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We introduce a game inspired by the challenges
of disease management in livestock farming and
the transmission of endemic disease through a
trade network. Success in this game comes from
balancing the cost of buying new stock with the
risk that it will be carrying some disease. When
players follow a simple memory-based strategy we
observe a spontaneous separation into two groups
corresponding to players with relatively high, or low,
levels of infection. By modelling the dynamics of both
the disease and the formation and breaking of trade
relationships, we derive the conditions for which this
separation occurs as a function of the transmission
rate and the threshold level of acceptable disease
for each player. When interactions in the game are
restricted to players that neighbour each other in a
small-world network, players tend to have similar
levels of infection as their neighbours. We conclude
that success in economic-epidemiological systems
can originate from misfortune and geographical
circumstances as well as by innate differences in
personal attitudes towards risk.

1. Introduction
Theoretical investigation into how diseases spread
has been critical to our understanding of how to
control outbreaks. In the past, mathematical models
and agent-based simulations have provided essential
insight into the relationship between human behaviour
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and pathogen biology. Examples include the effect of contact heterogeneity on the basic
reproductive number of sexually transmitted diseases [1], the effect of network topology on the
the critical transmissibility at which contagions thrive [2] and the conditions required for herd
immunity to occur [3].

New questions emerge when we consider livestock diseases that spread over large distances
when animals are traded from one farm to another [4]. In many cases surveillance and strict
disease control measures are enforced to prevent epidemics from occurring, although this does
not always guarantee eradication and many diseases persist in the population. Control of such
endemic diseases therefore depends on action being taken by individual farmers [5]. This prompts
many questions about risk-taking behaviour, and how much farmers are willing to pay to avoid
bringing disease onto their farms [6]. The motivating question of the present work is this: What
can be done to influence farmers to behave in a way that leads to the eradication of an endemic
disease?

When farmers react to a disease by changing their buying behaviour, the network of potential
transmission routes changes [7,8]. We therefore require a model that reflects this interplay
between contagion over the links of the network, and a network continuously evolving in
response to the disease. Such coevolution models have typically focused on rewiring network
links away from infected nodes towards those in a healthier state [9]. The livestock disease
problem is distinctly different, as individuals may be willing to accept some level of risk to avoid
paying a higher price for a disease-free animal [10].

It is worth noting modelling work that concerns vaccination coverage and disease spread.
When most people are vaccinated, disease prevalence is zero and the risk is perceived to be very
low. For some this removes the incentive to vaccinate, reducing vaccine uptake and leading to
re-emergence of the disease [11]. This dynamic has motivated a number of mathematical models,
some incorporating the effects of financial cost, social influence and network structure [12–14],
and commonly using a statistical physics-based modelling framework [15]. This class of models
has recently expanded beyond simple vaccination to encompass a nuanced range of public health
concerns [16,17].

As with vaccination, we expect farmers to be more risk averse when they are more exposed
to the disease [18]. Crucially, we also expect money to play a role; for the right price some may
be willing to take on a little more risk [19]. This is particularly true when we consider endemic
livestock diseases. Unlike the more catastrophic epidemic threats, endemic disease is perceived
by some farmers as a tolerable loss to farm productivity and animal welfare; a hard-to-avoid
management problem that comes and goes in varying amounts as disease-carrying livestock are
continually imported in and exported away to keep the enterprise commercially functional [20].
The novelty of this situation, when framed as a problem of the ‘vaccination game’ type, is the
motivation behind this paper.

The challenge here is to reduce this problem to a set of rules and assumptions that capture
the interplay between perceived cost–benefit motivations, the dynamics of the network and the
spread of disease. One way to achieve this is to frame the problem as a game (for example [21]).
In this paper we introduce a game played between a number of people that recreates the kind of
dilemma associated with trading livestock in the real world. The game assumes that trading is an
unavoidable component of a livestock production sector, and so of the livelihood of individual
farmers. Each individual must make a purchase every turn. They cannot protect themselves
through isolation or biosecurity (as in typical vaccination games) and instead must decide which
other individuals they wish to be exposed to through trade.

