
CRITICAL REVIEW Open Access

Dynamic MRI for articulating joint
evaluation on 1.5 T and 3.0 T scanners:
setup, protocols, and real-time sequences
Marc Garetier1,2,3*, Bhushan Borotikar3,4,5, Karim Makki3,6, Sylvain Brochard3,4,7,8, François Rousseau3,6 and
Douraïed Ben Salem3,4,9

Abstract

Dynamic magnetic resonance imaging (MRI) is a non-invasive method that can be used to increase the
understanding of the pathomechanics of joints. Various types of real-time gradient echo sequences used for
dynamic MRI acquisition of joints include balanced steady-state free precession sequence, radiofrequency-spoiled
sequence, and ultra-fast gradient echo sequence. Due to their short repetition time and echo time, these
sequences provide high temporal resolution, a good signal-to-noise ratio and spatial resolution, and soft tissue
contrast. The prerequisites of the evaluation of joints with dynamic MRI include suitable patient installation and
optimal positioning of the joint in the coil to allow joint movement, sometimes with dedicated coil support. There
are currently few recommendations in the literature regarding appropriate protocol, sequence standardizations, and
diagnostic criteria for the use of real-time dynamic MRI to evaluate joints. This article summarizes the technical
parameters of these sequences from various manufacturers on 1.5 T and 3.0 T MRI scanners. We have reviewed
pertinent details of the patient and coil positioning for dynamic MRI of various joints. The indications and
limitations of dynamic MRI of joints are discussed.
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Key points

� A real-time gradient echo sequence depicts functional
details of the joint during motion.

� Appropriate and customized patient setup and coil
installation inside the MR bore are fundamental for
the exploration of joint motion.

� Artifacts due to the inherent joint motion and those
related to real-time sequence parameters can be
reduced to improve image quality and diagnostic
capability.

Background
Being non-invasive, magnetic resonance imaging (MRI)
is widely used in the clinical decision-making process.
Static morphological MRI is useful for the diagnosis of
musculoskeletal disorders but does not represent the dy-
namic physiology of joints [1–5]. Dynamic in vivo im-
aging may provide valuable functional information
(qualitative and quantitative) in addition to static im-
aging; thus, it may help in the selection of an optimal
treatment strategy [6]. In vivo imaging of the joint mo-
tion can be performed using ultrasonography [7], single
or biplanar fluoroscopy [1, 8], computed tomography
(CT) [9], and MRI [10]. The role of ultrasonography is
limited to the evaluation of the soft tissue around the
joint. Fluoroscopy and CT scan modalities are limited to
the quantification of bone kinematics and expose the in-
dividuals to ionizing radiation. MRI provides anatomical
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details of bones and soft tissues in static and dynamic
acquisitions without exposure to ionizing radiation.
Dynamic MRI sequences were developed as early as

1984 for cardiac imaging [11, 12] and were subsequently
applied to the musculoskeletal system to quantify bone
motion and joint kinematics [13–15]. Dynamic MRI-
based musculoskeletal system evaluations could be sig-
nificantly different from those performed using static
MRI. For example, Muhle et al. showed that dynamic
MRI was significantly better than static imaging for the
demonstration of patellar tilt angle, particularly at the
critical range of patellar instability between 30° and 0° of
knee flexion [16]. The existing literature shows no con-
sensus regarding the technical parameters and the use of
various sequences for dynamic MRI of joints. This is due
to the existence of multiple and custom-built dynamic
MRI sequences and the lack of standard/built-in dy-
namic musculoskeletal MRI sequences from the MRI
scanners’ original equipment manufacturers. Dynamic
MRI is currently still not used in standard clinical prac-
tice for the management of musculoskeletal disorders
[17]. Optimal dynamic MRI of the joint requires the
following:

1) The adaptation of available dynamic MRI sequences
to the shortest acquisition time to enable in vivo
imaging of the joint during a single cycle of
voluntary motion performed by the patient.

2) The customization of the MRI sequences and the
scanning parameters according to the field strength
and manufacturer of the MRI scanners.

