gonadotropin

alpha (hCGa) [19], hCGb [19] and corticotropin releasing

hormone (CRH) [20]; and studies by others demonstrated that

TFAP2A stimulates the expression of additional genes expressed in

STB cells, including aromatase cytochrome P-450 (CYP11A1)

[21], germ cell alkaline phosphatase [22], 17ß-hydoxysteroid
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dehydrogenase type 1 [23] and leucine aminopeptidase/oxytoci-

nase [24]. In addition, we noted that 18 of the 25 most induced

genes and 17 of the 20 most repressed genes during villous CTB

differentiation are TFAP2A-dependent [25]. Moreover, we

observed that silencing of TFAP2A expression in differentiating

cytotrophoblast cells by overexpression of a dominant/negative

TFAP2A protein significantly inhibits the induction of 91 of the

205 genes normally induced during villous CTB differentiation

(44.4%) and blocked the repression of 34 of the 229 genes (14.9%)

down-regulated during the differentiation process [26].

Since TFAP2A expression is induced by retinoic acid [27], we

hypothesized that NR2F2 may regulate CTB differentiation by

modulating the induction of TFAP2A by retinoic acid. To test this

hypothesis, we have examined whether NR2F2 regulates the

TFAP2A promoter in human villous CTB cells undergoing

differentiation to a STB phenotype and whether silencing of

NR2F2 expression by NR2F2 siRNAs attenuates syncytialization

and the expression of STB-specific genes. In addition, we have

examined the effects of NR2F2 on RARA- and RXRA-induced

transactivation of the TFAP2A promoter.

Results

To determine whether NR2F2 mRNA is expressed in the early

stages of villous CTB differentiation, NR2F2 mRNA levels were

measured at daily intervals during 5 days of spontaneous

differentiation; and the pattern of NR2F2 mRNA was compared

to that of TFAP2A mRNA. As shown in Figure 1, NR2F2 mRNA

levels increased markedly during the differentiation process,

reaching a peak at 1 day that was 8.8-fold greater than baseline

levels. The levels for NR2F2 mRNA then decreased by 50% over

the next day, plateauing at levels that were about 4-fold greater

than baseline. TFAP2A mRNA levels increased 3.8-fold by day 1,

plateaued until day 3 and then decreased to levels that were about

2-fold greater than baseline.

To examine whether NR2F2 transactivates the TFAP2A

promoter, primary cultures of an enriched fraction of human

cytotrophoblast cells and JEG-3 human choriocarcinoma cells were

co-transfected with an expression plasmid for NR2F2 (pMT2-

NR2F2) and a plasmid containing the TFAP2A promoter coupled to

a luciferase reporter gene (pGL3b-TFAP2A-Luc). Control cells were

co-transfected with an ‘‘empty’’ expression plasmid (pMT2) and

pGL3b-TFAP2A-Luc. As shown in Figure 2, pMT2-NR2F2

stimulated dose-dependent increases in TFAP2A promoter activity

in both the primary CTB cells and JEG-3 cells. The luciferase

activities of the CTB cells and JEG-3 cells co-transfected with 3.0 mg

pMT2-NR2F2 were 7.160.6 and 6.060.5-fold greater respectively

than that of control cells (P,0.001 in each instance).

Conversely, silencing of NR2F2 expression with a NR2F2

siRNA attenuated the induction of TFAP2A expression during

CTB cell differentiation as well as the expression of other genes

that are specific markers of STB differentiation. As shown in

Figure 3, silencing of the NR2F2 gene in villous cytotrophoblast

cells undergoing differentiation significantly attenuated expression

of the TFAP2A gene and the genes for hPL, pregnancy specific

glycoprotein 1 (PSG1) and corticotropin releasing hormone

(CRH), all of which are markedly induced during the differenti-

ation process. In two experiments, exposure of CTB cells for 16 h

repressed NR2F2 mRNA levels by 65.363.0% (n = 6) and

repressed TFAP2A mRNA levels by 58.263.4% (p,0.001 in

each instance) as compared to cells exposed to the non-silencing

RNA control. The mRNA levels for hPL, CRH, and PSG1 in the

two experiments were repressed by 51.3 to 59.4% (p,0.001 in

each instance), while GAPDH and actin mRNA levels were

unaffected. The mRNA levels of syncytin, a transmembrane

glycoprotein critical for the fusion of CTB cells [28,29], were

repressed by 45.065.0% (p,0.001).