We describe one simple memory-based strategy for playing the game and explore the
dynamics of the network structure and disease outcomes when all players follow it. We
observe a spontaneous divergence of disease status that splits the players into two distinct
groups. In §3 we derive an expression that describes the conditions of the system that give
rise to this divergence. In §3e we simulate the game on a small-world substrate network and
observe that homophily between the different behaviour types emerges when spatial structure
dominates.
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2. Model
In our game there are N players. Each player has some resource that they trade with other players
for tokens, each unit of resource may be sick or healthy. We define the sickness, denoted xi(t), to be
the probability that the resource traded by player i is sick (t ∈ {1, 2, . . . , T} denotes the round of the
game). In each round, each player privately chooses one other player. Two exchanges then occur:

Exchange of tokens: every player i passes one token to j where j is the player chosen by i
unless i is the only player that chose j, in which case they pass none.
Exchange of sickness: each player i increases their sickness by βxj(t) where j is the player
chosen by i, while j reduces their their sickness by the same amount. (To avoid xj(t + 1) <

0, if kj > 1/β, where kj is the number of players choosing j, then each of them takes xj(t)/kj
from j.)

At the beginning of the game xi(0) = 1/2 for all i. If the sickness level of a player exceeds a specific
value then they lose the game. The objective of the game is to have the most tokens at the end of
the final round.

The game is an abstract representation of the livestock trade system. The exchange of tokens
incorporates a simple mechanism of supply and demand into the model; losses (in terms of
tokens) are incurred when a player encounters other players wanting to buy from the same source
as them. The rule that token exchange does not occur when the seller is uniquely chosen by the
buyer creates an incentive to choose from players who are unlikely to be chosen by others.

Sickness may represent any of a number of diseases or physical problems that decrease the
quality of the resources being traded. It is assumed here that a relatively small number of
sick resources is sustainable, but when this number crosses a particular threshold the result is
catastrophic to the individual. Note that the total sickness in the system does not change from
one round to the next. In the case of an endemic disease that is maintained by a combination
of within-group spread and trading, this ‘conservation law’ is a reasonable approximation of a
scenario with constant prevalence. We assume no births, deaths, infections or recoveries and that
sick animals simply follow a diffusion-like process through the system.

(a) Strategy
Before introducing the strategy we take a moment to consider how a rational person might
approach this game. For simplicity we assume that players do not communicate with each other
in any way other than through the exchanges described in the rules of the game. All they know
is what choices they made in previous rounds and the exchanges of sickness and tokens that
resulted. They will therefore be able to estimate with reasonable accuracy the sickness levels of
the players they traded with in previous rounds (they do not know exactly how many others
chose the same as them). The remaining players will have sickness levels distributed around the
population mean. Through their success or failure in retaining their tokens they will also have
some indication of the popularity of the individuals they previously chose.

Now imagine that you are playing the game. Which of the N − 1 other players will you choose
to buy from? First if retaining tokens is your priority then you will aim to choose a player that
nobody else does, since this minimizes the cost of buying new animals. Disregarding any sickness
concerns completely, we are left with a version of the minority game [22], a game which is won
by choosing the less popular of two options, and has no rational solution (this has been adapted
to allow more than two options [23]).

The additional incentive to avoid sickness provides a more stable criteria on which players can
base their decisions. For example, some players may prioritize their health and aim to maintain
a low sickness level. They will try to avoid players with relatively large xi. Consequently the
high sickness individual becomes more attractive to players who prioritize their wealth. More
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generally there is a trade-off for each player between the amount of health they are willing to
sacrifice and the amount of wealth they aim to accumulate.

