
Pharmaceutics 2015, 7, 523-541; doi:10.3390/pharmaceutics7040523 
 

pharmaceutics 
ISSN 1999-4923 

www.mdpi.com/journal/pharmaceutics 

Review 

Alignment of Short Reads: A Crucial Step for Application of 
Next-Generation Sequencing Data in Precision Medicine 

Hao Ye, Joe Meehan, Weida Tong and Huixiao Hong * 

Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food 

and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA;  

E-Mails: hao.ye@fda.hhs.gov (H.Y.); joe.meehan@fda.hhs.gov (J.M.);  

weida.tong@fda.hhs.gov (W.T.) 

* Author to whom correspondence should be addressed; E-Mail: Huixiao.Hong@fda.hhs.gov;  

Tel.: +870-543-7296; Fax: +870-543-7854. 

Academic Editor: Afzal R. Mohammed 

Received: 21 October 2015 / Accepted: 17 November 2015 / Published: 23 November 2015 

 

Abstract: Precision medicine or personalized medicine has been proposed as a modernized  

and promising medical strategy. Genetic variants of patients are the key information for 

implementation of precision medicine. Next-generation sequencing (NGS) is an emerging 

technology for deciphering genetic variants. Alignment of raw reads to a reference genome 

is one of the key steps in NGS data analysis. Many algorithms have been developed for 

alignment of short read sequences since 2008. Users have to make a decision on which 

alignment algorithm to use in their studies. Selection of the right alignment algorithm 

determines not only the alignment algorithm but also the set of suitable parameters to be 

used by the algorithm. Understanding these algorithms helps in selecting the appropriate 

alignment algorithm for different applications in precision medicine. Here, we review 

current available algorithms and their major strategies such as seed-and-extend and q-gram 

filter. We also discuss the challenges in current alignment algorithms, including alignment 

in multiple repeated regions, long reads alignment and alignment facilitated with known 

genetic variants. 
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1. Introduction 

Under the “one-size fits all” therapy model in conventional medicine, certain medical interventions 

can be more effective or cause fewer side effects for some patients than for others. Therefore, it is 

important to identify the potential patients who are more or less likely to benefit from the intervention. 

Precision medicine, or personalized medicine, has been proposed as a modernized and promising 

medical strategy, which emphasizes prevention and treatment strategies that take individual variability 

into account [1]. Thus, suitable individuals can receive proper treatment based on their individual 

genetic makeups. Although many factors, including environment, lifestyle and medical history 

contribute to the differences in treatment of drugs among individuals, genomics provides the most 

comprehensive genetic characteristics of each individual and is often believed to be the leading driver 

of precision medicine [2]. 

Genetic biomarkers play key roles in implementation of precision medicine. There has been much 

effort to advance biomarker discovery and application in regulatory science [3–8]. Emerging 

technologies have been used for biomarker development [9]. Many genetic biomarkers that are used in 

clinical practice and drug development were identified through genome-wide association studies 

(GWAS) using genotyping microarray technology [10]. There are some sources of microarray 

genotyping errors [11], including batch effect [12–15] and variation in genotype calling algorithms [16–18], 

which are considered part of the reason for why GWAS have not fully satisfied the expectations of 

scientists to completely decipher the human genetic architecture. Recently, next-generation sequencing 

(NGS) technologies have emerged as the most popular tools for deciphering human genetic variations [19], 

profiling miRNA [20], and identifying genetic biomarkers for clinical diagnosis [21] and prognosis [22]. 

Quality control is important for better utilization of NGS data [23] and proteomics data [24]. 

Scientists have already launched several large human genetics projects in order to obtain a detailed 

catalogue of human genetic variation, such as the 1000 genomes project [25] and the Yan Huang 

project [26]. The illumina estimation indicates that, as of 2014, ~228,000 human genomes had been 

completely sequenced in the world [27]. The number of human genomes sequenced is expected to 

double about every 12 months, reaching ~1.6 million genomes by 2017 [28]. With the cost of human 

sequencing having dramatically dropped from $3 billion for the Human Genome Project to $1000 

currently achieved by illumina X Ten system, the bottleneck of genomics has shifted from sequencing 

experiments to analyzing and interpreting the sequencing data [29,30]. 