3) The standardization of the patient setup and
radiofrequency (RF) coil positioning for each type
of joint and its range of motion (ROM).

As many as eight types of dynamic MRI sequences
have been reported in the literature. Of these, real-time
sequences provide fast, trigger-free, and multi-slice ac-
quisitions and are most suitable for in vivo joint evalua-
tions in individuals with joint disorders [17]. In the
following sections, we focus on real-time sequences and
provide relevant details of the following:

1) Real-time sequence parameters used by multiple
manufacturers on 1.5 T and 3.0 T MRI scanners.

2) Practical recommendations of patient and coil
positioning in the scanner for optimal motion and
image acquisition.

3) Perspectives and limitations on the use of dynamic
MRI as standard clinical practice.

Real-time dynamic MRI sequences and parameters
Joint motion imaging in MRI can be acquired by three
methods [18]:

� Incremental (quasi-static) acquisition, with a change
in the joint position between each acquisition. In
this case, it is possible to use the static sequences,
with the acquisition time multiplied by the number
of sequence repetitions at each position [19–22].

� Motion-triggered acquisition, with the image
database reconstructed according to the position of
the joint during the acquisition cycle, requiring to
repeat the movement several times, including cine-
MRI and cine phase-contrast techniques [23, 24].

� Real-time acquisition, allowing acquisition in a few
seconds during continuous joint motion, with no
repetition required [25–27].

In their systematic review, Borotikar et al. concluded
that cine phase-contrast and real-time sequences were
the two types of sequences that provided excellent valid-
ity and reliability for joint motion evaluation by MRI
[17]. Cine phase-contrast sequences provide quantitative
data, such as the three-dimensional (3D) pixel velocity
in moving structures, coupled with anatomical images.
However, image acquisition through these triggered se-
quences requires the patient to perform repeated joint
motions. This leads to an acquisition time of a few mi-
nutes, which generates pain and fatigability in patients
and in turn introduces averaging error in the acquired
images due to the loss of movement reliability [10].
Real-time dynamic MRI, on the other hand, is a fast

imaging technique that is mainly based on rapid gradient
echo sequences with a flip angle of less than 90° and a
significant reduction of the repetition time (TR) lower
than the T2 relaxation time. The low TR is responsible
for a residual transverse magnetization before the next
RF pulse. These sequences are particularly adapted for
dynamic joint MRI because of their high temporal reso-
lution, thereby allowing the acquisition of an image in a
few hundred milliseconds and the fast repetition of the
slices. The entire joint can be covered during a single ac-
quisition, and the relationship between joint structures
can be visualized to study normal and pathological joint
physiology [26]. Three gradient echo sequences typically
available on MRI scanners are suitable for real-time dy-
namic MRI and have already been used in previous stud-
ies to understand in vivo joint biomechanics. These are
balanced steady-state free precession (SSFP) sequence
[26, 28–33], RF-spoiled sequence [29, 34–36], and ultra-
fast gradient echo (UFGE) sequence [5, 37], with differ-
ent acronyms used by each MRI scanner manufacturer
(Table 1).
In a balanced SSFP sequence, a steady state between

residual transverse and longitudinal magnetization is
reached after the administration of a train of RF pulses,
with the shortest TR and echo time (TE). All the gradi-
ents are fully refocused and balanced symmetrically,
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thereby allowing an excellent contrast between struc-
tures with a high signal-to-noise ratio (SNR), which is
independent of TR and less sensitive to motion artifacts
[26, 38–40]. This sequence is T2-weighted, with contrast
dependent on the T2/T1 ratio of each tissue, which results
in a high fat and water signal (Figs. 1 and 2, Movie 1, 2)
[41]. In the RF-spoiled sequence, the RF phase modulation
at each cycle deletes the residual transverse magnetization
for T1 contrast with a TR value usually around 20–30 ms
[38, 40]. The UFGE sequence, based on the RF-spoiled
gradient echo technique using a small flip angle, allows for
the reduction of TR below 10 ms and, thus, reduces acqui-
sition time [40, 42]. A few studies used a post-excitation
refocused gradient echo sequence with radial sampling,
allowing a T2/T1 contrast and high temporal resolution.
However, this sequence is a work-in-progress package
only provided by one manufacturer and cannot be pro-
posed in the current practice [43].
Table 2 provides a summary of the sequence parame-