We want to capture the essence of the health versus wealth trade-off in a strategy that can be
automated. We have chosen the following strategy for its simplicity and mathematical tractability:

At t = 1, the player i chooses any player j �= i randomly with equal probability. For t > 1,
supposing i chose j in round t − 1 and kj(t − 1) is the total number of players that chose j, i
will choose j again if, and only if, kj(t − 1) + xj(t − 1) < 1 + α where α ∈ (0, 1) is a constant.
Otherwise they choose randomly.

From the point of view of the player, they will repeat their choice from the previous round if that
round was sufficiently successful. For this to be the case two things must be true: they choose a
player that no other player chooses, and the sickness level of that player is less than a threshold α.

This is a reasonable strategy for a player who has a very short memory. Having saved a token in
the previous round it seems sensible to choose the same individual in the next one (given that the
sickness level is acceptable). We note that this logic does in fact hold true in the case when every
player on the game follows this same strategy. In this case the player who was selected previously
will not be a target for the fraction of players who repeat their choice from the previous round,
whereas a random player could be a target for both random and repeated choices.

The parameter α can be interpreted as the maximum amount of sickness that players are
willing to accept in exchange for the increased probability of saving a token. Larger values of
α represent a higher value being placed on the accumulation of wealth at the expense of also
accumulating sickness at a faster rate. Lower values of α correspond to higher priority being
placed on health rather than wealth.

(b) Spatial constraint network
There are many factors that influence the decisions made by those involved in the trade of
livestock. One that we wish to explore through this game is the effect of geographical constraints.
We consider the players to be located on nodes of a network and restrict the choices available to
each player to those with whom they share a connection. In the basic set-up the game is played on
a complete network, meaning that there is an edge between every pair of individuals. In general
we can use any network structure.

In §3e we limit our selection of networks to those generated by the Watts–Strogatz model
[24]. Networks are constructed by placing N nodes on a circle with the same distance between
each pair of neighbours. Edges are created between each node and the k nearest nodes in the
clockwise direction. Each of these edges is then rewired to a random node with probability p.
This creates a spatially embedded network in which nodes have a location and a mixture of short
and long distance connections. By varying the parameters k and p we are able to generate a range
of networks with varying connectivity (i.e. the mean degree 2k) and spatial embedding (i.e. the
number of connections that are determined by proximity 1 − p). Parameter ranges are shown
in table 1.

3. Results
We are interested in the network of trades that occur and the movement of sickness between
players of the game. We focus on deriving the degree distribution of the trade network and the
distribution of sickness. It is apparent that there will be a categorical difference between players
with sickness level xi < α and those with xi ≥ α. We therefore consider the degree distribution
and sickness distribution for the two cases separately before considering the rate at which players
move from one group to the other.

We start by defining some useful concepts.
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Table 1. Parameters and variables.

name notation description range

population N number of players N > 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

tolerance α tolerance to receiving sick resources 0< α < 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

transmission rate β proportion of sickness transferred 0< β < 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

connectivity 2k mean degree of the spatial network 2k ≥ 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

randomized edges p fraction of randomized edges in spatial network 0≤ p≤ 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sickness xi(t) probability that i provides a sick resource at time t xi > 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

out-degree ki(t) number of times i chosen by others in round t ki ≥ 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rewire proportion r expectation of the number of edges rewired each round 0.56� r ≤ 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

high sickness proportion λ proportion of players without capacity to retain edges c = 0 0< λ < 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Nodes and edges: We treat each player as a node, i, in a dynamic network, edges in the
network are directed; if i chooses j in one round of the game then there is an edge from j
to i.
Out-going degree: The number of edges going from i to any other node at the end of
round t of the game is its out-going degree, ki(t), which we shall refer to simply as degree.
Note that the in-coming degree is always 1.
Capacity: We say that the capacity ci of node i is the number of out-going edges it can
retain from one round to the next. This will be ci = 0 if xi > α and ci = 1 otherwise. We use
nc to denote the number of nodes that have capacity c.
Rewiring: We use this term to describe the change in position of an edge from one round
to the next.