Silencing of NR2F2 expression with a NR2F2 siRNA also

attenuated the syncytialization of CTB cells. After 4 days of exposure

to the non-silencing RNA control, 58% of DAPI-positive nuclei (1000

counted) were in multinucleated cells, and most of the multinucleated

cells contained 3 or more nuclei. In contrast, only 18% of the DAPI-

positive nuclei of the CTB exposed to the NR2F2 siRNA were

multinucleated; and most of these multinucleated cells contained only

2 or 3 nuclei. Representative microscopic fields (1ox) of CTB cells

exposed to the non-silencing RNA control (left) and NR2F2 siRNA

(right) are shown in Figure 4.

To identify a potential mechanism for how NR2F2 activates the

TFAP2A promoter, the ability of NR2F2 to potentiate the RXRA

Figure 1. Time course of TFAP2A and NR2F2 mRNA levels
during villous CTB differentiation. An enriched fraction of
enzymatically dispersed villous CTB cells were cultured in vitro for five
days as described in Methods. TFAP2A and NR2F2 mRNA levels were
determined by real-time PCR at the end of each day. The amounts of
TFAP2A and NR2F2 mRNAs in each culture well were normalized to the
amount of GAPDH mRNA in the same sample. Each point represents the
mean 6 SEM of triplicate observations from 3 different placenta cell
preparations (n = 3 wells/placenta culture).
doi:10.1371/journal.pone.0009417.g001

Figure 2. The effect of NR2F2 on TFAP2A promoter activity.
Primary villous CTB cells (left) and JEG-3 cells (right) were co-transfected
with pGL3b-TFAP2A-Luc and pMT2-NR2F2 as described in Methods. The
amount of luciferase activity in each sample was normalized to the
amount of Renilla luciferase activity. Each bar represents the mean of
triplicate observations; and the bars enclose 1 SEM. Stimulation of
TFAP2 promoter activity by pMT2-NR2F2 was observed in three other
experiments using primary CTB cells and JEG-3 cells.
doi:10.1371/journal.pone.0009417.g002

NR2F2 in Placenta
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and RARA mediated regulation of TFAP2A promoter activity was

tested in transient transfection of JEG3 cells that have minimal

expression of all 4 genes at baseline. As shown in Figure 5, pRSV-

RXRA (left panel) and pRSV-RARA (right panel) induced dose-

dependent increases in TFAP2A promoter activity in JEG3 cells.

NR2F2 alone induced TFAP2A promoter activity by approximately

4 fold in JEG3 cells. JEG3 cells co-transfected with pGL3b-TFAP2A-

Luc and pRSV-RARA (3.0 mg) expressed 4.560.4 (mean 6 SEM)

fold greater luciferase activity than cells co-transfected with pGL3b-

TFAP2A-Luc and pRSV. JEG3 cells co-transfected with pGL3b-

TFAP2A-Luc and pRSV-RXRA (3.0 mg) expressed 7.060.4 fold

greater luciferase activity than cells co-transfected with pGL3b-

TFAP2A-Luc and pRSV in the absence of pMT2-RXRA.

Since NR2F2 has been shown to attenuate or potentiate the

transactivation of several genes by nuclear hormone receptors,

experiments were next performed to determine whether NR2F2

modulates the transactivation of the TFAP2A promoter by RARA

and RXRA. In the experiment depicted in Figure 6, JEG3 cells

were co-transfected with increasing amounts of pMT2-NR2F2 in

the absence and presence of a constant amount of pRSV-RARA

(0.1 mg) that has little effect itself on TFAP2A promoter activity.

The JEG3 cells co-transfected with pRSV-RARA (0.1 mg) and

pMT2-NR2F2 at doses of 0.1, 0.3 and 1.0 mg expressed 2.0, 2.4

and 4.5-fold greater luciferase activity, respectively, than the cells

exposed to pMT2-NR2F2 alone. In the experiment depicted in

Figure 7, JEG3 cells were co-transfected with increasing amounts

of pMT2-NR2F2 in the absence and presence of a constant

amount of pRSV-RXRA (0.1 mg) that has little effect itself on

TFAP2A promoter activity. The JEG3 cells co-transfected with

pRSV-RXRA (0.1 mg) and pMT2-NR2F2 at doses of 0.1, 0.3 and

1.0 mg expressed 2.4, 1.8 and 2.2-fold greater luciferase activity,

respectively than the cells exposed to pMT2-NR2F2 alone.