Figure 1 gives a typical workflow in genetic studies using NGS (next-generation sequencing) 

technology, including DNA extraction, DNA library building, sequencing, alignment, genetic variants 

detection and downstream data analysis. Millions of raw reads with a length from 175 to 300 bp are 

usually generated from current NGS platforms (Table 1). However, the latest developed PacBio RII 

platform generates very long reads (up to 40k bp). With the raw reads, data analysis methods are used 

to detect the genetic variants in the samples. Alignment of these raw reads into a reference genome is 

the first and essential step in almost all applications, such as genetic variants detection, methylation 

patterns profiling (MeDIP-Seq), protein-DNA interactions mapping (ChIP-Seq), and differentially 

expressed gene identification (RNA-Seq). All these applications require aligning large quantities of 

short reads to the human genome in a reasonably short time. Generally, the alignment process should 

quickly determine the correct position of the reads in the genome in consideration of sequencing error 
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and heterozygous variation [31]. To keep pace with the high-speed development of sequencing 

technologies, many alignment algorithms and tools have been developed in the last few years. Table 2 

summarizes some popular alignment algorithms and software tools, without the intension of giving a 

complete list. 

 

Figure 1. A brief flow chart of genetic studies using NGS. In the first step, DNA or cDNA 

samples are extracted from the cells of individuals. Then each of the samples is cleaved 

into small fragments and PCR is carried out to build the library by amplifying each of the 

small fragments. The library is then sequenced using the NGS platform. The original 

output from the NGS platform is a set of images. Thereafter, a base-calling algorithm is 

used to processing the images and output the so-called “raw reads”. An alignment 

algorithm is then used to align the millions of short reads onto the reference human genome 

followed up by genetic variants detection for downstream analysis in the genetics studies. 

In this article, we review the basic strategies frequently used in current alignment algorithms. We 

also discuss the challenges in alignment of short reads. 
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Table 1. The most frequently used NGS platforms *. 

Platform Name 
Illumina HiSeq 

2500 
Ion Torrent-

Proton II 
PacBio RS II 

OxFord Nanopore 
Minion 

Instrument 

 
Cost (USD) ** 690 k 224 k 695 k 1 k *** 

Reagent cost Per 
run/per GB 

4126/45.84 1000/20.41 100/1111.11 900/1000 

Reads per run 300 millions 280 millions 0.03 millions 0.1 millions 
Average Read 

length 
2 × 150 bp 175 bp 14,000 bp 9,000 bp 

Run time 10 h 5 h 2 h 6 h 
Major errors substitution indel indel deletion 

Error rate (%) 0.1 1 1 4 
Amplification bridgePCR emPCR none, SMS none, SMS 

Advantage 
low cost per GB; 

high output 
low cost 

long reads; no 
amplification bias 

long reads; no 
amplification bias 

Disadvantage high cost 
homopolymer 

errors 
low throughput;  

high cost 
high error rate 

* Sources: http://www.molecularecologist.com/next-gen-fieldguide-2014/ and websites of the companies;  

** Sources: http://www.molecularecologist.com/next-gen-table-3a-2014/; 

*** Accessing fee. Sources: https://www.nanoporetech.com/products-services/minion-mki. 

Table 2. Alignment algorithms and software tools. 

Name Website Reference Remark 

SOAP * soap.genomics.org.cn [32–35] 
k-mer inexact match seed; support at most 3 

mismatches; GPU calculation supported 

CUSHAW $ 
cushaw3.sourceforge.net/home

page.htm#downloads [36–39] 
k-mer inexact match, maximal exact match 

and hybrid seeds; GPU supported 

Bowtie & bowtie-bio.sourceforge.net [40,41] 
k-mer inexact match seed; high speed; 

double-index; up to 3 mismatches 

BWA bio-bwa.sourceforge.net [42,43] 
k-mer inexact match and maximal exact 

match seed 

GASSST 
www.irisa.fr/symbiose/projects/

gassst/ [44] 
k-mer exact match seed; it currently has 

been tested for reads up to 500 bp 

GNUMAP dna.cs.byu.edu/gnumap/ [45] 
k-mer exact match seed; probabilistically 

mapping reads to repeat regions 
MOSAIK gkno.me/pipelines.html#mosaik [46] k-mer exact match seed 