In this section we derive an expression for the distribution of sickness values over the population
of players. There are several stages to this: we start by deriving the number of rewired edges in a
typical round, we then find the degree distribution, and finally derive the sickness distribution.

(a) Proportion of rewired edges
We use Rt to denote the number of edges that are free to rewire in round t. A rewired edge in round
t + 1 is created when a rewired edge at round t chooses to connect to a node with capacity c = 1
that has retained an edge from the previous round. There are N − Rt nodes of this type, and the
probability that one gets chosen by at least one of the randomly rewired edges is [1 − (1 − 1/N)Rt ].
A rewired edge in round t is destroyed when it chooses to rewire to a node with capacity c = 1 that
has not retained an edge from the previous round. The number of nodes of this type is found by
subtracting the nodes that have retained an edge from the previous round from the total number
of nodes with capacity c = 1, giving Rt − n0. The probability that one of these is chosen by exactly
one of the randomly rewired edges is (1/N)(1 − 1/N)Rt−1.

We use 〈Rt〉 to denote the mean value of Rt we would expect to find over a large number of
realizations of the model. The change in this value over one round of the game can be expressed

〈Rt+1〉 − 〈Rt〉 = (N − 〈Rt〉)
[

1 −
(

1 − 1
N

)〈Rt〉]
− (〈Rt〉 − n0)〈Rt〉

(
1
N

)(
1 − 1

N

)〈Rt〉−1
. (3.1)

The first term on the right-hand side is the expected increase in Rt caused by newly created
rewired edges. The second term represents the decrease caused by the destruction of rewired
edges.
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Since 〈Rt〉 cannot diverge as t increases (Rt ≤ N for all t), we assume that there exists R such
that 〈Rt〉 → R for large values of t. This simplifies the above equation to

(N − R)

[
1 −

(
1 − 1

N

)R
]

= (R − n0)
R
N

(
1 − 1

N

)R−1
. (3.2)

We consider the proportion of nodes in the network that have zero capacity, λ = n0/N, and the
proportion of edges that rewire each time step, r = R/N. By substituting these into equation (3.2),
and rearranging, we can write

(1 − r)

(
1 + r + r2

2

)
+ (1 − r)

[(
1 − 1

N

)−rN
− 1 − r − r2

2

]
= r2 − (1 + λ)r + 1. (3.3)

One can find numerically that the second term on the left-hand side is small (less than 0.022 for
any r), and thus removing it gives a reasonable approximation to equation (3.3). We then solve
to get

r ≈ −3 +√
9 + 8(1 + λ)

2
(3.4)

for large values of N. The number of rewired edges, r, therefore depends only on the proportion
of nodes, λ, that do not have the capacity to retain an edge from one round to the next due to their
high sickness level. The proportion of rewired edges is lowest when all nodes have the capacity to
retain an edge, r ≈ 0.56, yet even in this case the majority of players change their trading partner
from one round to the next.

(b) Degree distribution
We now derive the degree distribution for the network. First, we focus only on the rN free edges
that are rewired from the previous round. The probability qk that exactly k of these edges rewires
to a given node i is the probability of k successes out of rN in a Bernoulli process where the
probability of success is 1/N. Thus the variable k follows a Binomial distribution, B(rN, 1/N)
and since rN × 1/N converges as N → ∞ it approximately follows the Poisson distribution:
qk = e−rrk/k!.

Here we derive the probability, pc(k), that a node that has capacity c has degree k. For nodes
with c = 0, simply p0(k) = qk. For those that do have the capacity to retain an edge from the
previous round, c = 1, we have to sum over the two possibilities, that they are retaining an edge
and that they are not. We therefore have

p1(0) = r − λ

1 − λ
q0 and p1(k) = 1 − r

1 − λ
qk−1 + r − λ

1 − λ
qk for k > 0.

Combining the above with p0(k) = qk we get the full degree distribution

pc(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e−rrk

k!
if c = 0

r − λ

1 − λ

e−rrk

k!