Discussion

This study demonstrates that the transcription factor NR2F2 is

involved in the in vitro differentiation of human CTB cells to a STB

cell phenotype. NR2F2 transactivated the TFAP2A promoter in

human CTB cells and JEG-3 choriocarcinoma cells and

potentiated the transactivation of the TFAP2A promoter by

RARA and RXRA. Furthermore, silencing of the NR2F2 gene in

cultured CTB cells undergoing spontaneous differentiation

markedly inhibited the expression of TFAP2A mRNA and the

expression of the STB-specific marker genes hPL, CRH and

PSG1. Silencing of NR2F2 also inhibited the syncytialization of

Figure 3. The effects of NR2F2 gene silencing on TFAP2A
mRNA levels and the mRNA levels of the syncytiotrophoblast
cell markers, hPL, CRH, PSG1 and syncytin. Human cytotropho-
blast cells were transfected in two separate experiments with a NR2F2
siRNA or a non-silencing (control) RNA as described in Methods. The
cultures were terminated 48 h later, total RNA was extracted, and
quantitative real-time PCR was performed for the indicated genes. In
each instance, the amount of mRNA for each gene was normalized to
the amount of GAPDH mRNA in the same sample. The final results for
each gene from the two experiments (n = 6) are expressed as the %
change of the normalized mRNA in the NR2F2 siRNA-exposed cells
relative to the silent (control) RNA ((silent RNA- siRNA)/silent
RNA)x100)). The bars represent the % change in mRNA levels from
the two experiments; the error bars represent 6 1 SEM (n = 6). Each of
the mRNAs in the NR2F2 siRNA-exposed cells, with the exception of
GAPDH mRNA, was significantly less than that in the silent RNA-
exposed cells (P,0.001 to ,0.005 in each instance). Similar results were
observed in 2 other independent experiments. *,0.01
doi:10.1371/journal.pone.0009417.g003

Figure 4. The effect of NR2F2 gene silencing on syncytialization of villous CTB cells. Human cytotrophoblast cells were transfected with a
non-silencing (control) RNA (left panel) or a NR2F2 siRNA (right panel) as described in Figure 3. The cultures were terminated 4 days later and the cell
membranes were stained with an anti-desmosomal protein antiserum (green), and the nuclei were stained with DAPI (blue) as described in Methods.
106magnification
doi:10.1371/journal.pone.0009417.g004
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CTB cells, as shown by immunocytochemistry using an antibody

to desmosomal protein, and the expression of syncytin mRNA.

Earlier studies demonstrated that the transmembrane glycoprotein

syncytin, which is derived from the envelope protein of the human

retrovirus HERV-W, is critical for the syncytialization of CTB

cells [28,29]. Inhibition of syncytin expression has been shown to

block CTB fusion and overexpression of syncytin has been shown

to cause the fusion of cells that do not normally fuse. Taken

together, these observations strongly suggest a critical role for

NR2F2 in the regulation of CTB differentiation, both by direct

transactivation of the TFAP2A promoter and by potentiating the

transactivation of the TFAP2A promoter in response to RARA

and RXRA. A schematic representation of the role for NR2F2 in

villous CTB differentiation is shown in Figure 8.

In an earlier report, we noted that NR2F2 attenuated both the

basal activity of the hPL promoter and the transactivation of the

promoter in response to thyroid hormone receptor beta (THRB)

and RARA [30]. These experiments, performed in 1996, used a

CAT (chloamphenicol acetytransferase) reporter plasmid ((pChlor-

AceE (US Biochemical, Cleveland, OH)) containing a 2.3 kb (nt

22300 to +2) fragment of the hPL (hCS-A) promoter. However,

when we recently repeated these experiments using a pGL3b-

Luciferase reporter plasmid (Promega) containing the same hPL

promoter fragment we noted that NR2F2 induced the basal activity

of the promoter and potentiated rather than attenuated hPL

promoter activity in response to THRB and RARA (data not

shown). Although the reasons for the differences between these

studies are unclear, the observation that silencing of the NR2F2

gene represses hPL mRNA levels in human trophoblast cells

strongly suggests that NR2F2 induces the hPL promoter. The

findings observed with the old CAT reporter vectors most likely

result from artifactual influences from pBR322 vector derived

sequences [31,32]. Many of these sequences have been removed

from the newer luciferase vectors. The pGL3b vector also has an

upstream poly A signal to block aberrant vector initiated

transcription. Since all transient transfection experiments have the

potential to give spurious results, we used siRNA knockdown of

endogenous NR2F2 expression to corroborate our current findings.