ters reported in the literature since 2010 for real-time
dynamic MRI of joints of the limbs with 1.5 T and 3.0 T
MRI scanners, based on commercially available balanced
SSFP, RF-spoiled, and UFGE sequences, for their imple-
mentation in daily practice.
The selection of sequence parameters is a trade-off

among temporal resolution, SNR, and spatial resolution.

For example, Boutin et al. obtained a temporal reso-
lution of 475 ms with a pixel size of 0.94 mm [33],
whereas Pierrart et al. obtained a temporal resolution of
285 ms with a pixel size of 1.6 mm [28]. These se-
quences must be acquired with the shortest TR and TE
to reduce acquisition time as well as the inhomogeneity
due to T2* effects on balanced SSFP sequences [26]. A
small flip angle improves SNR and provides a proton
density-weighted image for RF-spoiled and UFGE se-
quences (Figs. 3 and 4, Movie 3, 4) [40, 42]. Cartesian
and radial sampling of the k-space were both used for
real-time dynamic MRI. Radial sampling was particularly
suitable for real-time RF-spoiled sequences at 3.0 T [29,
35], allowing an increase in temporal resolution without
image quality deterioration with the use of constrained
iterative reconstruction [29]. Such iterative reconstruc-
tion of real-time images often requires the addition of
graphic processing units to the current MRI systems [45,
46]. However, Cartesian sampling is more available and
simpler to use for image reconstruction.
All slices covering the joint can be acquired during a

single time frame by using sequential or multi-slice tech-
niques [28, 35]. The total acquisition time will depend
on the number of slices and time frames. For example,
Boutin et al. obtained an acquisition time of 35 s with
one slice and 60 time frames for a balanced SSFP se-
quence [33], whereas Clarke et al. obtained an acquisi-
tion time of 104 s with eight slices and 40 time frames
for a UFGE sequence [37]. Parameters such as the num-
ber of slices, gap, and field of view depend on the stud-
ied joint, patient size, and slice orientation.
The acquisition plane must be adapted to the joint be-

ing imaged. For example, on the ankle, an axial plane is
more appropriate to evaluate fibular tendon instability
[47], and a sagittal plane is more appropriate to evaluate
Achilles tendon motion (Fig. 3, Movie 3) [48].

Table 1 Manufacturer acronyms of gradient echo sequences
used for real-time joint dynamic MRI

Balanced SSFP RF-spoiled UFGE

GE Healthcare FIESTA SPGR FSPGR

Philips Healthcare bFFE T1FFE TFE

Siemens Healthineers TrueFISP FLASH TurboFLASH

bFFE balanced Fast Field Echo, FLASH Fast Low-Angle SHot, FIESTA Fast
Imaging Employing STeady-state Acquisition, FISP Fast Imaging with Steady-
state Precession, FSPGR Fast SPoiled Gradient-Recalled, TFE Turbo Fast Echo

Fig. 1 Real-time dynamic MR images obtained with balanced SSFP sequence at 3.0 T. Shoulder in the axial plane in external rotation (a) and hip
in the axial plane in external rotation (b) (TR, 4.2; TE, 2.1; flip angle, 40°; pixel size, 1.37 × 1.83 mm)
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Patient and radiofrequency coil positioning in the
MRI scanner
Optimal patient positioning in the scanner and RF coil po-
sitioning relative to the joint are fundamental for the ac-
curate evaluation of joint motion with dynamic MRI. Joint
and coil positioning inside the MRI scanner depends on
the impairment and bone kinematics or tendon displace-
ment to be explored (Table 3) (Movie 1, 2, 3 and 4).
The joint of interest must be positioned as centrally as

possible inside the MRI bore to obtain a homogeneous
field. Flex RF coils are often used for these acquisitions
and must be positioned close to the joint for better sig-
nal homogeneity and SNR while preventing its displace-
ment during joint motion. This may require specific
fixtures to maintain the RF coil position close to the
joint and to avoid contact with the body surface if neces-
sary [26]. In most cases, cushions and devices provided
by manufacturers should be effectively used without the
need for additional fixtures [26, 32]. Joint positioning in
the scanner requires a trade-off between the possible
ROM and the necessity to be as close as possible to the