NextGenMap cibiv.github.io/NextGenMap/ [47] 
q-gramq-gram filter; GPU calculation 

supported 

QPALMA 
www.raetschlab.org/suppl/qpal

ma [48] 
k-mer inexact match; incorporate read 

quality score and splice site 

RMAP rulai.cshl.edu/rmap/ [49,50] 
k-mer inexact match seed; 10 mismatches 

allowed; incorporate read quality score 

Segemehl 
www.bioinf.uni-

leipzig.de/Software/segemehl/ [51] 
k-mer inexact match seed; enhanced suffix 

arrays 

SeqMap 
www-personal.umich.edu/ 

~jianghui/seqmap/ [52] 
k-mer inexact match; support windows, 

linux, Mac OS 
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Table 2. Cont. 

Name Website Reference Remark 

Stampy 
www.well.ox.ac.uk/project-

stampy 
[53] 

k-mer inexact match; support up to 30 bp 
indels in paired-end reads alignment 

Cloudburst 
sourceforge.net/projects/cloudb

urst-bio/ 
[54] 

Highly sensitive read mapping with 
MapReduce. 

drFAST drfast.sourceforge.net/ [55] 
k-mer inexact match; specially designed for 

better delineation of structural variants 
BFAST sourceforge.net/projects/bfast/ [56] k-mer spaced seeds 

MAQ maq.sourceforge.net [57] 
k-mer spaced seeds; incorporate quality 

scores of reads in alignment 

MOM go.vcu.edu/mom [58] 
k-mer spaced seeds; unlimited mismatches 

in the 3′ and 5′ flanking regions. 

PASS pass.cribi.unipd.it [59] 
k-mer spaced seeds; implemented in C++ 

and supported on Linux and Windows 

PerM code.google.com/p/perm/ [60] 
k-mer spaced seeds; 9 mismatches are 

allowed 

SHRiMP2 compbio.cs.toronto.edu/shrimp/ [61,62] 
combined k-mer spaced seeds and  

q-gram filter 

ZOOM 
www.bioinfor.com/zoom/gener

al/overview.html 
[63] 

k-mer spaced seeds; tolerate 2 mismatches 
by default 

BarraCUDA seqbarracuda.sourceforge.net/ [64] Incorporate GPU to speed up BWA 
GEM gemlibrary.sourceforge.net/ [65] q-gram filter 

MPSCAN 
www.atgc-

montpellier.fr/mpscan/ 
[66] 

q-gram filter; support Windows, linux, Mac 
OS 

ERNE iga-rna.sourceforge.net/ [67] 
long gap support; Works on Windows, Mac 

OS X, linux 

SARUMAN 
www.cebitec.uni-bielefeld.de/ 

brf/saruman/saruman.html 
[68] 

k-mer inexact matched seed; support GPU 
calculation 

LAST last.cbrc.jp/ [69] adaptive seed 
Genalice 

MAP 
www.genalice.com/product/gen

alice-map/ 
NA 

cloud calculation; High sensitivity for SNPs 
and long INDELS 

Novoalign www.novocraft.com/ NA 
support up to 7 and 16 mismatches in 

single-end and pair-end reads. 

PRIMEX 
bioinformatics.cribi.unipd.it/pri

mex 
[70] 

k-mer inexact match seed; written in C++; 
lookup table and server functionality 

SOCS 
solidsoftwaretools.com/gf/proje

ct/socs/ 
[71] 

good at align CpG methylation-enriched 
reads 

SToRM 
bioinfo.lifl.fr/yass/iedera_solid/

storm/ 
[72] doesn’t support pair-end reads 

iSAAC 
https://github.com/sequencing/i

saac_aligner 
[73] k-mer inexact match seed; high speed 

RazerS www.seqan.de/projects/razers/ [74] 
q-gram filter; support Windows, linux, Mac 

OS X 

SSAHA2 
www.sanger.ac.uk/resources/so

ftware/ssaha2/ 
[75] 

k-mer inexact match seed; support various 
output formats 

UGENE ugene.unipro.ru/ [76] works on Windows, linux and Mac OS X 
* Include SOAP, SOAP2, SOAP3 and SOAP3-dp; $ Include CUSHAW (k-mer inexact match seed), 

CUSHAW2 (maximal exact match seed) and CUSHAW3 (hybrid seeds); & Include Bowtie and Bowtie2. 