[
1 + (1 − r)k

(r − λ)r

]
if c = 1

(3.5)

Using 〈kn〉c =∑
knpc(k) to denote the nth moment, we have

〈k〉c =

⎧⎪⎨
⎪⎩

r if c = 0

r + 1 − r
1 − λ

if c = 1
(3.6)

and

〈k2〉c =

⎧⎪⎨
⎪⎩

r(1 + r) if c = 0

1 + (2 − λ)r − (1 + λ)r2

1 − λ
if c = 1

(3.7)
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(c) Sickness distribution
We use xc(t) to denote the expectation of the sickness level of a node with capacity c. Necessarily
we have that x0(t) > α and x1(t) ≤ α. The changes to these values are described by the following
relationship

xc(t + 1) − xc(t) = −βxc(t)〈k〉c + βrλx0(t) + β(1 − rλ)x1(t). (3.8)

The first term on the right-hand side describes the expected amount of sickness that the node will
pass to others. The second and third terms represent the expected amount that they will receive
from others given the respective probabilities of choosing a node with c = 1 or c = 0.

By design the total sickness in the system is conserved. Thus, the mean sickness will not
diverge, however, we expect that nodes with capacity to retain edges to be different in this respect
to those without such a capacity. To explore this, we assume that the mean sickness level of nodes
will converge to one of two values corresponding to whether they have the capacity to retain
an outgoing edge, or not, i.e x0(t) → μ0 and x1(t) → μ1. In this limit, the two equations above
can be reduced to μ0〈k〉0 = μ1〈k〉1. Combining this with the expression for the mean sickness
〈x〉 = λμ0 + (1 − λ)μ1 = 1/2 we find

μ0 = 1 − λr
2(r + λ − 2rλ)

and μ1 = (1 − λ)r
2(r + λ − 2rλ)

. (3.9)

The full distribution of sickness values is not easy to obtain, however, we are able to find
an expression for the nth moment, which we then use to calculate σc, the standard deviation
of the sickness distribution for nodes with capacity c, and use a Normal approximation to the
distribution.

Let ρc(x, t) be the probability density function for the sickness level x at time t for individuals
with capacity c. In general, we can find ρc(x, t) by solving

ρc(x, t) =
∫

ρc(x′, t − 1)Pr(xt = x|xt−1 = x′) dx′. (3.10)

The right-hand side integrates over all possible states at round t multiplied by the probability of
mapping from that state exactly on to x at the next round. In our case, this transition probability is

Pr(xt+1 = x|xt = x′) =
∞∑

k=0

pc(k)
[
rλδ(x − (1 − βk)x′ − βμ0) + rλδ(x − (1 − βk))x′ − βμ1)

]
, (3.11)

where δ(·) is the Dirac delta function. The above expression is broken down as follows: pc(k) is the
probability that a node has k outgoing edges, rλ is the probability that i has a free link and that it
rewires to one of the nodes with c = 0. The sickness acquired in either case is here approximated
to be the mean of the group μ0 or μ1. Substituting this into equation (3.10), solving the integral,
and assuming the system converges to ρc(x, t) = ρc(x, t − 1) = ρc(x), we get

ρc(x) =
∞∑

k=0

pc(k)(1 − βk)−1
[

rλρc

(
x − βμ0

1 − βk

)
+ (1 − rλ)ρc

(
x − βμ1

1 − βk

)]
. (3.12)

Multiplying the above expression through by xn and integrating over the full range of x we have
∫∞

−∞
xnρc(x) dx =

∞∑
k=0

pc(k)(1 − βk)−1
[

rλ
∫∞

−∞
xnρc

(
x − βμ0

1 − βk

)
dx

+ (1 − rλ)
∫∞

−∞
xnρc

(
x − βμ1

1 − βk

)
dx
]

. (3.13)

With substitutions of the form u = (x − βμ)/(1 − βk), each integral in the expression above can be
rewritten