RF coil to enhance the SNR. This primarily depends on
the RF coil type and size that is available for each scan-
ner. Joint motion may also be limited by its positioning
within the MRI bore and by the bore size on closed-bore
MRI scanners.
The incorporation of dynamic MRI acquisition in

addition to the standard clinical MR exam with static se-
quences poses multiple challenges. The position of the
patient or the RF coil should not be changed throughout
the exam. Furthermore, the addition of the dynamic se-
quence should not substantially increase the total acqui-
sition time. The RF coils used for real-time dynamic
MRI make it possible to acquire standard static images
with high image quality and thus can be used for both
static and dynamic acquisitions at the same time and
with the same setup [5, 28, 29, 37].
Considering these requirements, we have provided rec-

ommendations from the literature for setting up each
joint type in the MRI scanner. For this purpose, we clas-
sified the joints into three groups for patient positioning
and equipment setup description:

Fig. 2 Real-time dynamic MR images obtained with balanced SSFP sequence at 1.5 T. Elbow in the sagittal plane in flexion (a) and knee in the
sagittal plane in flexion (b) (TR, 4.6; TE, 2.3; flip angle, 40°; pixel size, 1.09 × 1.46 mm)

Table 2 Sequence parameters reported in the recent literature for real-time joint dynamic MRI sequences at 1.5 T and 3.0 T

Balanced SSFP RF-spoiled UFGE

Field strength 1.5 T [28] 3.0 T [29, 33] 1.5 T [36, 44] 3.0 T [29, 34, 35] 3.0 T [5, 37]

TR (ms) 3.6 3.98–4.71 3.18–7.8 3.13–20.6 2.4–2.7

TE (ms) 1.3 1.75–2.36 1.4–3.3 1.74–3.3 1.2–1.3

Flip angle (degree) 65 46–47 8–20 8–20 10–15

Bandwidth (Hz/pixel) NR 454–930 200, NR for [44] 990 NR

Pixel size (mm) 1.6 0.94–1.07 1.4–1.56 × 2.88 0.57–1.07 1

Slice thickness (mm) 10 6 10 6–8 4–5

Number of time frames 7 10–60 40, NR for [44] 10–16 30–40

Mean acquisition time/image (ms) 285 475–562 331–500 197–351 31–233

NR not reported
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� Proximal joints (shoulder, hip)
� Intermediate joints (elbow, knee)
� Distal joints (wrist, hand, ankle, foot)

Proximal joints
Dynamic imaging of proximal joints is challenging be-
cause these joints are hard to reach for RF coil position-
ing. The setup should be optimized for achieving
maximal ROM within the MRI scanner bore. The pa-
tient is typically positioned supine, head-first into the
bore for the shoulder examination and feet-first for the
hip examination, with the joint close to the MR bore
center, which allows more space for movement to occur
[28]. For the shoulder examination, the arm is positioned
along the patient’s side at rest [28, 58]. The coils are
placed around the joint and could be maintained by a
harness to avoid displacement during motion (Fig. 5,
Movie 5) [58].