NA: commercial software, no reference available. 
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2. Strategies of Current Alignment Algorithms 

In theory, a read can be successfully aligned onto a reference genome by applying a series of 

insertions, deletions, and substitutions. An alignment algorithm assigns a score to the alignment of a 

short read onto a reference to estimate how well they align. The score is used to identify the optimized 

location of the read in the reference genome. A good alignment algorithm is able to map reads onto a 

reference genome rapidly and accurately. Currently, most alignment algorithms utilize two major 

strategies: seed and extend and q-grams filter. In addition, the index methods that are used to  

memory-efficiently organize the reference genome and short reads are different among the alignment 

algorithms. Hash-table data structure was initially designed to scan and index sequence (raw reads or 

reference) in the first wave of alignment programs such as MAQ and SOAP [32]. However,  

Borrows–Wheeler Transformation (BWT) based FM-index was adopted by subsequently developed 

alignment algorithms such as BOWTIE [40], BWA [42] and SOAP2 [33]. Compared with the large 

memory usage in a hash-table based index, BWT based FM-index could index the human genome in 

less than 5.4 GB of memory [77]. It is interesting to note that the final index for the human genome 

used by BWA is approximately 2.3 GB in size. Although such index methods are important 

components in alignment algorithms, in this review, we will only focus on the two basic alignment 

strategies mentioned above. For each of the two strategies, only a few popular alignment algorithms 

will be selected for detailed illustration. 

2.1. Seed-and-Extend Strategy 

Seed-and-extend strategy is based on the observation that a good alignment should contain exact or 

inexact short matches between two sequences. Figure 2 shows a general view of seed-and-extend 

strategy that contains four steps: seed generation, seed mapping, extending each matched seed, and 

alignment of the read to the reference sequence. Seeds are the shorter sequences extracted from a read 

and can be generated using different methods. For example, k-mer seeds are generated by sliding a 

window of length k over the read. The seeds that exactly match a reference sequence can be identified 

through a mapping process facilitated by an index method. Each of the exactly matched seeds is then 

extended on both right and left direction under certain constraints such as maximum mismatches and 

length of indels. Standard dynamic programs, based on Needleman–Wunsch (NW) [78] algorithm or 

Smith–Waterman (SW) algorithm [79], are implemented to do the final alignment. Seed extension is 

usually more time-consuming than seed generation and final mapping, especially when the majority of 

the exacted mapped seeds cannot be completely extended to accomplish the alignment on the reference 

sequence. Therefore, seed filtration strategies are frequently used before extension. In addition, the 

seed length used by an alignment program has a substantial impact on its performance. Shorter seeds 

increase sensitivity, whereas longer seeds increase speed. 

2.1.1. k-mer Exact Match Seed 

A k-mer exact match seed is a shorter sequence of k bases that exactly matches with a reference 

sequence. The strategy to use k-mer exact match seeds was first utilized in BLAST [80]. In brief,  

k-mer (default 11-mer) seeds that exactly match certain regions in reference genome are identified. 
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Those seeds are then extended to match the reference genome without gaps. The final alignment 

results are generated by the SW modification on the extending sequence. Several improvements have 

been made on the extending and dynamic programming used in this strategy. For example, GNUMAP [45] 

incorporates the base quality of a read into NW algorithm to improve the alignment accuracy and uses 

9-mer seeds to initiate the mapping process. 

 

Figure 2. A brief workflow of seed-and-extend strategy in alignment. Generally, the 

strategy can be divided into three steps: (1) generate raw seed from a read; (2) identify the 

matched seed; and (3) extend the matched seed and do the local alignment through 

standard dynamic programming algorithms based on Needleman–Wunsch (NW) [78] 

algorithm or Smith–Waterman (SW) algorithm [79]. 