(1 − βk)−1
∫∞

−∞
xnρ

(
x − βμ

1 − βk

)
dx =

n∑
i=0

(
n
i

)
(1 − βk)i(βμ)n−i

∫∞

−∞
uiρ(u) du. (3.14)
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Figure 1. The distribution of sickness values. Simulation results for N = 100, β = 0.05. The left panel shows the time series
for 10 randomly selected nodes and the derived mean sickness values from equation (3.9) (λ is computed at t = 103). On the
right, the frequency distribution of sickness values of all nodes at t = 1000, 1100, . . . , 5000 is shown for in bins of width 0.01.
The curve shows Nρc(x) whereρc(x) is the analytically derived Normal approximation given in equation (3.17). (Online version
in colour.)

Then, using the notation mc(n) = ∫
xnρc(x) dx for the nth moment of ρc, the above expression

becomes

mc(n) =
∞∑

k=0

pc(k)
n∑

i=0

(
n
i

)
(1 − βk)i

[
rλ(βμ0)n−i + (1 − rλ)(βμ1)n−i

]
mc(i). (3.15)

With mc(0) = 1, we can check easily that mc(1) = μc. The second moment is then found to be

mc(2) = [rλμ2
0 + (1 − rλ)μ2

1]β + 2[rλμ0 + (1 − rλ)μ1](1 − β〈k〉c)mc(1)

2〈k〉c − β〈k2〉c
. (3.16)

The variance of the distribution is σ 2
c = mc(2) − μ2

c . We then use the Normal distribution

ρc(x) ≈ 1√
2πσ 2

c

exp

(
− (x − μc)2

σ 2
c

)
(3.17)

as an approximation.
Figure 1 tracks the sickness level of 10 (out of 100) players over the course of the game and

the mean values given analytically by equation (3.9). The curves shown in the right panel are
estimates of the frequency of nodes with a given sickness level, N × ρc(x).

(d) Disease status divergence
We address two questions: What proportion of nodes will go into the high sickness group?
Under what values of α and β does the system spontaneously divide into two distinct sickness
distributions? For the first question we are able to get an approximate solution assuming the two
sickness distributions are Normal and express the stability of the system as a function of λ (the
proportion of nodes that do not have capacity to retain an edge). For the second question we
derive a formula from the Normal approximation that divides the parameter space into a region
in which divergence is not likely to occur, and a region where it is.

The Normal approximation provides an estimate of the rate at which nodes switch from having
c = 0 to c = 1 and vice versa. This switch occurs when the fluctuations in the sickness level of a



9

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A476:20190837

...........................................................

00 1 0 1
proportion in high sickness group, l

0 1

0.2

0.8

0.6

0.4

0.20.1
b

a

a 
=

 0
.4

a 
=

 0
.5

en
er

gy

a 
=

 0
.6

b = 0.001 b = 0.05 b = 0.1(a) (b)

Figure 2. Convergence and division for different parameter combinations. (a) The energy landscape given by equation (3.20)
for selected values of α and β . The system is expected to change in the direction of the slope of the curve. Local minima are
therefore the stable equilibria of the system. (b) Regions of parameter space where divergence of disease status does or does
not happen over the first 100 rounds of the game. The grey region marks where the simulation remained in its initial state, i.e.
λ = 1 if α < 1/2 or λ = 0 otherwise. The curve shows equation (3.22), the analytical approximation to this region. (Online
version in colour.)

node i with ci = 0 (ci = 1) cause xi to go below (above) α, which is most likely to happen when the
mean μ0 is only a small number of standard deviations above (below) α. We use π01 to denote our
estimate of the probability that a node i will change from ci = 0 to ci = 1. Assuming the system has
converged to its steady state and the Normal approximation is valid, we have

π01(λ) =
∫α

−∞
ρ0(x) dx = 1

2

[
1 + erf

(
α − μ0

σ0
√

2

)]
, (3.18)

where erf(·) is the error function. Similarly, for transitions in the opposite direction we have