Fig. 3 Real-time dynamic MR images obtained with the RF-spoiled sequence at 3.0 T. Wrist in the coronal plane in ulnar deviation (a) and ankle
in the sagittal plane in plantar flexion (b) (TR, 20.6; TE, 1.8; flip angle, 15°; pixel size, 1.3 × 1.67 mm)

Fig. 4 Real-time dynamic MR image obtained with the UFGE
sequence at 3.0 T. Finger in the sagittal plane in flexion (TR, 4.7; TE,
2.3; flip angle, 15°; pixel size, 1.09 × 1.46 mm)

Table 3 Clinical applications of joint dynamic MRI

Shoulder Subacromial impingement [49, 50]

Wrist Scapholunate instability [51]

Extensor carpi ulnaris tendon instability [32]

Finger Pulley injuries [52]

Hip Femoroacetabular impingement [53]

Knee Patellofemoral instability [16, 23, 43, 54]

Anterior cruciate ligament deficiency [55–57]

Post-traumatic medial laxity [36]

Ankle Peroneal tendon subluxation [47]
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Intermediate joints
For the study of the elbow, the patient is positioned prone,
head-first, arm above the head, with the elbow in the cen-
ter of the RF coil which is held by a support (Fig. 6a) [26].
The kinematic study of the knee joint can be performed
on a subject in a supine position, feet-first, with the flex
coil held by a device around the joint (Fig. 6b) [59, 60].
The installation of a cushion under the knee increases the
flexion/extension and degrees of freedom [5, 43], which
are limited by the bore diameter and the size of the lower
limb [61]. Unrestrained knee flexion/extension can also be
achieved with the patient in side lying position and a large
flex coil placed on the knee, and the other limb put on the
coil to prevent its displacement (Fig. 6c) [44]. Some au-
thors have also proposed prone positioning of the patient,
allowing passive knee flexion [61] or knee flexion against
resistance [18, 62].

Distal joints
All degrees of motion of distal joints can be studied
within the MRI scanner. For the wrist and hand, the pa-
tient is positioned prone, head-first, with the upper limb
raised above the head. Langner et al. studied the abduc-
tion/adduction motion of the wrist with a flex coil

positioned on the table parallel to the motion without
any support [51].
The distal situation of these joints makes it possible to

use a “rigid” RF coil. Bayer et al. performed dynamic
MRI sequences of the finger with a sky boot-shaped coil
[63], whereas Schellhammer and Vantorre used a knee
coil to study finger motion [52]. The hand can also be
positioned within a head coil to investigate all degrees of
freedom (Fig. 7a) [29, 33], whereas Kaiser et al. used an
extremity coil to explore wrist pronation-supination
[32]. Given the difference between the coil size and the
small joint volume, the use of pads or foams to hold the
hand in a central position within the coil and to avoid
undesired motion is required (Fig. 7b) [32].
For the ankle, the patient is in the supine position, and

images can be obtained using a flex coil that is posi-
tioned around the joint with a device adapted to the RF
coil model (Fig. 7c) [22, 24, 26].

Limitations, solutions, and perspectives
Real-time dynamic MRI is based on high temporal reso-
lution, but it also requires sufficient contrast, SNR, and
spatial resolution for joint motion evaluations through
image post-processing. The image quality also depends

Fig. 5 Patient and coil positioning for shoulder (a) and hip (b) motion evaluation in an Achieva dStream 3.0 T Philips MRI scanner

Fig. 6 Patient and flex coil positioning for elbow (a) and knee motion evaluation (b, c). The flex coil is held by a dedicated support in an Avanto
fit 1.5 T Siemens MRI scanner for elbow motion evaluation (a). The patient is positioned supine with a homemade support for coil positioning in
an Achieva dStream 3.0 T Philips MRI scanner (b) or lateral decubitus in an Avanto fit 1.5 T Siemens MRI scanner (c) for knee motion evaluation
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on the MRI scanner, magnetic field strength, and RF coil
type [10]. Acquiring MRI at 3.0 T using flex coils with
16 channels can improve the acquisition time, SNR, and
spatial resolution (Table 2).
However, these gradient echo sequences can be affected

by some artifacts that worsen with higher magnetic field
strength. Moreover, these sequences are susceptible to
magnetic field inhomogeneities, resulting in signal loss
and deformation. For example, a chemical shift artifact
can appear as a black border at the fat/water interface.
These artifacts can be reduced with a larger bandwidth,
even if it decreases the SNR [33]. Chemical shift artifacts
can also be reduced with in-phase TE [64].
Susceptibility and motion artifacts can be reduced with