Most members of the nuclear hormone receptor family have a

high degree of homology in their DNA binding domain. This

feature is reflected by similarities in the nucleotide sequences of the

steroid response elements (SREs). The SRE consists of two copies

of the half-site AG(G/T)T(C/G)A, with the number, spacing, and

orientation of these motifs in many instances determining the

specificity and strength of the response element. Specificity of the

SREs in many genes is determined by the base-pair spacing

between the half-site repeats, i.e. a spacing of 1, 3, 4 or 5

nucleotides (DR-1, 3, 4 or 5) has been reported to specify a

retinoid X responsive element (RXRE), vitamin D response

element (VDRE), thyroid hormone response element (TRE) or a

retinoic acid responsive element (RARE), respectively [33]. RXRs

have been reported to form heterodimers with RARs, TRs and

VDR and enhance the binding affinities of these nuclear hormone

receptors to DNA SREs [34,35]. Like RXR, NR2F2 binds

Figure 6. The effect of RARA on NR2F2-induced TFAP2A
promoter activity. JEG-3 cells were co-transfected with pGL3b-
TFAP2A-Luc and pMT2-NR2F2 in the presence and absence of pRSV-
RARA. An equivalent amount of the empty pRSV plasmid was co-
transfected into the cells that were not co-transfected with pRSV-RARA.
Each bar represents the mean of triplicate wells; and the brackets
enclose 1 SEM. NS = not significant; * = p,0.05; *** = p,0.001. Similar
results were obtained in two other experiments.
doi:10.1371/journal.pone.0009417.g006

Figure 7. The effect of RXRA on NR2F2-induced TFAP2A
promoter activity. JEG-3 cells were co-transfected with pGL3b-
TFAP2A-Luc and pMT2-NR2F2 in the presence and absence of pRSV-
RXRA. An equivalent amount of the empty pRSV plasmid was co-
transfected into the cells that were not co-transfected with pRSV-RXRA.
Each bar represents the mean of triplicate wells; and the brackets
enclose 1 SEM. NS = not significant; * = p,0.05; *** = p,0.001. Similar
results were obtained in two other experiments.
doi:10.1371/journal.pone.0009417.g007

Figure 5. The effect of RXRA and RARA on TFAP2A promoter
activity. JEG-3 cells were co-transfected with pGL3b-TFAP2A-Luc and
pRSV-RXRA or pRSV-RARA at the amounts indicated in the Figure. Each
bar represents the mean of triplicate observations; and the bars enclose
1 SEM. Similar results were observed in two additional experiments.
doi:10.1371/journal.pone.0009417.g005
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preferentially to an AGGTCA-like DR-1 site on many NR2F2

responsive genes [35,36].

While it has been known for many years that TFAP2A is induced

by retinoic acid, the molecular mechanism by which retinoic acid

induces transcription of the TFAP2A gene is poorly understood.

Analysis of the TFAP2A DNA sequence indicates that there are no

consensus nuclear hormone receptor binding sites. Nucleotides 25

to 22 of the proximal promoter have the sequence ACTT, but site

directed mutagenesis of this site had no significant effect on

transactivation (data not shown). Activation of transcription by

NR2F2, however, in some instances may not require DNA binding.

Malik and Karathanasis [37] and Power and Cereghini [38]

suggested that NR2F2-mediated activation results from direct

interactions of the NR2F2 activation domains with components of

the basal transcription machinery, specifically TF-IIB. Wang, Bai

and co-workers [39] demonstrated that NR2F2 inhibits hTERT

transcription by binding to the region of the hTERT promoter at

bases nt 2201 to +35 that contains an E-box motif (CACGTG).

The suppression of hTERT promoter activity could be reversed by

c-Myc, which competed with NR2F2 for binding to the E-box.

Taken together, this finding suggests that the transactivation of the

TFAP2A promoter by NR2F2, RXRA and RARA could be due to

binding to a different site than that previously described for steroid

hormone binding or to an interaction of NR2F2 with components

of the basal transcription machinery.

Early studies of NR2F2 action demonstrated that this transcription

factor attenuated transactivation by RARA, RXRA and other

nuclear hormone receptor family members. The inhibition of

transcription by NR2F2 was mediated by two mechanisms, active

repression and trans-repression. In active repression, NR2F2 binds to

its response element, while in trans-repression NR2F2 inhibits

transcription in the absence of its cognate binding motif or

independent of nucleic acid binding [40]. Several mutants of

NR2F2 that bind strongly to DNA fail to repress transcription [40].