2.1.2. k-mer Inexact Match Seed 

A k-mer inexactly match seed is generated from a read based on pigeonhole principle. The strategy 

using k-mer inexactly match seeds supports mismatches and indels in mapping. The rationale behind 

the strategy using k-mer inexactly match seeds is that if m bases are allowed to mismatch between a 

read and a reference sequence, the read is has n bases, and the read can be chopped into  

non-overlapping k-mers (k = n/(m + 1)), at least one exact match k-mer seed exists. The k-mer inexact 

match has been utilized in many alignment algorithms. 

SOAP [32] splits a read into fragments, based on the number of mismatches allowed (default five), 

to implement the strategy using inexact match seeds. Newer SOAP versions improve the alignment 

speed but use the same seeding strategy. SOAP2 [33] speeds up the mapping process using a reference 

sequence that is indexed by the combination of BWT and hash table. The graphics processing unit 

(GPU) is incorporated by SOAP3 to facilitate parallel calculation [34]. More recently, SOAP3-dp [35] 

utilized dynamic programing and bi-directional BWT to reduce unsuccessful extending of the seeds 

with multiple locations in the reference. 

Bowtie [40,41] generates k-mer inexact match seeds with at most three (default two) mismatches in 

the high-quality end of a read (default: the first 28 bp in the read). The “double indexing” technology is 

the one of major contributions to the high speed of Bowtie. One is called “forward” index, which 
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contains the BWT of a reference sequence, and another is referred as “mirror” index, which is 

composed of the BWT of the reversed reference sequence. Using double indexes, exactly matched 

seeds can be quickly identified. Bowtie uses a cutoff, the maximum acceptable quality score (default 

70), to determine whether extension of a read continues. If the alignment has a quality score larger than 

the cutoff, the extension on the matched seed is stopped. This quality score constraint helps remove a 

lot of matched seeds for continuous extension alignment as early as possible. 

BWA [42,43] generates k-mer inexactly match seeds with a default of two mismatches allowed in 

each seed. Seeds are efficiently mapped to a reference genome, facilitated by a special index structure 

called prefix directed acyclic word graph (DAWG) [81]. DAWG represents the set of all substrings 

that are extracted from a string. In BWA, alignment speed is improved by reducing unnecessary seed 

extension for highly repetitive sequences. In brief, BWA heuristically identifies and discards seed 

extensions using a criterion in which the length of the overlapped region is shorter than the length of 

any previous successfully aligned regions in the reference genome. BWA only reports the alignments 

that are largely non-overlapped with the query sequence instead of giving all the local alignments. 

2.1.3. k-mer Spaced Seed 

Generally speaking, a seed allowing internal mismatches is called a spaced seed [82]. For example, 

in a 5-mer spaced seed “10110”, “1” indicts the position in which the base of a seed has to match with 

a reference sequence and “0” means the position in which the base of a seed is allowed to mismatch 

with a reference sequence. k-mer spaced seed was first introduced and proved to improve sensitivity of  

k-mer exact match in DNA homology searching by Ma [83]. 

RMAP [49,50] integrated base-calling quality scores to improve sensitivity in both seed mapping 

and extension processes. The quality scores from base-calling were used to weigh the penalties for 

mismatches at different positions. A mismatched base at a position with a lower quality score than the  

base-calling in a read is penalized less. Utilization of base-calling scores in alignment displayed high 

sensitivity in mapping of the bases for which the base caller has difficulties to call and thus gives low 

scores to the called bases. 

MAQ [57] uses k-mer exact match seeds for mapping in the first step. When seeds fail to be exactly 

matched onto a reference sequence, MAQ generates 6-mer spaced seeds in which two or fewer 

mismatches are allowed in the first 28 bp for a read. This strategy saves a lot of time in seeds 

generation and mapping. In seed extension process, MAQ assigns each individual alignment a  

phred-scaled quality score (capped at 99) that is used to measure the probability that the true alignment 

is not the one found by MAQ. The larger phred the scaled quality score the better the alignment. The 

phred-scaled quality score is calculated as the sum of qualities of mismatched bases over the whole 

length of a read. When a read can be aligned equally well to multiple positions, MAQ randomly pick 

one position and gives it a mapping quality score zero. 
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2.1.4. Maximum Extend Match (MEM) Seed 