acceleration techniques such as parallel imaging with

phased-array RF coils and partial or radial sampling of
the k-space with iterative reconstructions [29, 65–68],
which allow improvements in image quality and tem-
poral resolution.
The balanced SSFP sequence is also deteriorated by

band artifacts due to off-resonance effects from B0 non-
uniformity, which are not present in RF-spoiled and
UFGE sequences. These band artifacts can appear over
the joint and disturb image analysis, in particular at 3.0
T (Fig. 8) [29, 45]. They can be reduced by minimizing
TR or by using a 3D shim at the beginning of the exam-
ination [26, 64]. Other methods to reduce these band ar-
tifacts include the use of alternating TR, which widens
the space between these bands [69]; multiple-offset
method; frequency modulation [70]; or the use of

Fig. 7 Patient and coil positioning for wrist (a), finger (b), and ankle motion evaluation (c). The wrist is positioned within a head coil in an
Achieva dStream 3.0 T Philips MRI scanner (a). The hand is positioned within an extremity coil (which is opened to show positioning inside) for
finger motion evaluation in an Achieva dStream 3.0 T Philips MRI scanner (b). The flex coil is positioned in the support of ankle motion evaluation
in an Optima 1.5 T GE (c). Some cushions and sandbags are added to maintain the joint in the selected plane

Fig. 8 Sagittal balanced SSFP image of the ankle in plantar (a) and dorsal (b) flexion. Band artifacts appear as black lines that move on the image
during motion
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specific algorithms [71]. Band artifacts can also be reduced
by positioning the joint in an intermediate position during
calibration, considering its ROM [26]. Field inhomogen-
eity is increased in the case of large difference in size be-
tween the joint and the RF coil, as for finger examination.
Adding dielectric pads around the joint can improve the
homogeneity of the field and reduce artifacts [33].
New post-processing methods are being developed to

register images obtained during motion with high-
resolution 3D static images. These methods make it pos-
sible to track bone motion in real-time [31, 37], to ob-
tain 3D reconstructions of the bone structures during
motion [34], and, therefore, to provide accurate quanti-
tative biomechanical data.

Conclusion
Three gradient echo sequences (balanced SSFP, RF-spoiled,
and UFGE sequences) are available for real-time dynamic
MRI of joints of the upper and lower limbs during continu-
ous motion, considering their excellent temporal resolution,
good SNR, and contrast. However, real-time dynamic MRI
requires the adaptation of the sequence parameters, rigor-
ous patient and coil positioning to allow an evaluation with
a sufficient level of quality. These real-time sequences can
be incorporated within a daily protocol for joint MR ana-
lysis due to their short acquisition time and would allow to
better understand dynamic outcomes from specific joint
disorders or to diagnose conditions not otherwise detected
with static imaging. Future work may be focused on post-
processing method integration in current exams to improve
the SNR and to obtain 3D reconstruction while maintaining
a short acquisition time.
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Additional file 1: Movie 1. Balanced SSFP sequence of the shoulder in
the axial plane during rotation at 3.0 T (same parameters as Fig. 1). This
sequence shows glenohumeral rotation, subscapular tendon excursion
and the contraction of the subscapularis and infraspinatus muscles
during internal and external rotation, respectively.

Additional file 2: Movie 2. Balanced SSFP sequence of the wrist in the
coronal plane during radial/ulnar abduction at 3.0 T (same parameters as
Fig. 1). This sequence shows wrist bones relationship during motion.

Additional file 3: Movie 3. RF-spoiled sequence of the ankle in the sa-
gittal plane during flexion at 3.0 T (same parameters as Fig. 3). This se-
quence allows us to investigate tibiotalar motion and Achilles tendon
excursion.

Additional file 4: Movie 4. UFGE sequence of the finger in the sagittal
plane during flexion at 3.0 T (same parameters as Fig. 4). This sequence
allows the evaluation of bones motion and flexor tendon excursion.

Additional file 5: Movie 5. Shoulder motion in the three degrees of
freedom after coil positioning.
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