The mechanism for the observed inhibitory property of NR2F2 is

thought to be via competition with these receptors for their binding

sites and by heterodimerization with RXR. It is now known that

NR2F2 can also activate transcription [41,42]. In fact, NR2F2 may

have diverse actions within the same cell. For example, NR2F2 has

been shown to determine hepatoma phenotype by acting both as a

transcriptional repressor of microsomal triglyceride transfer protein

(MTP) and an inducer of CYP7A1 [43]. Binding of NR2F2 to a

conserved DR1 site of the MTP promoter represses MTP gene

expression. Within the same cellular context, NR2F2 binds to the rat

CYP7A1 promoter causing enhanced transcription [41]. We now

show that NR2F2 potentiates RARA and RXRA mediated

transcription of TFAP2A to promote the program of syncytiotro-

phoblast differentiation.

In summary, the findings of this study strongly suggest that

NR2F2 is an important transcription factor in the induction of

terminal differentiation of villous CTB cells to a STB cell

phenotype. The action of NR2F2 is mediated, at least in part,

by transactivating the TFAP2A promoter and by potentiating the

transactivation of the TFAP2A promoter by RARA and RXRA.

Since deletion of NR2F2 in mouse uterine stromal and smooth

muscle cells also results in changes in placental differentiation [44],

the overall effects of NR2F2 on placental development may be

mediated by both its direct actions on the placenta and its effects

on uterine factors that influence placental development.

Materials and Methods

Plasmids
TFAP2A promoter studies were performed with a human

TFAP2A promoter fragment (nt 21728 to +286) linked to a

luciferase reporter gene in pGL3b (Promega Corp., Madison, WI)

(pGL3b-TFAP2A-Luc) [19]. An expression vector for NR2F2

(pMT2-NR2F2) was a gift from Dr. S. Karathanasis (Lederle

Laboratories). Expression plasmids for RXRA (pRSV-RXRA) and

RARA (pRSV-RARA) were gifts from Dr. R. Evans (Scripps

Institute). The control renilla luciferase expression plasmid (pRL-

TKLuc) was purchased from Promega Corp.

Figure 8. Schematic representation for the role of NR2F2 in the differentiation of human villous CTB cells to a STB cell phenotype.
NR2F2 transactivates the TFAP2A promoter and potentiates the transactivation of the promoter by RARA and RXRA. Activation of TFAP2A in turn
modulates the expression of downstream genes involved in terminal STB cell differentiation.
doi:10.1371/journal.pone.0009417.g008
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Cell Culture and Transient Transfections
Highly enriched fractions of human CTB cells were prepared by

enzymatic digestion of third trimester placentas, followed by

purification with immunomagnetic beads coupled to an antiserum

to human CD9 [20]. The protocol to collect the placentas was

approved by the Institutional Review Boards of the Cincinnati

Children’s Hospital Medical Center and the University of

Cincinnati. The cells were cultured in DMEM with 10% FBS

containing penicillin, streptomycin, and amphotericin B for 3

days, at which time .95% of the mononuclear cytotrophoblast

cells had aggregated and fused to form a multinucleated

syncytium. JEG-3 cells were cultured in MEM (Eagle) with

2 mM L-glutamine and Earle’s BSS adjusted to contain 1.5 g/L

sodium bicarbonate, 0.1 mM non-essential amino acids, and

1.0 mM sodium pyruvate, 90%; fetal bovine serum, 10%. JEG-3

cells express relatively low amounts of TFAP2A.

Transient transfections were performed in triplicate in 12 well

plates by the liposome method [20]. The cells (46106 cells/well)

were harvested 48 hours after transfection in 1x reporter lysis

buffer (Promega). Luciferase activity in each well was normalized

to co-transfected renilla luciferase activity. The results are

presented as the mean 6 SEM of the normalized luciferase

activity. The RARA and RXRA over-expression experiments

were performed in the presence of all-trans retinoic acid (10 mM) or

9-cis retinoic acid (1 mM), respectively.

Gene Silencing
Freshly prepared human cytotrophoblast cells (46106 cells/

well) were plated in 6 well culture plates in 2 ml of keratinocyte

growth media (Invitrogen, Carlesbad, CA) containing 10% FBS.