MEM [84] is an exact match between two strings that cannot be extended in either direction without 

allowing a mismatch. Compared to fixed-length seeds (seed length is predefined) mentioned above, the 

variable seed length is the key feature of MEM seed. MEM reduces the number of mapping positions 

of each seed onto a reference genome. Alignment speed using MEM seeds is improved because invalid 

seed extensions are prevented. The efficiency of generating MEM seeds plays a key role in an 

alignment algorithm using MEM seeds. In general, indexing a sequence in a full-text suffix tree is the 

frequently used strategy in detecting MEMs [85,86]. The obvious drawback of using full-text suffix 

tree is the large memory usage. Recently developed methods improved index structure to reduce the 

memory usage. Enhanced suffix array (ESA) was first introduced as a space-sparse suffix array to 

replace full-text index in suffix tree [85] and can be used to find MEMs with much less memory  

usage [87]. Khan [84] developed an algorithm to generate a special sparse suffix array that stores every 

k-th position of the text. In contrast to a full-text index that stores every position of the text,  

a sparse suffix array uses much less memory. Fernandes developed slaMEM to detect MEMs [88]. The 

slaMEM algorithm uses a new index structure called longest common prefix (LCP) array and the 

backward search method of the FM-index and achieves a good tradeoff between mapping speed and 

memory usage. More recently, E-MEM was developed by Nilesh to decipher MEMs in large genome 

sequences. E-MEM uses much less memory and is highly amenable to parallelization. It has been 

reported that all MEMs of minimum length 100 between whole human and mouse genomes could be 

calculated within 10 min on a 12-core machine, using 2 GB of memory [89]. 

BWA-MEM is the latest developed algorithm in BWA software for sequence alignment.  

BWA-MEM utilizes a new index structure called FMD-index in which both forward and reverse strand 

DNA sequences are indexed. It can efficiently facilitate detection of all MEMs between a read and a 

reference sequence. The super-maximal exact matches (SMEMs) are the matches that are not 

contained in any other MEMs of the read and are chosen for seed mapping and extension. Using 

SMEMs saves a lot of alignment time by reducing most invalid extensions of all other MEMs in the 

read. If a read cannot be aligned to a reference sequence by extension of the SMEMs, BWA-MEM 

uses a re-seeding process to generate new seeds for mapping and extension. Specifically, when the 

length of a SMEM is larger than 28 bp (default), the longest MEM seed which covers the middle of the 

SMEM in this read is used to initialize re-seed. In seed extension, BWA-MEM stops an extension at a 

certain point if the difference between the best alignment score in the extension and the score at that 

point is larger than a predefined value that is further adjusted by number of gaps in the alignment. 

When an extension reaches the whole read, this algorithm accepts the alignment as a successful one 

mapping between the read and the reference sequence if the best improvement in alignment score in 

the extension is larger than a predefine value. 

CUSHAW2 [38] is another software package that uses MEM seeds to initiate alignment. MEM 

seeds are detected from the FM-index of a read or a reference sequence. An important parameter, Q, 

indicating the minimum seed length is used to filter MEM seeds to avoid invalid extensions. 

Specifically, the default Q is set at 16, 22 and 35 for the read length of 100, 200 and 500, respectively. 

Users can set Q. Parallelization with GPU is implemented in CUSHAW2. 
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2.1.5. Adaptive Seed 

Adaptive seed is the shortest sub-sequence in a read that exactly matches a reference sequence with 

a mapping frequency less than a predefined value. In contrast to fixed-length seeds, the length of an 

adaptive seed is not fixed, but determined through analyzing the mapping of possible seeds to the 

reference genome. To identify the adaptive seed for read, seeds with different lengths are generated at 

first. The frequency of mapped positions in the reference sequence for each of the generated seeds is 

then calculated. The seed that is the shortest among the seeds that have a mapping frequency less than 

a predefined value is selected as the adaptive seed for extension. Several algorithms have been 

developed for efficient identification of adaptive seeds. 

LAST [69] was proposed by Kielbasa to reduce the redundancy of seeds in identification of 

adaptive seed. This algorithm selects the shortest seed among the seeds that exactly map to the 

reference sequence starting at the same position. LAST only reduces the redundancy by dropping off 

the longer overlapped seeds. However, the redundancy from the overlapped seeds that map to the 

reference sequence starting at different positions is not considered in this algorithm. Seeds redundancy 

could be eliminated by more sophisticated algorithms. However, eliminating seeds redundancy may be 

more time-consuming. LAST is a good tradeoff, removing part of the seed redundancy through a very 

simple approach. 