π10(λ) =
∫∞

α

ρ1(x) dx = 1
2

[
1 + erf

(
μ1 − α

σ1
√

2

)]
. (3.19)

In figure 2a we use an energy landscape to visualize the stability and convergence of the
system. The potential energy of the state of the system (i.e. λ α, β), is defined as

E(λ) = −
∫λ

λ0

lπ01(l) − (1 − l)π10(l) dl. (3.20)

It is a measure of the amount of external ‘work’ required to move the system from an arbitrary
reference point λ0 to the state λ; since the expected change from one round to the next is
	(λ) = λπ01 − (1 − λ)π10, the work required to increase λ by a given arbitrarily small amount is
proportional to −	(λ). The energy is then the sum of all the forces required to move from λ0 to λ.
The potential energy at different values of λ are plotted in figure 2. Visually the line can be seen
as a landscape where work is required to go uphill, and the natural course for the system is to
converge to a low energy state.

At the beginning of the game all nodes will either have the capacity to retain an edge and λ = 1
(if α > 1/2), or they will not and λ = 0 (if α ≥ 1/2). The division into two groups therefore begins
as soon as one node transitions to the other which has probability

π = 1
2

[
1 − erf

(
(1 − 2α)

√
a − bβ√

c
√

β

)]
(3.21)
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Figure 3. Simulation over a spatially constrained network. (a) Examples of the distribution of sickness after simulation of the
gameover small-world networks. (b) Each pixel shows the neighbourhood effect for a different combination of themeandegree
and the proportion of long-range connections p. Dark regions show where the neighbourhood effect is highest implying that
the disease is clustered in localized regions of the spatial network.

with the constants a = 1, b = 1 and c = 1 if α < 1/2 and a = 4, b = 5
√

17 − 17, c = 10
√

17 − 38
if α ≥ 1/2.

The probability that division does not occur in say T rounds of the game is approximated
by p = (1 − π )NT; this assumes each round independently draws from the appropriate Normal
distribution; however, this will be an overestimate since the variance starts at 0 in the first round
and converges to its steady-state value σ 2

c . For a given value of p, it follows from the above
equation that division will occur in the first T rounds of the game with probability p if

β >
a

b + c(z/1 − 2α)2 , (3.22)

where z = erf−1(2p1/NT − 1).
Shown in figure 2 are the results from simulations of 100 rounds of the game. We also show

equation (3.21) for p = 1/2, to indicate the region where divergence of disease status is more
likely to happen than not. The Normal distribution overestimates the probability density in the
left tail and underestimates it in the right tail. Thus, π01(0) is larger than it would be if the
approximation was more accurate, and so in the case where α < 1/2, divergence is predicted to
occur for parameter combinations that do not diverge in the simulation. Similarly, when α > 1/2,
π10(1) is larger than it should be and divergence occurs in places where the analytical result
suggests it will not.

(e) Spatial constraint network
We ask how spatial constraints on the choices of the players affect the distribution of sickness
values. Figure 3a shows some examples of the networks generated using the Watts–Strogatz
model. The disease simulation was performed on the network for 100 rounds with α = 0.5 and
β = 0.05 and the resulting sickness values of each node are also shown. The examples shown
demonstrate that sickness is most concentrated in localized regions of the spatial network when
edges are more constrained; nodes with high levels of sickness tend to be connected to others
with high levels of sickness.
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Figure 3b shows this neighbourhood effect between sickness more formally. Here each pixel
represents a different combination of p and k. A network was generated for each combination,
the simulation was then performed on the network and the slope of the least-squares regression
between the sickness of a node and the mean sickness of its neighbours calculated. This was
repeated 100 times and the mean taken.

As the mean degree increases (increasing the number of options available to each player) the
correlation between the sickness of neighbours decreases until a nodes location does not have any
effect on its sickness value. We also see that when choice is highly constrained (low p and low k),
the addition of a small number of long-range (rewired) edges can be effective in mitigating this
neighbourhood effect.