Approximately 16 h later, the medium in each well was removed;

and the cells were washed and then transfected with 150 nM

NR2F2 siRNA or a scrambled RNA control using the commercial

transfection reagent Darmafect 4 (Dharmacon, Lafayette, CO) in

2 ml of OptiMEM medium (Invitrogen). The sequence of the

NR2F2 siRNA was sense r(GTG GAA TTT ATT GGC AGC

CAA) and antisense r(UUG GCU GCC AAU AAA UUC

C)dAdC (Qiagen, Valencia, CA). The non-silencing RNA control

(sequence not provided by manufacturer) was purchased from

Qiagen. At 48 h after exposure to the siRNA or non-silencing

RNA, total cell RNA was isolated from the cells and analyzed by

real-time PCR as described below. In each instance, the amount of

mRNA for each gene was normalized to the amount of GAPDH

mRNA in the same sample. The final results for each gene are

expressed as the % change of the normalized mRNA in the

NR2F2 siRNA-exposed cells relative to the silent (control) RNA

((silent RNA- siRNA)/silent RNA)6100)).

RNA Analysis
Total RNA was extracted from the cells using Trizol

(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s

specifications. Two micrograms of total RNA were reverse

transcribed using SuperScript II Reverse Transcriptase (Invitro-

gen). Real-time PCR reactions were performed using a Stratagene

Mx3000 P instrument (Stratagene, La Jolla, CA, USA). Quanti-

tative PCR amplifications were performed using the Eppendorf

HotMasterMix (Brinkmann Instruments, Westbury, NY, USA)

supplemented with SYBR Green (Molecular Probes, Eugene, OR,

USA) and ROX (Stratagene). In each instance, primer pairs were

selected that amplified across intron-exon boundaries. The mix

was used according to the manufacturer’s instructions using a

20 ml final volume. PCR reactions were performed after a two

minute incubation at 95uC, followed by 40 cycles at 95uC for

30 seconds, 55uC for 1 minute, and 72uC for 30 seconds.

Dissociation/association curves for each reaction were determined

after the 40th cycle. A single dissociation curve was noted for each

primer set. Preliminary experiments determined that the condi-

tions used for each primer were optimized for these conditions.

The primers used for quantitative PCR are shown in Table 1.

Immunocytochemistry
Freshly prepared CTB cells were plated on glass cover slips in 6-

well plates and cultured for 3 days with the NR2F2 siRNA or the

non-silencing RNA (triplicate wells for each treatment) as

described above. The cells were fixed with 80% acetone/20%

PBS for 5 min and washed for 5 min with PBS containing 1%

saponin (PBS-S). Following washing, the cells were blocked with

5% goat serum in PBS-S for 30 min at room temperature. A

monoclonal anti-desmosomal protein antibody (Sigma, St Louis,

MO) was added to the blocking solution at a 1:400 dilution and

the cells were incubated at 37uC for 2 h. Controls were performed

with normal rabbit serum at a 1:400 dilution or by leaving out the

primary antibody. Subsequently, the cells were washed with PBS-S

and incubated with FITC-goat antimouse IgG (Invitrogen,

Carlsbad, CA) at 37uC in the dark for 3.5 h. Three additional

washes were performed with PBS for 5 min each. Cell nuclei were

visualized by counterstaining with 0.1 mg/ml DAPI (40,6-

diamidine-20-phenylindole, dihydrochloride) (Molecular Probes,

Eugene, OR) for 5 min at room temperature. The cover slips were

inverted and mounted with glycerol on microscope slides and

photographed at a magnification of 106. The percentage of nuclei

in multinucleated vs mononuclear cells in the 2 treatment groups

was determined by examining 1000 nuclei in each group.

Statistical Analysis
Multiple comparisons were performed by one way ANOVA or

repeated measures ANOVA together with post-hoc pairwise

comparisons. The values were expressed as the mean 6 SEM,

and P,0.05 was considered statistically significant.
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Table 1. Sequence of primers used in QPCR analyses.

Gene/accession
number

Sense/
antisense Sequence

hPL S gct atg ctc caa gcc cat c

J00118 AS tgc agg aat gaa tac ttc tgg tc

NR2F2 S gcc ata gtc ctg ttc acc t

M64497 AS gca cac tga gac ttt tcc tg

PSG1 S cat ccg cag tga ccc agt

NM_006905 AS tct cct gaa cgg taa tag gtg aa

TFAP2A S ctc aac cga caa cat tcc

NM_003220 AS cgg tga act ctt tgc ata tc

CRH S tcc cat ctc cct gga tct c

NM_000756 AS agc ttg ctg tgc taa ctg ctc

GAPDH S gaa ggt gaa ggt cgg agt

M33197 AS gat ggc aac aat atc cac tt

Beta-actin A ctg gac ttc gag caa gag at

AS gat gtc cac gtc aca ctt ca

doi:10.1371/journal.pone.0009417.t001
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