AMAS [90] splits a read into several non-overlapping adaptive seeds. Specifically, the adaptive 

seeds are generated one by one through scanning the read base by base in the left-to-right direction. 

The first 10 bp in the read are used by default to initiate the scanning process. When the number of 

matches of a seed is less than a predefined frequency threshold, the seed is selected as an adaptive seed 

and a new seed scanning is initiated using the next 10 bp in the read. AMAS also makes an 

improvement on filtering the adaptive seeds, especially for the last seed in each read, which are usually 

shorter and map to much more locations than other seeds in the same read. In brief, AMAS only filters 

out last seeds of each read whose numbers of matches are higher than the predefined frequency cutoff 

and contribute to more than 95% of the candidate locations of their respective reads. 

2.2. q-gram Filter 

Similar to seeds, q-grams are small fragments extracted from a read. q-gram filter alignment [91] is 

based on the hypothesis that two sequences should contain a certain number of q-gram if the edit 

distance between them is within a certain threshold. Herein, the edit distance [92] between two 

sequences is defined as the minimum number of editing operations (such as insertion, deletion, and 

substitution) that are needed to transform one sequence into the other. Figure 3 gives an overall 

flowchart of alignment based on q-gram filter strategy. In the first step, q-grams from a query read are 

generated and mapped to a reference sequence. This is a multiple-seeds mapping process. In the 

second step, the highly mapped regions are selected as candidates by an inverted index of grams, 

leading to a relatively larger memory usage. Lastly, the candidates are aligned to the read and the false 

positives are identified and discarded. The difference between q-gram filter and seed-and-extend is that 

q-gram filter based algorithms align a read to reference sequence by multiple seeds mapping without 

extension, while algorithms using seed-and-extend generate an alignment between a read and a 
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reference sequence through mapping a single seed following by extension. Without extension process, 

q-grams filters based algorithms support more insertions and deletions in alignment than the 

algorithms using seed-and-extend strategy.  

SHRiMP (Short read mapping package) [61,62] was developed by University of Toronto and is  

a popular alignment software utilizing q-gram filter. It incorporates the concept of spaced seed in  

q-grams generation and mapping to improve alignment sensitivity. Many predetermined positions such 

as SNP (single nucleotide polymorphism) sites in a reference genome are not required to exactly match 

with reads during q-grams mapping. Candidate q-grams are selected using a predefined minimum of 

hits on a reference sequence. Number of hits of a q-gram on a reference sequence is used to estimate 

its mapping goodness. The candidate q-grams of each read are sorted according to their numbers of 

hits on the reference sequence. SHRiMP identifies candidates for each read by top ranking the q-grams 

using their numbers of hits on the reference sequence. The number of top hits used to identify 

candidate q-grams can be defined by users. 

 

Figure 3. The overall workflow of q-gram filter in alignment. The strategy consists of 

three steps: (1) generation of q-grams from a read; (2) identification of highly mapped 

regions in a reference sequence through multiple q-grams mapping; and (3) local alignment 

of the read and highly mapped regions through standard dynamic programming  

algorithms based on Needleman–Wunsch (NW) [78] algorithm or Smith–Waterman (SW)  

algorithm [79]. 

Hobbes [93] is an optimized q-gram filter based method for efficient read alignment. It improves 

both q-gram generation and candidate filtering. A basic q-gram method usually generates numerous 

overlapped small q-grams for a read and thus needs intensive CPU calculation and large memory 

usage. Hobbes uses non-overlapping q-grams to optimize the number of q-grams based on a paradigm 

similar to the pigeonhole principle used in k-mer inexact match seed. The rationale behind this 

algorithm is that a read within an edit distance d to a reference sequence must contain at least n  

q-grams from d + n non-overlapping q-grams of the reference sequence. In candidate selection, 

Hobbes uses two approaches to rigorously filter the highly mapped regions of non-overlapping  

q-grams in the reference sequence for the read. At first, it filters the candidate q-grams based on the 

edit distance between corresponding reference sequence and the neighboring sequence of the mapped 
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q-gram. The hypothesis is that if the neighbor of a matched q-gram has a large edit distance to the 

corresponding sequence in the read, the candidate q-gram is probably not a true match. The difference 

in frequency between the highly matched regions by overlapping q-grams and the read for the four bases 

(A, T, G, and C) is another filter to remove invalid candidate q-grams for further alignment evaluation. 