4. Discussion
We have described a game inspired by the challenges of livestock management where the financial
cost of disease is a major incentive to take precautions when buying. Through the dynamics of
the game, players encounter situations where they must decide between prioritizing wealth over
health, bringing them closer to catastrophic levels of sickness, or prioritizing their health over
wealth and gaining less financially.

When all players follow a simple strategy, only changing their choice from the previous round
if it was detrimental to their health or their wealth, the population is likely to separate into two
distinct groups: one with a relatively high level of sickness compared with the other. Whether
or not the separation occurs depends on two parameters: the amount of disease that individual
players consider to be excessive and the amount of sickness transmitted in one transaction.

Players in one group are identical to those in the other regarding how they make decisions;
the divergence happens because the disease status of a player affects how they are perceived by
others. After a transaction, the buyer learns the sickness level of the seller and decides whether to
return to them in the next round. This results in a kind of virtuous (or vicious) cycle that drives
the divergence of the groups. Players with good health status are rewarded by being chosen more
frequently, they transmit more of their sickness up to the less healthy group, while those in the
high sickness group are chosen less frequently causing the outward flow of sickness to be slower
in comparison.

One might suspect that the configuration of edges in the first round determines the fate of each
player but this is not always the case; under some circumstances the sickness distribution remains
unimodal for some time before random fluctuations drive it towards a more stable bimodal state.
The idea that structure can emerge from a homogeneous starting configuration without any
external forces shaping it is known as symmetry breaking, and is associated with spontaneous
pattern formation in biological systems [25].

The model provides a basis for exploring the role of space and network structure on contagion
dynamics. In addition to the possibility that random chance fluctuations, rather than players’
strategy, can determine the fate of the population, we have seen also that the location of the player
within a spatially constrained network can also be a factor. This is due to a neighbourhood effect
and the fact that in this model the total amount of disease is conserved. As the sickness begins
to aggregate in a particular region of the network, those within that region become exposed to a
greater number of high sickness options and fewer healthy players to choose from. While long-
range connections typically increase the risk of an epidemic (e.g. [7]), in this model they mitigate
the neighbourhood effect, which helps avoid extreme levels being reached by any one player.

Returning to the motivating question, what can be done to influence farmers to behave in a
way that leads to the eradication of an endemic disease? In our model we found that a small
change in α can potentially make a dramatic difference in how disease is distributed across the
population. Recall that this parameter represents the maximum amount of sickness players will
tolerate before deciding to look elsewhere for a better trading relationship. Our results strengthen
the argument that small differences in the general attitude of the farming community towards
endemic disease can make a large difference to its prevalence.
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An obvious limitation of the strategy we have chosen to investigate is that very little
information is used by the players. More complex strategies could be explored that use the history
of choices and outcomes, such as those that have been applied to the minority game [22,26]. These
strategies are allowed to evolve over time with mutations, reproduction and extinction, analogous
to biological evolution [27]. Decisions could also be informed by information about other players.
If the game was played over a table, for example, players will see the trades being made by others
and be able to infer second order information from the activity they observe. In the context of
livestock trade it is not known exactly how information spreads, however, we suspect that the
networks over which information transmits will strongly influence the pattern of trading and the
progression of endemic diseases [28,29].

This work provokes ideas that could potentially be tested either experimentally or through
observation, directly, or in data such as the cattle movement databases that now exist across
many countries. Analysis of the decisions made by human players could be compared with more
traditional measures of risk taking [30]. Discrete choice experiments, for example, offer a way to
assess the willingness of individuals to pay for livestock of differing levels of health [31,32].

The challenge, ultimately, is to find ways to control and eradicate endemic disease by
influencing the behaviour of individuals. Our results show that this may be possible. Nudges
towards more congenial behaviour can be magnified by the feedback loop between behaviour
and disease spread. Exploiting this effect can push the system towards a stable equilibrium that
yields a better payoff for the population as a whole.
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