3. Conclusions 

The rapid development of next-generation sequencing technologies provides a promising 

opportunity to extend the capability of biomarker discovery in precision medicine. How to efficiently 

and correctly map millions of short reads to a reference genome is one of the major challenges in NGS 

data analysis. More specifically, speed and sensitivity are the two major concerns in current alignment 

algorithms, no matter which seed-and-extend or q-gram filter strategy is utilized. In this review, we 

have summarized the often-used alignment algorithms and discussed the approaches to achieve an 

optimized tradeoff between speed and sensitivity. Generally, higher sensitivity would be achieved by 

using shorter seeds or grams with more mismatches allowed, while alignment speed can be increased 

by optimizing seed generation or filtering seeds that most likely fail to extend. This review is expected 

to facilitate understanding of the alignment algorithms and their algorithmic parameters. 

4. Further Perspectives 

Many state-of-the-art software packages have already made great progresses in achieving an 

optimized tradeoff between speed and sensitivity. However, there are still some rooms for improvement. 

One of the remaining challenges in reads alignment is how to align the reads that can be mapped to 

multiple repeated regions in a reference genome. According to the statistics on human reference 

genome version hg19, approximately 50% of the human genome has repeats [94]. Especially, some 

copies of the repeats are not the same but slight variants. This inevitably causes ambiguities in reads 

mapping. Usually, seeds or q-grams of reads are not specific and mapping may be very slow in the 

repeated regions. Currently, three simple methods have been used to improve alignment speed in 

repeated regions. The first method is to discard all seeds or q-grams that map to repeated regions. The 

second one is to randomly select one of the best alignments or report all of them. The last one is to 

select a number of top alignments. Obviously, ignoring all of the reads or part of reads mapped in the 

repeats may miss some important variants. In addition, the “best alignment” identified by an alignment 

software package in such regions may not always be correct, especially when a SNV or a small indel 

truly occurs in the repeat region. Nathan [45] first proposed a probabilistic model base on quality 

scores to align reads in repeated regions. Further efforts are still needed to improve alignment of reads 

in repeated regions of a reference genome. 

Another challenge is to develop alignment algorithms for extremely long reads. Although most 

current NGS platforms produce short reads with length around 2 × 150 bp, there is no doubt that 

extremely long reads generated by so-called “third generation sequencing” platforms would be more 

and more promising and provide fundamentally more information than short reads. A finite coverage 

with short reads is not enough for deciphering a complex genome, especially for the regions where no 

or very few reads are mapped. A few long reads in the right spot may be able to identify the genetic 

variants. However, the error rate in long read platforms is a major concern in application of long reads. 
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Most current algorithms are designed for alignment of short reads. Many parameters in the algorithms 

for alignment of short reads would not be appropriate for alignment of long reads. For example, only 

the first 28 bp in each read was supported for at most three mismatches by default in Bowtie. 

Therefore, the extension process would be extremely long if a small k-mer seed was used to initiate the 

alignment of a long read. It is expected that new alignment algorithms will be exclusively designed for 

long reads, with consideration of their specific properties. 

Integration of additional genetic information into sequence alignment will be a focus in the future. 

Currently, the majority of the alignment algorithms were designed to align reads to a single reference 

genome without consideration of the genetic variations in the reference genome. The assumption 

behind current algorithms is that the reference genome is highly similar to the genome sequenced and 

provides comprehensive enough genetic background. However, precision medicine needs genetic 

difference among individuals, thus such hypothesis is challenged. Human reference genome may not 

provide the most comprehensive genetic variations. A study on the novel assembly of an Asian and an 

African genome revealed ~19–40 Mb of novel sequences that were missed in the human reference  

genome [95]. In order to achieve more sensitivity and accuracy in alignment, genetic variation 

information, such as the 1000 genomes project [25] and the structural variation information in cancer 

from TCGA [96], should be integrated into alignment algorithm development in the future. 
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